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Abstract: Understanding solar energy has become crucial for the development of modern societies.
For this reason, significant effort has been placed on building models of solar resource assessment.
Here, we analyzed satellite imagery and solar radiation data of three years (2012, 2013, and 2014) to
build seven predictive models of the solar energy obtained at different altitudes above sea level. The
performance of four machine learning algorithms was evaluated using four evaluation metrics, MBE,
R2, RMSE, and MAPE. Random Forest showed the best performance in the model with data obtained
at altitudes below 800 m.a.s.l. The results achieved by the algorithm were: 4.89, 0.82, 107.25, and
41.08%, respectively. In general, the differences in the results of the machine learning algorithms in
the different models were not very significant; however, the results provide evidence showing that
the estimation of solar radiation from satellite images anywhere on the planet is feasible.

Keywords: satellite imagery; meteorological data; renewable energy; photovoltaic systems;
predictive model

1. Introduction

Nowadays, many countries depend on electrical energy generated by large-scale
hydroelectric plants and fossil fuels, whereas the percentage of energy obtained from
renewable sources remains low [1,2]. For this reason, great efforts have been made to obtain
clean energy from removable sources such as the sun and the wind [3].

However, the viability of the use of these types of energy in a specific location depends
on their availability (sun, wind, etc.) in the specific geographical location and on the energy
requirements. Traditionally, data from monitoring stations have been used to determine
this potential; however, the number of stations and sensors is limited. For this reason, the
research community has been working on building mathematical, statistical, and predictive
models for solar resource assessment [4].

The use of solar energy depends on the knowledge about the behavior of solar radia-
tion in a specific geographical location; therefore, numerous studies have revolved around
the feasibility of the solar resource based on data obtained from monitoring stations and
meteorological satellites. Ordoñez-Palacios et al. [5] aimed at predicting solar radiation
resources in photovoltaic systems using diverse machine learning techniques. In regression,
the multilayer perceptron algorithm showed the highest performance, according to R2 and
RMSE, with values of 0.9 and 77.37, respectively. In classification, the AdaBoost ensemble
method achieved the best results according to the accuracy, precision, recall, and F1-score
metrics, with values of 0.94, 0.90, 0.99, and 0.94, respectively.

Nwokolo et al. [6] estimated the global solar radiation potential using improved
probabilistic Ångstrom–Prescott and Gumbel models. In total, 29 Ångstrom–Prescott
(AP) empirical models were analyzed, revealing the parameters of each model, its parental
season, and the bibliographic source. The M1–M3 models were fitted using generalized data
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sets. The M4–M20 models were acquired from the literature. The M21–M29 models were
fitted using the data sets obtained from measurement stations in Nigeria. The M13 model
obtained the lowest values of RMSE = 0.0001 and RRMSE = 0.0176% and the corresponding
maximum value of R2 = 0.990 and GPI = 0.9321.

Similarly, Geetha et al. [7] made predictions of hourly solar radiation using different
Artificial Neural Network (ANN) models. The best ANN model showed an R2 of 0.9376 for
the training data and 0.9340 for the test data. The findings revealed that the ANN model
may be used to effectively estimate the hourly average solar radiation, even in the absence
of monitoring facilities.

On the other hand, Oyewola et al. [8] showed that the inclusion of air temperature
and humidity as the two main predictors, along with duration of sunlight, day length,
and extraterrestrial radiation, improves the global solar radiation predictions. The authors
adopted 20 empirical models based on their simplicity and the availability of the predictive
parameters over 35 years (1984–2018) from six weather stations in the Fiji Islands. The
models with the most reliable values of global solar radiation showed an R2 between
0.415 and 0.988 at a confidence level of 95%.

Alrashidi et al. [9] introduced a framework that integrates Support Vector Regression,
the grasshopper optimization algorithm, and the feature selection algorithm to forecast
global solar radiation. The performance of the proposed predictive model (SVR-GOA-BA),
applied to the locations of Dhahran, Riyadh, and Jeddah, in Saudi Arabia, obtained an R2

of 0.98823481, 0.98863249, and 0.98883136 and an RMSE of 45.0903, 49.8129, and 41.1592 for
each site, respectively.

Finally, Ağbulut et al. [10] evaluated the performance of different machine learning
algorithms for the daily prediction of global solar radiation. The results show that the
R2, MABE, and RMSE values of all algorithms ranged from 0.855 to 0.936, from 1.870 to
2.328 MJ/m2, and from 2.273 to 2.820 MJ/m2, respectively. k-NN exhibited the worst
results for all the metrics.

Other studies focused on the prediction of solar radiation using images. Ajith and
Martínez-Ramón [11] aimed at forecasting solar radiation using deep learning and the
fusion of infrared cloud imagery and radiation data. The work used the metrics MAPE, R2,
RMSE, MAE, and the t-statistic for the proposed networks and other reference models for
cloudy days. The proposed CNN-L and MICNN-L models outperformed time series-based
methodologies with a minimum MAPE of 2.00 and 2.96, respectively. Similarly, the MAE
was reduced by 43.75% (from 0.016 to 0.009) for CNN-L and by 31.25% (from 0.016 to 0.011)
for MICNN-L compared with the reference model with the best performance.

Rodríguez-Benitez et al. [12] evaluated new solar radiation forecasting methods based
on satellite imagery and sky cameras. The study, carried out at a site in southern Spain,
revealed that the use of models based on all-sky imagery (ASI), which consists of a set of
three video surveillance cameras, provides little benefit compared with the use of satellite-
based models for the nowcasting of solar radiation.

Magnone et al. [13] used cloud motion identification algorithms based on full-sky
images to support solar radiation forecasting. Three different cloud motion algorithms
were considered, heuristic motion detection (HMD), particle image velocimetry (PIV),
and a persistent model. The results show that the integration of the forecast cloud cover
information in the circumsolar area leads to a decrease in the width of forecast global
horizontal irradiance (GHI) intervals by up to 2% for forecast horizons in the range of
1–10 min.

Similarly, the study by Si et al. [14] proposed a new hybrid method to forecast global
horizontal radiation combining satellite images and meteorological information. It could
be seen that the use of three continuous satellite images contributes to the improvement of
the forecast accuracy of global horizontal irradiance several hours in advance, leading to
excellent performance produced by the hybrid approach of combining meteorological data
and factors of cloud cover, extracted from satellite images.
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Li [15] made short-term PV energy predictions based on clear-sky data from a moderate-
resolution imaging spectroradiometer. Polycrystalline silicon photovoltaic panels of 1.2 kW
of the same specifications were selected, divided into five groups, and placed at different
tilt angles. A representative clean panel of 35◦ tilt was taken as the verification object, with
data obtained prior to 16 December 2018, and trained to predict PV power from 9:00 a.m.
to 15:00 p.m. daily from 17 December 2018. The accuracy of the experimental process was
demonstrated by practical engineering verification.

Alonso-Suárez [16] built a model based on satellite imagery that allows one to build
monthly and annual maps of solar potential. The model represents the second version
of the Solar Map of Uruguay (MSUv2) and constitutes an advance in the quantity and
quality of the information available on the long-term behavior of the resource. This new
version increases the accuracy of the annual and monthly mapping from 2% to 15% and
increases the spatial resolution from 150 km to 3 km. In addition, it includes compo-
nents of solar radiation that had not been considered to date and a map of photovoltaic
generation potential.

Yang et al. [17] analyzed the main aspects related to the evaluation and forecast of
the solar resource. Solar resource assessment focuses primarily on ground-based measure-
ment data, remote-sensing retrieved data, and output of numerical weather prediction
models. Solar forecasting has five main aspects: forecasting methodology, post-processing,
irradiance-to-power conversion, verification, and materialization of values. In this sense,
this work proposes a predictive model of solar radiation as part of an evaluation process of
solar resources.

Solar radiation estimation models can be mathematical, statistical, and predictive. In
that sense, it is important to highlight that the data sets used in this research study were
obtained from satellite images using a mathematical model. Subsequently, these data and
the observed solar radiation were integrated to form a data set for each geographic location.
In that order of ideas, our model is hybrid, because it uses a mathematical model to obtain
data from satellite images and a predictive machine learning model to look for patterns in
the data that lead to the prediction of solar radiation. In the present research study, images
of 1447 × 1636 pixels from the years 2012, 2013, and 2014 from the GOES-13 meteorological
satellite [18] were processed. With these data, (i) the features in the data sets were obtained
through a mathematical model; (ii) three models (M1–M3) were built to estimate solar
radiation, using data extracted from the images at geographical points located at different
altitudes; (iii) three models (M5–M7) were built with a sample of 6500 records from each
geographic location; (iv) a model (M4) was built with data from all geographic locations.
The models used the following variables: reflectance, cloudiness index, bright sunshine
hours, solar radiation at the edge of the atmosphere, and solar radiation observed by
the monitoring station. The study seeks to determine if altitude affects the prediction of
solar radiation.

The rest of the document includes the following sections: Materials and Methods,
Results, Discussion, and, finally, Conclusions.

2. Materials and Methods

This section exposes the questions of interest that guided the research project, the
information sources for building the models, the way in which data were processed, and
the tools used to build solar radiation prediction models.

2.1. Questions of Interest

Renewable energy sources can be transformed into electrical energy through systems
designed for their use, and it is essential to know their availability in a specific geographical
location, using measuring instruments, or mathematical, statistical, or predictive models.
The photovoltaic industry constitutes a viable option to satisfy the growing demand for
energy and the imperative need to reduce the carbon footprint, according to the works of
Abdoli et al. [19] and Carneiro et al. [20].
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The number of monitoring stations for environmental variables is limited. Due to
this, it is necessary to build models for the prediction of solar radiation. These models can
be obtained using variables from satellite imagery; therefore, it is crucial to answer the
following questions: What is the process to extract variables from satellite images? Which
machine learning techniques have the best performance in the prediction of solar radiation?
What is the performance of the models if a sample of the total data is used? Which metrics
are used to evaluate the results of the models? Does the altitude of a geographical location
affect the results of the predictions? These questions are answered in the different sections
of this paper.

2.2. Sources of Information

Tables 1–3 depict the images and data sets used. The historical images were obtained
from the visible spectral channel of the GOES-13 weather satellite. The dimensions of each
image are 1447 × 1636 pixels and 16 bits per pixel. Likewise, solar radiation data sets were
used from the Administrative Department of Environmental Management DAGMA (Cali
Mayor’s Office, Colombia), and the Institute of Hydrology, Meteorology and Environmental
Studies, IDEAM. Each pixel in the image represents a specific location with geographic
coordinates represented by latitude and longitude values. The images were taken in ranges
between 6 and 18 h; however, some days of the year do not have all the images.

Table 1. Satellite imagery.

ID Year Number of Images Approximate Size Size after Processing

1 2012 1991 out of 4758 1991 out of 4758 1991 out of 4758
2 2013 9–20 MB 9–20 MB 9–20 MB
3 2014 2.3 MB 2.3 MB 2.3 MB

Table 2. Data sets from the DAGMA stations.

ID Station Latitude Longitude Altitude (m.a.s.l) Years Hourly Records

1 ERA 3.44779 −76.51918 968 2012–2014 18,705
2 Compartir 3.42823125782003 −76.46654484665319 952 2014 6270
3 Univalle 3.3780 −76.53388889 996 2012–2014 12,337

Table 3. Data set from the IDEAM stations.

ID Station Latitude Longitude Altitude (m.a.s.l) Years Hourly Records

1 Acueducto Mocoa (Putumayo) 1.157333333 −76.65183333 650 2012–2014 17,480
2 El Pepino (Putumayo) 1.082888889 −76.66711111 760 2012–2014 9029
3 Florencia (Caquetá) 1.7330 −75.64502778 600 2012–2014 8306
4 Macagual (Caquetá) 1.50 −75.66 280 2012, 2014 5045
5 Botana-Pasto (Nariño) 1.16 −77.27880556 2820 2012–2014 21,828
6 Estrecho Patía (Cauca) 1.96 −77.12 720 2012–2014 12,088
7 Aeropuerto Guapi (Cauca) 2.574416667 −77.89475 42 2014 1397
8 Inzá (Cauca) 2.548194444 −76.06394444 1800 2012–2014 6724
9 La Sierra (Cauca) 2.193833333 −76.75033333 1870 2012, 2014 2071

The images were obtained from the website of the CLASS library of the National
Oceanic and Atmospheric Administration (NOAA) [21]. These images were processed
using NOAA Weather and Climate Tools (WCT) [22] to transform them into binary format
files with an NC extension (which stores multidimensional data organized in matrices).
Subsequently, python geographic information libraries (Rasterio and Pyproj) were used to
convert these files into GeoTIFF files (a metadata standard that allows georeferenced infor-
mation to be embedded in a TIFF image). GeoTIFF allows the digital level of coordinates to
be extracted from the image so that reflectance and the cloud index can be calculated.

According to the work of the researcher Poveda Matallana [23], the digital level of
the image (nd) and the satellite calibration coefficient (k) [24] enable the calculation of the
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nominal reflectance
(

Rprev
)

(1) to be conducted; the monthly correction factor (C) of the
satellite [25] and the nominal reflectance allow one to calculate the back reflectance (Rpost)
(2). Finally, the back reflectance enables the calculation of the pixel reflectance (Rp) (3) of
each image; to this end, the calculation of the astronomical variable distance from the Earth
to the Sun (r) and the zenith angle (θz) are also required.

Rprev = k (nd − 29) (1)

Rpost = C ∗ Rprev (2)

Rp =
(

Rpost ∗ r2
)

cos(θz) (3)

With the data obtained, the cloudiness index can be calculated (nc) (4), from the
maximum (Rmax) and minimum (Rmin) reflectance for every hour of the day. The exact
value of the minimum reflectance and 80% of the maximum reflectance must be taken. In
addition, the values of the cloudiness index must be between 0 and 1; therefore, they must
be adjusted if they overflow outside the domain [26].

nc =
(

Rp − Rmin
) (

Rmax − Rmin
)

(4)

The theoretical variables of daily sunshine hours (N) and daily extraterrestrial solar
radiation (Hext) are obtained from the calculation of other astronomical variables, such
as solar declination, the equation of time, true solar time, and the astronomical length of
the day.

The number of records of each solar radiation data set was reduced according to the
number of images available. This is because the variables of each image were integrated
with the measured solar radiation, thus forming the data sets to be used to build the
predictive models. Table 4 summarizes the number of records of the data sets used for
each model.

Table 4. Data sets used for each model.

Model Data Sets Records

M1 Putumayo: Acueducto Mocoa, El Pepino; Cauca: Estrecho Patía, Aeropuerto
Guapi; Caquetá: Florencia, Macagual 14,468

M2 Valle del cauca: ERA (Escuela República Argentina), Compartir, Univalle 8299
M3 Cauca: Inzá, La Sierra; Nariño: Botana (Pasto) 6856
M4 All the data sets 29,623

The data sets were grouped considering the altitude of each monitoring station as
follows: Model M1 included data from locations below 800 m.a.s.l. Model M2 used data
from locations between 950 and 1000 m.a.s.l. Model M3 used data sets from locations above
1800 m.a.s.l. Model M4 integrates all data sets. Finally, considering that the first three mod-
els have significant differences in the number of records, an additional study was carried
out with a random sample of 6500 records for each model (M5–M7), thus preventing the
results from being affected by the number of records.

2.3. Machine Learning Algorithms

Regression models were implemented in python and Jupyter Notebooks. For data
preparation, the RobustScaler method was used to normalize the data and prevent the
results of the algorithms from being affected by outliers. The data were divided into
training and test data (30% for test data). Four machine learning techniques were analyzed:
Multiple Linear Regression, Support Vector Regression (SVR), Random Forest (RF), and
Artificial Neural Network (ANN).
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2.3.1. Multiple Linear Regression

This algorithm from Scikit Learn fits a linear model with coefficients w to minimize
the residual sum of squares between the observed targets in the data set and the targets
predicted by the linear approximation. Considering the simplicity of the method and the
poor performance of the results, it was not necessary to adjust the hyperparameters.

2.3.2. Support Vector Regression (SVR)

The SVR algorithm is a variant of the support vector machine (SVM), which finds a
hyperplane that maximizes the separation margin between classes. Different configurations
were tested on the parameters for the kernel type that the algorithm uses, the tolerance
for the stopping criteria, the degrees of the function for the polynomial kernel, the kernel
coefficient for ‘rbf’, ‘poly’, and ‘sigmoid’, and the regularization parameter.

2.3.3. Random Forest (RF)

The Random Forest algorithm is an ensemble method that uses a set of decision trees
to better generalize and avoid overfitting. We tuned the algorithm by varying the following
hyperparameters: the number of trees, the number of features to consider in each split,
the maximum number of levels in the tree, the minimum number of samples required to
split a node, the minimum number of samples required at each leaf node, and the sample
selection method to train each tree.

2.3.4. Artificial Neural Network (ANN)

The Multi-Layer Perceptron (MLP) is a supervised learning algorithm that learns by
training on a data set. Given a set of features and a target, it can learn a non-linear function
approximator for either classification or regression. Different configurations were tested
with seven different hyperparameters, such as the optimization algorithm, the number of
hidden layers, the L2 regularization term, the activation function, the learning rate, the
maximum number of iterations, and the maximum number of epochs.

We used the randomized search method (RandomizedSearchCV) from the Scikit Learn
library to tune the hyperparameters of each model. RandomizedSearchCV allows one to
find hyperparameter values that achieve accuracy results similar to the hyperparameters
returned by the grid search method (GridSearchCV) but significantly reduces the process-
ing time. In contrast to GridSearchCV, RandomizedSearchCV simply performs sampling
from the defined distribution. Furthermore, we used cross-validation (RepeatedKFold)
to improve the accuracy performance of each model and to avoid overfitting. The imple-
mented cross-validation randomly divided the data into 10 subsets and used RMSE as the
loss function to optimize.

Seven regression models were built for the prediction of solar radiation: 3 models
(M1–M3) using 100% of the data sets and 3 models (M5–M7) using a sample of 6500 records
for locations with altitudes below 800 m.a.s.l, locations with altitudes between 950 and 1000
m.a.s.l, and locations with altitudes above 1800 m.a.s.l, respectively; additionally, 1 model
(M4) was created using 100% of all data sets. Each model included variables obtained from
satellite images (reflectance, cloudiness index), the sunlight hours, extraterrestrial solar
radiation, and solar radiation. These variables were measured in diverse meteorological
stations. Table 5 describes each of the variables.

Table 5. Variables’ description.

ID Variable Description

1 Reflectance It represents the value of solar radiation reflected by clouds.
2 Cloudiness index It is a value related to cloud conditions: clear sky, partly cloudy, and cloudy (0-1).

3 Extraterrestrial solar radiation It corresponds to the value of the electromagnetic radiation emitted by the sun,
before entering the atmosphere; it is measured in W/m2.
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Table 5. Cont.

ID Variable Description

4 Sunshine hours It is the time in hours during which the sun provides an effective sunshine.

5 Solar radiation (target variable) It is the flow of energy received from the sun in the form of electromagnetic
waves; it is measured in W/m2.

2.4. Model Architecture

Figure 1 depicts the data flow, from the information sources on the ground and on
the satellite to the predictions of solar radiation using the regression algorithms, passing
through the processing of the images, the integration, and the data processing.
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2.5. Evaluation Metrics

The performance of the machine learning algorithms used in this work was evaluated
using the following metrics: mean bias error (MBE), coefficient of determination (R2), root
mean square error (RMSE) and the mean absolute percentage error (MAPE). Table 6 exposes
the equations, description, and performance criteria of each evaluation metric.
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Table 6. Evaluation metrics.

Metric Equation Description Performance Criteria

MBE 1
n

n
∑

i=1
(yi − xi)

Provides information on the long-term
performance of the models. [27]

The closer it is to zero, the better the
prediction result. [27]

R2 1 − ∑(yi−xi)
2

∑(xi−xi)
2

Sets how well the actual data
approximate the regression line. [27]

It ranges between 0 and 1; the closer it is to 1,
the better the performance of the model. [27]

RMSE
√

1
n

n
∑

i=1
(yi − xi)

2
It represents the difference between
actual and estimated values. [27]

It is a positive value, and the closer it is to
zero, the better the estimation result. [27]

MAPE 1
n

n
∑

i=1

∣∣∣ xi−yi
xi

∣∣∣× 100
It explains how good a predictive
model can be and measures the size of
the errors as a percentage. [27]

As this value approaches zero, the
performance of the model increases [27],
considering the following categories [10]:

• High precision: MAPE ≤ 10%;
• Good: 10% < MAPE ≤ 20%;
• Reasonable: 20% < MAPE ≤ 50%;
• Low precision: MAPE > 50%.

The data estimated by the models are represented by yi, and the data obtained from
the measurement stations are represented by xi. Likewise, xi represents the average of the
measured data and n the number of observations.

3. Results

According to R2, RMSE and MAPE, Random Forest (RF) achieved the best performance
(see Table 7), followed by Neural Network in the model (M1) that contained 100% of the
samples with locations below 800 m.a.s.l. For models (M5–M7) that only included a sample
of 6500 records, RF also showed the best performance, followed by Neural Network, but
only for R2 and RMSE. Regarding MBE, RF achieved the value closest to zero (−0.37) when
all the locations with altitudes between 950 and 1000 m.a.s.l were included (M2). Negative
MBE values indicate that the average of the actual observations is greater than the average
of the results estimated by the models.

Table 7. Results obtained.

ID
Machine
Learning

Algorithms

Metrics

Locations with Altitudes
below 800 m.a.s.l

(M1, M5)

Locations with Altitudes
between 950 and

1000 m.a.s.l (M2, M6)

Locations with Altitudes
above 1800 m.a.s.l

(M3, M7)
All the Data

Sets (M4)
100% 6500 100% 6500 100% 6500

1
Multiple Linear

Regression

MBE 3.46 −1.26 1.85 −6.10 −2.02 −5.06 2.38
R2 0.30 0.30 0.39 0.40 0.30 0.29 0.30

RMSE 211.17 210.47 199.40 197.45 210.00 214.08 211.13
MAPE 254.20 266.74 375.27 364.10 226.91 225.82 298.30

2
Support Vector

Regression

MBE 1.81 2.75 0.60 −1.44 −6.25 −16.06 −3.56
R2 0.77 0.77 0.76 0.75 0.74 0.72 0.76

RMSE 119.85 118.39 125.41 128.72 127.87 134.19 124.62
MAPE 65.95 73.61 80.89 80.00 58.92 61.49 61.10

3 Random Forest

MBE 4.86 4.77 −0.37 −5.76 2.89 −2.92 0.96
R2 0.82 0.79 0.77 0.76 0.73 0.73 0.77

RMSE 107.05 114.79 121.54 126.43 129.09 133.44 119.12
MAPE 41.08 50.69 55.86 48.46 49.79 51.19 51.41

4 Neural
Network

MBE −2.32 −17.10 −1.87 −8.06 1.95 −3.32 −0.67
R2 0.77 0.77 0.77 0.76 0.74 0.74 0.76

RMSE 117.40 119.94 122.25 126.34 125.96 130.36 124.41
MAPE 46.47 66.18 70.83 75.23 52.29 48.30 56.35

In the model (M1) that included all the locations with altitudes below 800 m.a.s.l, RF
surpassed the ANN by 5% according to the coefficient of determination R2, which indicates
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that the model (M1) was better at explaining the variability of the data around the mean.
Moreover, the model (M1) had 10 fewer points in the number of errors between the real
data set and the estimated one, according to the RMSE metric. Likewise, RF showed 5%
more precision in the measure of the size of errors (MAPE). RF and ANN achieved good
performance in the measure of the size of error, given that the estimated results in the
model (M1) with altitudes less than 800 m.a.s.l are between 20% and 50%, whereas for other
models (M2, M5, M7), the prediction was inaccurate as the results are above 50%.

Table 7 shows a trend in all the models; according to the results obtained by RF in
R2 and RMSE, the performance decreases as the altitude increases. R2 in all the models
(M1–M3) with 100% of the samples was 0.82 in locations below 800 m.a.s.l, 0.77 in locations
with altitudes between 950 and 1000 m.a.s.l, and 0.73 in altitudes above 1800 m.a.s.l. In
the models (M5–M7) with a sample of 6500 records, the results are: 0.79, 0.76, and 0.73,
respectively. Regarding RMSE, the performance is better when the value is closer to zero;
in the case of the models (M1–M3) with 100% of the samples, the results are: 107.05, 121.54,
and 129.09. In the models (M5–M7) with 6500 records, the results are: 114.79, 126.43, and
133.44, respectively.

The same trend was observed in the results of the ANN; according to R2 in the models
(M1–M3) with 100% of data, the values are: 0.77, 0.77, and 0.74. In the models (M5–M7)
with 6500 records, the results are: 0.77, 0.76, and 0.74. Regarding RMSE, in the models
(M1–M3) with 100% of the samples, the results are: 117.40, 122.25, and 125.96. In the
6500-sample models (M5–M7), the results are: 119.94, 126.34, and 130.36, respectively. From
the results of RF and ANN in R2 and RMSE, it can be observed that the relation between
altitude and model performance is inversely proportional.

Figure 2 represents the dispersion diagrams obtained with RF, using the measured
solar radiation and the solar radiation estimated by the models (M1–M3) that included
100% of the samples. The model (M1) with altitudes below 800 m.a.s.l fit the data better
and showed less variability around the mean. Figure 3 shows the dispersion diagrams
obtained with RF, using the measured solar radiation and the solar radiation estimated
by the models (M5–M7) that used 6500 instances. Equally, the model (M5) with altitudes
below 800 m.a.s.l fit the data better and showed less variability around the mean.

The Random Forest algorithm of the M1 model was experimented with. The algo-
rithm achieved the highest results in R2 (0.82) and was trained with 70% of the data with
altitudes lower than 800 m.a.s.l. Subsequently, the characteristics (reflectance, cloudiness
index, number of daily sunshine hours, and solar radiation at the edge of the atmosphere)
were extracted from the 2014 satellite images (1965 records) in the coordinates of latitude
0.838972222 and longitude −76.57044444.
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The coordinates correspond to Puerto Umbría in the department of Putumayo. It is
important to point out that there is an IDEAM observation station in that place; however,
it does not have solar radiation measurement sensors. The algorithm trained with the
data from the M1 model; it made predictions of solar radiation in that location, and the
monthly averages between 8 and 16 h can be seen in Figure 4. In this case, it is impossible
to calculate the evaluation metrics of the predictions, because there are no data on the solar
radiation observed on the ground.
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4. Discussion

In the work in progress by Ordoñez-Palacios et al. [28], three models were evaluated
for the prediction of solar radiation. The model with the best performance integrated two
dimensions of information, namely, meteorological data and satellite imagery. However,
it was proposed for future work to evaluate the solar radiation prediction model using
images from locations with diverse altitudes above sea level, with the aim of verifying if
the altitude impacts the forecast precision.

Although this work shows an inversely proportional relation between altitude and
performance, it is necessary to analyze data from more monitoring stations at different
altitudes and create more categories of altitude above sea level to confirm this theory.

In accordance with our work in progress, the integration of meteorological data
with features extracted from satellite images allows one to achieve the best prediction in
comparison to models that use each data dimension independently, although, to evaluate
the performance of the algorithms, it is necessary to consider diverse data observed on
the ground.

Although the level of error of the algorithms used in this research study is in a
range of divergence (between 20% and 25%), it is considered reasonable for dimensioning
photovoltaic systems and the prediction of power generation.

5. Conclusions

This paper evaluates the performance of four machine learning algorithms (Multiple
Linear Regression, Support Vector Regression, Random Forest, and Neural Network) in
predicting solar radiation in regions of Colombia located at different altitudes above sea
level. The research study uses images obtained by the GOES-13 satellite in 2012, 2013, and
2014, as well as solar radiation data sets obtained by the DAGMA and IDEAM stations in
the departments of Putumayo, Caquetá, Nariño, Cauca, and Valle del Cauca.

The extracting of features of the satellite images began with the request and download
of the images from the NOOA website. Later, they were processed with the WCT tool,
and python and a mathematical model were used to build the data sets (see Section 2.2).
The highest performance was obtained by the Random Forest algorithm, followed by the
Neural Network algorithm (see Table 7). The results of the performance of the models
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(M5–M7) that used a sample of 6500 records are shown in Table 7. The evaluation metrics
used by the models are presented in Section 2.5. The influence of altitude on the results
obtained by the prediction models is analyzed in Sections 3 and 4.

According to the RF results, the model (M1) that used all the solar radiation data at
altitudes below 800 m.a.s.l achieved 9% more precision in R2 with respect to the model
(M3) with lower performance (locations above 1800 m.a.s.l). Similarly, in terms of the root
mean square error, RF achieved an error of 22 fewer points. For models (M5–M7) using a
sample of 6500 records, the first model (M5) was 6% more accurate than the worst model
(M7), based on R2 and RMSE, with an error of approximately 20 fewer points.

The non-existence of images provided by the GOES-13 satellite on certain days of the
year and at certain times of the day led to an acceptable performance of the results obtained
by the automatic learning algorithms, considering that, in 2012, only 41.8% of the images
between 6 am and 6 pm were available; in 2013, 39.3%; and in 2014, 41.4% (see Table 1).
This loss of information led to the elimination of samples in the solar radiation data sets to
enable integration with the features obtained from the images.

The most representative evaluation metrics in this work were R2 and RMSE, because
they exposed a trend in the models that used data from different altitudes above sea level. In
the case of R2, the performance of SVR, RF, and ANN deteriorates as the altitude increases.
Equally, regarding RMSE, the error also increases in each model when the altitude increases.
This trend can also be noted if the MAPE statistic is considered; however, the behavior of
the MBE metric is random.
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10. Ağbulut, Ü.; Gürel, A.E.; Biçen, Y. Prediction of daily global solar radiation using different machine learning algorithms:
Evaluation and comparison. Renew. Sustain. Energy Rev. 2020, 135, 110114. [CrossRef]

http://biblioteca.olade.org/opac-tmpl/Documentos/old0434b.pdf
http://biblioteca.olade.org/opac-tmpl/Documentos/old0434b.pdf
http://doi.org/10.1016/j.jclepro.2019.06.140
https://www.revistaenergia.com/1135/
https://www.revistaenergia.com/1135/
https://www.otovo.es/blog/energia/que-son-las-energias-renovables/
https://www.otovo.es/blog/energia/que-son-las-energias-renovables/
http://doi.org/10.19053/01211129.v29.n54.2020.11751
http://doi.org/10.1016/j.clet.2022.100416
http://doi.org/10.1016/j.egyr.2021.11.190
http://doi.org/10.1016/j.aej.2022.01.065
http://doi.org/10.1016/j.asoc.2021.107768
http://doi.org/10.1016/j.rser.2020.110114


Energies 2022, 15, 3985 13 of 13

11. Ajith, M.; Martínez-Ramón, M. Deep learning based solar radiation micro forecast by fusion of infrared cloud images and
radiation data. Appl. Energy 2021, 294, 117014. [CrossRef]

12. Rodríguez-Benítez, F.J.; López-Cuesta, M.; Arbizu-Barrena, C.; Fernández-León, M.M.; Pamos-Ureña, M.; Tovar-Pescador, J.;
Santos-Alamillos, F.J.; Pozo-Vázquez, D. Assessment of new solar radiation nowcasting methods based on sky-camera and
satellite imagery. Appl. Energy 2021, 292, 116838. [CrossRef]

13. Magnone, L.; Sossan, F.; Scolari, E.; Paolone, M. Cloud Motion Identification Algorithms Based on All-Sky Images to Support
Solar Irradiance Forecast. In Proceedings of the IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA,
25–30 June 2017; pp. 1415–1420. [CrossRef]

14. Si, Z.; Yang, M.; Yu, Y. Hybrid Solar Forecasting Method Using Satellite Visible Images and Modified Convolutional Neural
Networks. In Proceedings of the IEEE/IAS 56th Industrial and Commercial Power Systems Technical Conference (ICPS), Las
Vegas, NA, USA, 1–6 June 2020; pp. 1–9. [CrossRef]

15. Li, J. Short-term Photovoltaic Power Prediction Based on Moderate-resolution Imaging Spectroradiometer Clear Sky Data.
In Proceedings of the Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 930–934. [CrossRef]

16. Alonso-Suárez, R. Estimación del Recurso Solar en Uruguay Mediante Imágenes Satelitales. 2017. Available online: https:
//www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/20200 (accessed on 21 February 2021).

17. Yang, D.; Wang, W.; Xia, X. A Concise Overview on Solar Resource Assessment and Forecasting. Adv. Atmos. Sci. 2022, 2022, 1–13.
[CrossRef]

18. US Department of Commerce. NOAA’s Office of Satellite and Product Operations. 2021. Available online: https://www.ospo.
noaa.gov/Operations/GOES/13/index.html (accessed on 24 February 2021).

19. Abdoli, S.; Pamulapati, M.; Kara, S. An investigation into the role of PV industry in meeting the growing energy demand towards
absolute sustainability. Procedia CIRP 2020, 90, 383–387. [CrossRef]

20. Carneiro, A.L.; Martins, A.A.; Duarte, V.C.; Mata, T.M.; Andrade, L. Energy consumption and carbon footprint of perovskite solar
cells. Energy Rep. 2022, 8, 475–481. [CrossRef]

21. NOAA Class. NOAA’s Comprehensive Large Array-data Stewardship System. 2021. Available online: https://www.avl.class.
noaa.gov/saa/products/welcome (accessed on 22 February 2021).

22. NOAA. NOAA’s Weather and Climate Toolkit (Viewer and Data Exporter). 2021. Available online: https://www.ncdc.noaa.gov/
wct/ (accessed on 22 February 2021).

23. Matallana, W.D.P. Validación de la Radiación Solar en Superficie Para la Región Orinoquía a Partir de Imágenes de Satélite.
Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2020. Available online: https://repositorio.unal.edu.co/
handle/unal/77981 (accessed on 19 January 2021).

24. NOAA. Post-Launch Operational Calibration. 2021. Available online: https://www.star.nesdis.noaa.gov/smcd/spb/fwu/
homepage/GOES_Imager_Vis_OpCal.php (accessed on 22 January 2021).

25. NOAA. Pre-Launch Calibration. Available online: https://www.star.nesdis.noaa.gov/smcd/spb/fwu/homepage/GOES_
Imager_Vis_PreCal.php (accessed on 22 January 2021).

26. Laguarda, A.; Abal, G.; Alonso-Suarez, R.M. Modelo Semi-Empírico Simple de Irradiación Solar Global a Partir de Imágenes
Satelitales GOES. 2018. Available online: https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/21610 (accessed on
22 January 2021).
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