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Abstract: This study analyzed factors that influence the ignition delay characteristics of n-heptane/
methane-blended fuel. The effects of chemical species, exhaust gas recirculation rate, compression
ratio, cool/hot flames, and combustion chamber conditions (temperature, pressure, and O2 con-
centration) were determined and analyzed using CHEMKIN Pro. The experiment conditions for
verification were 550–1000 K at 15 bar with 50% H2/50% CH4 fuel. The main combustion reactions
were confirmed through reactivity analysis and sensitivity analysis on the ignition delay time. The
ignition delay time at 14.7% O2 concentration was significantly higher than that at 21% O2 concen-
tration by more than 30%. In addition, a higher ratio of methane in the blended fuel increased the
ignition delay time as a result of methane dehydrogenation, delaying the ignition of heptane.

Keywords: ignition delay time; n-heptane; methane; compression ratio; exhaust gas recirculation

1. Introduction

Due to the depletion of fossil fuels and the environmental impacts, strong emission reg-
ulations such as EURO-6 and Tier-5 are implemented around the world. As a result, there is
a growing interest in improving the efficiency of internal combustion engines and reducing
their pollutant emissions [1]. An ongoing active area of study is homogeneous charge com-
pression ignition (HCCI) engines, which combine the advantages of conventional gasoline
engines (SI), diesel engines (CI), reactivity-controlled compression ignition (RCCI) engines,
and partially pre-mixed combustion ignition (PPCI) engines [2,3]. In the HCCI system, a
pre-mixture of air and fuel is formed in the combustion chamber during intake just like
in the SI, while the piston compression and ignition combustion are performed similar
to the CI. The combination of these technologies allows for engine operation in sparse
conditions, achieving a high compression ratio (CR) by applying exhaust gas recirculation
(EGR) to maintain low-temperature combustion (LTC), reducing carbon dioxide (CO2)
emission by improving the thermal efficiency, and simultaneously decreasing the emission
of NOx and particulate matters (PM) by forming a consistent mixture in the combustion
chamber while preventing local hot spots during combustion [1,4]. However, the operation
range is still limited at low loads and high loads. At low loads, a low temperature leads
to incomplete combustion, causing an excessive discharge of carbon monoxide (CO) and
hydrocarbons (HCs). At high loads, rapid ignition combustion increases the combustion
pressure drastically, which results in engine knocking, damage, and noise.

Conventional diesel fuel is a mixture of various HCs with a high cetane number.
Among the components, n-heptane with a high carbon number has a cetane number
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comparable to that of diesel. Hence, n-heptane is widely used as an alternative to diesel in
experimental settings to effectively simulate two-stage ignition, cool flames, hot flames, and
ignition delays. Also, many studies have been conducted on precise combustion control
techniques to control the ignition delay by adjusting the fuel mixing ratio, pressure, and
equivalence ratio [5,6]. ExxonMobil, a U.S. petrochemical company, recently predicted
in its long-term energy outlook that oil and natural gas would remain the main sources
of energy, accounting for 60% of the world’s energy supply by 2040. Particularly, the
consumption of natural gas was expected to grow the fastest to meet 40% of the global
energy demand. Mainly composed of methane, natural gas allows for an effective response
to CO2 regulations, such as the Kyoto Protocol, with its lower emissions of PM and CO2
when compared to diesel fuel. Therefore, many researchers have been studying combustion
characteristics such as ignition delay time, ignition temperature for operating pressure,
burning velocity, etc., for alternative fuels [7–18].

Li et al. [7] studied the autoignition characteristics of gasoline/diesel/ethanol/PODE
fuels. The effect of ethanol on chemical ignition delay is higher than that of physical ignition
delay, and a higher EGR ratio also leads to a longer ignition delay time.

Kuszewski [8] conducted an experimental study of n-butanol-diesel blends to achieve
low nitrogen oxides and smoke emissions from the diesel engines. The autoignition
properties were tested by standard diesel fuel with oxygen compounds such as alcohols.

In the study of Wang et al. [9], ignition delay time gradually decreases with a high
pressure and equivalence ratio which conditions show lower reactivity. The simulation
results are in good agreement with experiment results. The gas-phase autoignition of
methanol/diesel mixture was studied by Zhu et al. [10]. They observed the typical two-
stage ignition of a mixture with an NTC response over the whole temperature regime.
In terms of various fuels that have been studied, n-heptane/methane blends have also
attracted focus. N-heptane has been used as a standard fuel in fundamental studies on
fuel control methods, and methane recently gained attention as an alternative fuel. The
high octane number of methane increases the ignition delay, providing sufficient time
for the pre-mixing of fuel and air during engine operation and allowing for consistent
pre-mixing [11]. However, the low cetane number of methane results in poor auto-ignition
properties [12]. A reasonable way to meet the requirements of both SI and CI is mixing
methane with hydrocarbon fuel having a high cetane number. There is an urgent need to
verify the dual fuel system and analyze its combustion properties.

Yao et al. [5] simulated the ignition delay for n-heptane/methane blended fuel at
different mixing ratios. They investigated the effects of three factors (oxygen partial
pressure, specific heat, and chemical reaction) on ignition delay at 40 and 80% methane.
They also carried out a comparative study through chemical reaction sensitivity analysis
on the ignition delay, by designing reduced chemical mechanisms for methane (Hung
mechanism) and for n-heptane (Curran mechanism). Aggarwal et al. [6] simulated the
ignition delay time in n-heptane/methane-blended fuel under high-pressure conditions
(30 and 55 atm) and equivalence ratios (Φ = 1 and 2). The methane ratios were 0, 20, 80, 95,
and 100%. Their sensitivity analysis revealed that the heptyl (C7H15) and hydroxyl (OH)
radicals played a significant role in ignition.

Our research team has been studying autoignition characteristics for n-heptane-based
fuels such as n-heptane/hydrogen and n-heptane/ethanol with various operating condi-
tions [13,14]. The EGR ratio, operating temperature, diluting ratio etc., have been studied
with various fuels, and this study analyzed various factors affecting the chemical ignition of
n-heptane/methane-blended fuel, including the combustion chamber environment (temper-
ature, pressure, and O2 concentration), changes in OH radicals, and intermediate chemical
species promoting oxidation reactions, cool/hot flames, and CR. No relevant information
has been reported before. The goal here was to understand how the combustion reaction
and ignition delay time of n-heptane/methane-blended fuel under low-temperature con-
ditions are affected by the mixing ratio, heat production, concentration of intermediate
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chemical species, CR (2.5, 3.0, 3.5, 4.0, and 4.5), ignition delays by a cool/hot flame, and O2
concentration through EGR simulations.

2. Experimental Device and Method
2.1. Experimental Device

The rapid compression machine (RCM) is an ideal device for simulating pre-mixed gas
(fuel, oxygen, and dilution gas) at a set temperature and pressure in a combustion chamber
similar to the actual engine. The composition, CR, equivalence ratio, and compression
temperature of the pre-mixed fuel can be adjusted. The combustion phenomenon at con-
stant pressure may be measured and analyzed by varying the temperature [19,20]. Figure 1
illustrates in detail the RCM system consisting of two parts: a combustion chamber where
the piston quickly compresses fuel for auto-ignition combustion, and an impact pneumatic
cylinder (IPC) that operates the piston pneumatically. There is a pre-mixing chamber, a
vacuum pump, and sensors and measurement equipment for acquiring experimental data.
A piston compressed by air is installed inside a pneumatic cylinder where compression
pressure is generated. The piston speed can be adjusted by the pressure inside a high-
pressure air tank fed by an air compressor. The CR is adjusted using a pneumatic device
that moves a rod connecting the combustion chamber and the pneumatic cylinder. The
RCM used here is capable of very short compression times of less than 30 ms. To address
the piston-slip phenomenon caused by the explosion, which may significantly affect the
experimental results, a brake arm is used to fix the piston once it reaches the top dead
center to prevent damage by the explosion. Table 1 provides detailed information on the
RCM system.
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Table 1. Specification of the RCM system.

Description Specification

Cylinder bore 40 mm

Cylinder thickness 13 mm

Piston type Creviced piston

Piston stroke 100–200 mm

Compression ratio (CR) 2.5–4.5

Compression time 20–30 ms

Initial temperature 293 K

Initial pressure 1 atm

2.2. Experimental Method and Conditions

This study used a blended fuel of n-heptane and methane with the mixing ratio of
methane set at 100, 75, 50, and 25 mol.%. A uniform mixture was produced by vaporizing
the blended fuel in the mixing chamber with magnetic stirrer, and the amount of injected
gas and fuel was determined by calculating the absolute pressure and adjusted by mea-
suring the partial pressure. A vacuum was created in the combustion chamber with a
vacuum pump, and the fuel was injected into the pre-mixing chamber with a syringe. The
experiment was conducted once the fuel tank, gas supply line, and combustion chamber
reached a constant temperature of 293 ± 0.5 K. After a compression and explosion stroke
were completed in the combustion chamber, the emissions were removed using the vacuum
pump, and the experiment was repeated 6 to 10 times under the same conditions and an
operating pressure of 8 bars to confirm reproducibility. The pressure changes inside the
combustion chamber were measured by opening the solenoid valve, for the period from
when the piston in IPC started operating to when the pressure value of the rear cylinder in
IPC was opened following the explosion. The output signals of the pressure sensor (Kistler
6125b) and pressure transducer (Kistler 6041A) were amplified by the signal amplifier
(Kistler 5018). The amplified analog output was acquired through a high-speed A/D
board (Kistler 5018) at a sampling speed of 10,000 Hz and transformed with commercial
software (LabVIEW 8.2). A K-type thermocouple was used to measure the temperature
of the mixture supplied to the combustion chamber. The compression temperature (Tc)
was calculated using Equation (1), assuming that compression inside the RCM was the
adiabatic process of an ideal gas [21,22]:∫ Tc

T0

γ(T)
γ(T)− 1

dT
T

= ln
(

Pc

P0

)
(1)

where T0 and P0 are the initial temperature and pressure, Tc and Pc are the temperature
and pressure of the mixture compressed at the top dead center, and γ(T) is function of
temperature corresponding to the ratio of specific heat of the mixture.

The ignition timing was analyzed by varying the ratio of methane from 100 to 25 mol.%
in the blended fuel at low temperatures, as well as the O2 concentration (14.7–21%) and
CR = 2.5–4.5 for EGR simulations. Table 2 provides the properties of the blended fuel used
in the experiment.
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Table 2. Fuel properties.

Name n-Heptane Methane

Molecular formula C7H16 CH4

Molecular weight 100.21 16.042

Density g/m3 0.688 0.664

Boiling point K 372 111.55

Auto-ignition temperature K 558 810

Low calorific value MJ/kg 44.24 49.94

RON 0 130

CN 56 0

3. Numerical Analysis

To verify the results of the ignition delay experiments conducted with the RCM,
theoretical calculation was performed using the commercial analysis program CHEMKIN-
PRO [23]. A closed homogeneous constant-volume combustion module was adopted to
simulate the initial state at the temperature and pressure when the piston reached the
TDC. A reaction model developed by Dooley et al. consisting of 1599 chemical species and
6633 chemical reactions was used for the n-heptane/methane-blended fuel [4]. The model
was interpreted using a jet-stirred reactor, and it can be applied to a wide temperature range
for low- and high-temperature reactions. In addition, the model is capable of calculating
complex chemical reactions with a high carbon number. The detailed n-heptane reaction
model proposed by Mehl et al. [24] was adopted for the calculations of n-heptane. The
calculation was conducted at Φ = 1, Pc = 15 bar, Tc = 600–1000 K. The auto ignition
characteristics for 0, 25, 50, 75, 100% of methane ratios in fuel mixture, 2.5, 3, 3.5, 4, and 4.5
of CR, and 0, 10, 20, and 30% of N2 dilution were considered.

The ignition delay time, an important factor in this study, is defined according to
Figure 2. The Figure illustrates the time-dependent pressure and its change rate (dP/dt).
The ignition delay (τ1) was measured from the end of the compression to the occurrence of
a cool flame, and τ2 is the duration from the occurrence of the cool flame to the beginning
of ignition. The total ignition delay time (τtot) is defined as τ1 + τ2, or the time interval
from completing the compression stroke to the maximum value of dP/dt.
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4. Results and Discussion
4.1. Reaction Pathways of Blended Fuel

Figure 3 shows the reaction pathways of pure n-heptane (left) and n-heptane/methane-
blended fuel (right) [25–28]. The difference between the two systems is indicated by the
red dotted box. Methane reacts with O2 to promote an oxidation reaction and produces
formaldehyde (CH2O), using OH radicals formed from methane in the first oxidation
reaction in the low-temperature range. Since formaldehyde is widely known as a stable
molecule, the ignition delay time increases as the methane ratio in the blended fuel in-
creases [29,30]. Also, in the n-heptane/methane mixture, methane reduces the production
of H2O2 radicals at low temperatures and inhibits the production of active OH radicals
that induce oxidation, thereby suppressing the low-temperature oxidation reactions. As
n-heptane is highly reactive at low temperatures, the oxidation of mixed fuels can be
promoted by a number of radicals produced by the reaction of n-heptane.
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4.2. Chain Reactions

The following chain reactions R1–R5 are the main oxidation reactions [31]:

R1: RH→ R + H (H-atom abstraction) (2)

R2: R + O2 ↔ RO2 (3)

R3: RO2 ↔ QOOH (4)

R4: QOOH + O2 ↔ O2QOOH (5)

R5: O2QOOH→ ketohydroperoxide + OH (6)

Alkyl groups are formed from n-heptane after H atoms are separated in the early stage
of low-temperature combustion, and they react with oxygen to form RO2 radicals. These
radicals are converted to QOOH radicals through isomerization, which is the key reaction
mechanism in low-temperature combustion. As the temperature increases, the strongly
exothermic reaction R + O2→ RO2 is reversed to RO2→ R + O2. RO2 decomposes into cyclic
ether + OH, conjugate olefin + HO2, in addition to the QOOH radicals. These chain reactions
reduce the reactivity of the overall system, resulting in the development of a region with
negative temperature coefficient (NTC) [32]. The NTC refers to the phenomenon that the
ignition delay time of a fuel mixture increases with an increasing initial temperature within
a certain temperature range [33–37]. The high-temperature combustion proceeds quite
differently from the low-temperature one. In the high temperature range above 1000 K, the
main chain reaction is H + O2 = O + OH, and the overall chemical decomposition reaction
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takes place in rapid combustion through β-scission of alkyl radicals [38]. As a result,
OH radicals play an important role in the oxidation reaction and promote the reaction of
n-heptane/methane-blended fuel.

4.3. Production of OH and H2O2 Radicals

For simplicity, in the following discussion we denote different blended fuels as
xH(100−x)M, where x is the mol.% of n-heptane and (100−x) that of methane. For example,
an equimolar mixture of n-heptane/methane is referred to as H50M50.

Figure 4 shows the timing for the formation of OH and H2O2 radicals. Due to their
unpaired electron, OH radicals are high in energy and very reactive. The first step of n-
heptane oxidation is dehydrogenation to form C7H15-1 to C7H15-4. The reaction of oxidized
HO2 (HO2 + HO2 = H2O2 + O2) produces H2O2 radicals, which significantly affect the
formation of OH radicals in the second oxidation reaction. In panel (a) for H75M25 and
panel (b) for H25M75, OH and H2O2 radicals are formed in proportion to each other during
the low-temperature oxidation process. As the methane ratio increases, the amount of
H2O2 produced by the oxidation of n-heptane decreases, and the delay time increases. This
is the main difference between the first oxidation time and the second oxidation time. The
amounts of the formed products also vary significantly, which affects the temperature rise
at the time of the first oxidation. The formation of H2O2 increases after the first ignition,
but the extinction point depends on the methane ratio. When these radicals reach a certain
level, the main ignition occurs [39,40].
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Figure 4. Computed concentrations of various radical species (OH, H2O2, and C7H15) at the condi-
tions of Φ = 1.0, Pc = 15 bar, CR = 3.5, O2 = 21% for (a) H75M25 and (b) H25M75.

Figure 5 shows the amount of H2O2 produced at various methane concentrations. The
amount of H2O2 was similar when the methane concentration remained at 50% or less.
As mentioned above, H2O2 production at low temperatures depends on the compression
temperature Tc. As the methane ratio increases, the production time of H2O2 is delayed,
which reduces the amount of generated H2O2. The main ignition is also delayed when the
rate of H2O2 accumulation is slower, and the ignition temperature is reduced by 40–100 K,
which delays the first ignition. It was confirmed that the total ignition delay time in the
low-temperature region increased when the methane ratio in the blended fuel increased.
This is consistent with previous studies [5,6,39], which showed that OH radicals produced
at a higher methane ratio delay the ignition time. This is attributed to the H-abstraction
reaction of methane, which consumes large amounts of OH radicals and oxygen, and the
consequent lack of OH radicals and oxygen required for the oxidation of n-heptane is the
major cause of the ignition delay. However, at high temperatures, OH radicals are rapidly
promoted and decomposed by the production of H2O2. That is, ignition timing can be
controlled with the mixing ratio of the blended fuel [5,6,39,40].
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Figure 5. Mole fraction of H2O2 for blended fuels at Tc = 900 K, Φ = 1.0, Pc = 15 bar, CR = 3.5, and
O2 = 21%.

4.4. Analysis of Blended Fuel Reaction
4.4.1. Effect of Fuel Composition

Figure 6 shows the ignition delay time for n-heptane/methane-blended fuels at differ-
ent compositions. Since the horizontal axis is the reciprocal temperature, the right-hand
side represents the low-temperature region and vice versa. The methane ratio in the fuel
was 0, 25, 50, 75%, and 100% while fixing the equivalence ratio at one, the compression
pressure at 15 bar, and the O2 concentration at 21%. The ignition delay time was calculated
while varying Tc from 600 to 1000 K in steps of 50 K. As Tc increased, the ignition delay
time decreased. Even at a high methane ratio of 75%, an NTC region and the second
ignition were observed, although this did not occur for 100% methane. Regardless of
the mixing ratio, the ignition delay time decreased as Tc increased, which is the typical
combustion characteristic of n-heptane. However, the ignition delay time started to increase
or remained constant as the temperature increased near to the specific temperature of 800 K
in the NTC region [39,40].
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4.4.2. Temperature and Pressure Changes in the Combustion Chamber

Figure 7 shows the temperature distribution in the combustion chamber and the
ignition delay time, as Tc is varied from 600 to 900 K and the CR from 2.5 to 4.5. For the
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combustion temperature, the combustion process was assumed to be adiabatic, whereby
heat loss due to heat transfer only occurs through the boundary near the cylinder wall but
not in the core.
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Tc was calculated using Equation (1), and the ignition delay time at Tc = 800 K was
shorter than that at 900 K, which fell in the NTC region. Also, as the methane ratio increased
and the initial Tc decreased, the ignition delay time increased [39–41]. Tc was the highest
at 900–950 K for H75M25 and H25M75 and at 950–1000 K for H50M50. Regardless of the
mixing ratio, the ignition delay time was the shortest at 800 K and the longest at 600 K.
When the methane ratio increased, the pattern in temperature change was similar, but the
ignition delay time changed. For H75M25 in (a), as the CR increased from 2.5 to 4.5, the
combustion chamber temperature rose to a maximum of 3823 K, and the ignition delay
time decreased from 2.84 to 1.5 ms or less. For H50M50 in (b), the combustion chamber
temperature increased to a maximum of 3783 K, and the ignition delay time decreased
from 3.5 to 1.7 ms or less. For H25M75 in (c), these values were 3774 K, 5.1 ms, and 2.8 ms,
respectively. The ignition delay time decreased as a result of an increase in CR, and Tc and
the compression pressure also increased. This reaction was attributed to the faster flame
speed, because n-heptane promotes the combustion reaction of methane when the two
components are blended. [40–42].
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4.4.3. Concentration of Produced Chemical Species and Heat Production Analysis

Figure 8 compares heat production at the time of ignition depending on the concen-
tration of the chemical species, when the methane ratio in the blended fuel is increased
stepwise by 25%. For H75M25 in Figure 8a, n-heptane promotes the oxidation reaction
of blended fuel and disappears quickly after the first ignition, but methane is oxidized
and decomposed under the influence of n-heptane. This is because n-heptane promotes
the oxidative decomposition of methane. The heat production was also found to increase
rapidly. For H50M50 in Figure 8b, methane is consumed after n-heptane is consumed. For
H25M75 in Figure 8c, n-heptane and methane are oxidized and consumed at the same time
points during the first ignition and the main ignition. This was attributed to the delay of
methane oxidative decomposition due to the lack of oxidizing agents for n-heptane. OH
radicals are produced by low-temperature chain reactions of the blended fuel, as described
above, and H2O2 radicals formed after the first ignition promote the production of OH
radicals and disappear at the time of the main ignition. As the proportion of methane
increases, the production of H2O2 decreases and its production period increases, resulting
in a decrease in OH radicals and a longer time required for the main ignition to occur.
Heat production was also confirmed to decrease as the methane ratio increased, and the
cool flame took place at the first ignition. The amount of produced heat increased as Tc
increased, but there was less heat production in the NTC region at 850 K. This is because the
weak oxidation at low temperatures decreased the reactivity. Regarding fuel consumption,
the decomposition and combustion of methane were slower than those of n-heptane due to
the high octane number and auto-ignition temperature of methane. As a result, methane
was combusted according to the promoted combustion pattern of n-heptane with a high
cetane number.
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4.4.4. Analysis of Ignition Delays by Cold and Hot Flames

Figure 9 compares the delay times for the first ignition and the main ignition for each
blended fuel composition at CR = 3.5. The first ignition time is exponentially decreased,
and the second ignition delay time is exponentially increased d by increasing temperature.
At a higher methane ratio and Tc = 700–850 K, the first ignition and the main ignition were
delayed [41,42]. The main ignition delay time increased by 46% when methane ratio in
the blended fuel increased from 25 to 75%, and the delay time increased by 87 and 83%
at Tc = 800 and 850 K, respectively. Regardless of the fuel composition, only the main
ignition occurred without the first ignition when Tc ≥ 900 K. This indicates that a higher
methane ratio suppresses heptane ignition. The chain reaction for methane decomposition
(CH4 + OH = CH3 + H2O) increases with the methane ratio, which in turn increases the
consumption of OH radicals.
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and O2 = 21%.

This inhibits the ignition of n-heptane while delaying the ignition further. During
the combustion process, a cool flame occurs at the first ignition, and a hot flame occurs
at the main ignition. High-carbon fuels such as n-heptane allow a cool flame to occur
prior to the ignition, which may affect the overall combustion reaction by isomerizing and
decomposing fuel molecules [43]. The first and main ignition delay time can be controlled
by the modulation of not only operating conditions but also the methane/n-heptane ratio.
The sensitivity to first and main ignition delay time was greater for Tc when compared to
the mixture ratio.
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4.4.5. Effects of N2 Dilution Ratio

Prior to the LTC method, it is necessary to form a uniform pre-mixture in the cylinder
to achieve simultaneous compression ignition at multiple points. LTC is the most common
method to reduce NOx and PM by decreasing the oxygen concentration with a high EGR
rate and lowering the combustion temperature [44,45]. Previous studies had used the
following EGR rates and oxygen concentration ranges for LTC. NOx was reported to be
reduced at 50–55% EGR (12–14% O2 conditions) but the amount of soot was significantly
increased, while a smaller amount of NOx was emitted at 55–60% EGR (9–10% O2) and the
amount of soot decreased drastically [46,47]. Low-temperature combustion was also found
to be possible at an EGR of 60% or higher (<12% O2) in a naturally aspirated engine [48].

In the current study, the effect of O2 concentration was first analyzed before simulating
the EGR rate. Figure 10 shows the ignition delay time at different O2 concentrations by N2
dilution for the n-heptane/methane-blended fuel. Tc was varied from 600 to 1000 K in steps
of 50 K, and the temperature was shown in reverse order. The fuel composition was kept
at H50M50. By reducing the O2 concentration in the atmosphere by 10, 20, and 30%, the
oxygen concentration was controlled, respectively, at 18.9, 16.8, and 14.7%. According to the
calculation results, the ignition delay time increased as the O2 concentration in the blended
fuel decreased. In addition, the increase in ignition delay time was large at 800–900 K. This
corresponds to the NTC region, where the production of OH radicals is insufficient at a
lower O2 concentration and low temperatures, resulting in reduced oxidation reactions and
an inhibited ignition.
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Figure 11 illustrates the ignition delay times and the mole fractions of OH radicals,
H2O2 radicals, and the fuel at different O2 concentration by applying EGR. Panel (a) shows
the results at 16.8–21% O2, and panel (b) shows the results at 14.7% O2. When the O2
content was lowered from 21 to 18.9, 16.8, and 14.7%, the ignition delay time increased by
9.6, 29.5, and 59.9%, respectively. It was confirmed that the OH production rate decreased
as the O2 content decreased. The analysis indicated that the temperature of the first ignition
was 791 K at 21% O2 and lowered to 687 K at 14.7% O2. As a result, the delay times for the
first ignition and the main ignition increased, in agreement with the analysis of chemical
species that demonstrated lower concentrations of intermediate species and OH radials
at lower O2 concentrations. Therefore, the time required for the main ignition, as well as
the total ignition delay time, increased. This increase is explained by the fact that the inert
gas N2 comprises 70–80% of the exhaust gas in the EGR simulation. N2 in the blended
fuel introduced into the combustion chamber acts as a thermal load for the fuel inside.
Therefore, it inhibits temperature increases in the combustion chamber and suppresses the
production of intermediate chemical species. In addition, N2 gas itself has a high specific
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heat. These properties of N2 are responsible for the low temperature. The N2 ratio is an
effective parameter to control ignition delay time and temperature.
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4.4.6. Changes in Compression Ratio

The engine output may be increased by increasing the air intake amount, the number of
engine revolutions, or the CR. As CR increases, the blended gas is significantly compressed
and the temperature of the mixture increases, thereby reducing the ignition delay time.
Figure 12 shows the ignition delay time in H50M50 at different CR values. CR = 3.5 (solid
line) corresponds to the experimental data, and data for the other CR values were from
theoretical calculations (indicated by points). There is average error of 3% in all temperature
ranges. As CR increased sequentially from 2.5 to 3.0, 3.5, 4.0, and 4.5, the compression
pressure increased by 20% and the ignition delay time decreased by 25%, on average. The
lower the Tc, the larger the change in the maximum compression pressure in the combustion
chamber, and vice versa. In H75M25, the Tc value was lower, and the ignition delay time
was longer due to the high methane content. The NTC region was observed near 800–950 K
regardless of the CR. Also, at CR ≥ 4.5 and a pressure of 50 atm or higher, the NTC region
became narrower as the CR and the pressure increased. The CR is an effective parameter to
control ignition delay time in an especially low-temperature region.
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4.4.7. Reactivity Analysis of Ignition Delay Time

The fuel composition, O2 concentration, CR, and combustion chamber environment
(temperature and pressure) all influence the ignition reaction of the blended fuel. In this
experiment, H100 represents the ignition performance of 100% diesel, and M100 represents
that of 100% gasoline. The ignition reaction in blended fuels containing 50% or less methane
approximated the diesel ignition performance, and therefore the ignition reactivity of other
blended fuels was expressed relative to H50M50. In Figure 13, we analyzed the ignition
reactivity by setting the ignition delay time of H50M50 to one, and values below and
above one are expressed as “+” and “−“, respectively. Figure 13a shows that the fuel
composition significantly affects the ignition performance. In the oxidative decomposition
of methane (CH4 + OH = CH3 + H2O, RO2, QOOH), since OH radicals cannot react with
n-heptane (which dictates the combustion reaction at low temperatures) and are consumed
by methane instead, the methane/n-heptane blended fuel is ultimately subjected to a
strong inhibition in its oxidation reaction for the ignition of n-heptane. As the methane
ratio increases, the ignition greatly decreases, and the ignition performance decreases. This
indicates that the methane fuel is not compressed and is decomposed due to its high octane
number and low cetane number. Figure 13b shows the ignition characteristics at different
O2 concentrations from 21 (outside air) to 18.9, 16.8, and 14.7%. As the O2 concentration
was reduced, the ignitability was reduced by 8 to 35% due to inhibited ignition. A previous
study by Cho et al. [48] found that low-temperature combustion was possible under an
EGR rate of 60% or higher (12% or less O2 condition). In the present experiment, the
ignition performance at 14.7% O2 was 37.5% lower than that at 21% O2, meaning that a
lower O2 concentration is correlated to poorer ignition performance. Figure 13c shows that
the ignition performance is dependent on the CR, which was increased from 2.5 to 4.5 at
intervals of 0.5. When CR increased from 3.5 to 4.5, the ignition performance improved
by more than 35%, and inversely, when CR was decreased the ignition performance was
reduced by 10% on average. Additionally, a higher CR improved the performance by
20–25% on average. This result is attributed to the faster flame speed, as n-heptane promotes
the combustion reaction of methane when the two components are blended. At a higher
CR, the ignition performance improved, and Tc and the compression pressure increased.
A higher CR was found to increase the combustion temperature, and the ignition of the
methane fuel was promoted in proportion to the combustion temperature.

Figure 13d shows the effect of Tc on the ignition performance. Tc has a large effect on
chemical ignition. The graph compares the changes in ignitability within Tc = 700–1000 K,
normalized against the value at Tc = 750 K. A higher Tc leads to a higher ignitability, and
the NTC region was clearly observed at 850–950 K. Regarding the compression pressure, a
lower Tc is correlated to a higher maximum compression pressure change in the combustion
chamber, and vice versa. As the compression pressure increased, Tc increased more rapidly,
and the ignitability improved.
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4.4.8. Sensitivity Analysis

Figure 14 shows the results of sensitivity analysis to determine the main combustion
reactions with high reactivity, in the case of H75M25 fuel under the conditions of a low
temperature (850 K), 15 atm, and EGR (14.7% or 21% O2). Positive and negative sensitivity
coefficients indicate reactions that inhibit and promote the ignition reactions, respectively.
Particularly, CH4 + OH⇔ CH3 + H2O is a typical chain propagation reaction that inhibits
methane ignition at 21% O2. At 14.7% O2, most of the reactions inhibit ignition due to
the lack of oxygen. The chain initiation step (CH3 + HO2 ⇔ CH4 + O2, the first oxidation
reaction induced by methane dehydrogenation at low temperatures) and the decomposition
reaction (CH2O + CH3 ⇔ HCO + CH4) were found to have significant effects on methane
decomposition. For the n-heptane/methane-blended fuel, an NTC region was observed
at 0–75% methane and the temperature range of 800–950 K. In this region, as Tc increases,
the ignition delay time increases. OH radicals, which induce oxidation at 850 K, do not
react with n-heptane. Instead, large amounts of OH and oxygen are consumed by methane
dehydrogenation in a low temperature range, resulting in a shortage of them for the first
oxidation reaction of heptane and strong inhibition of oxidation in the blended fuel. As a
result, the reactivity is reduced, an NTC region is created, and thus the ignition delay time
becomes longer. The HO2 and H2O2 species, which inhibit ignition through methane at
850 K, promote ignition at 1100 K, and the ignition delay time is shorter due to the explosive
combustion of n-heptane species.
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5. Conclusions

An RCM system was employed to simulate the pre-mixed combustion technology. The
autoignition characteristics of n-heptane/methane-blended fuel for various temperatures,
CRs, and N2 dilution ratios were analyzed using simulations in this study.

(1) Ignition reactivity is sensitive to the compression ratio and fuel composition. Even
an increase of 0.5 in the compression ratio reduced the ignition delay time by more
than 20%. An increased n-heptane ratio in the fuel significantly promoted ignition,
whereas an increased methane ratio greatly inhibited it.

(2) The ignition delay time was significantly longer (by more than 30%) at 14.7% O2 when
compared to that at 21% O2 because a shortage of O2 inhibited the oxidation reaction.

(3) The cool flame occurred in the range of Tc = 750–850 K therefore, the main ignition time
was shorter when compared to that at Tc = 900–950 K, where only hot flames would
occur. Therefore, oxidizing agents are important for achieving the low-temperature
oxidation of fuel that is sensitive to temperature.

(4) As the ratio of n-heptane in the blended fuel increased, the combustion reaction
during the multi-point compression proceeded from a cool flame to NTC to a hot
flame. The phenomena of second ignition and NTC were clearly observed as the
characteristics of high-carbon fuel. This confirmed that the reaction of n-heptane was
more dominant in the blended fuel.

(5) The combustion performance similar to that of 100% n-heptane could be achieved
when the ratio of methane was kept at less than 50%, because methane inhibits
oxidation at low temperatures.
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