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Abstract: With the rising popularity of unmanned aerial vehicles (UAVs) and increasing variety of
their applications, the task of providing reliable and robust control systems becomes significant. An
active fault-tolerant control (FTC) scheme requires an effective fault detection and isolation (FDI)
algorithm to provide information about the fault’s occurrence and its location. This work aims to
present a prototype of a diagnostic system intended to recognize and identify broken blades of rotary
wing UAVs. The solution is based on an analysis of acoustic emission recorded with an onboard
microphone array paired with a lightweight yet powerful single-board computer. The standalone
hardware of the FDI system was utilized to collect a wide and publicly available dataset of recordings
in real-world experiments. The detection algorithm itself is a data-driven approach that makes use of
an artificial neural network to classify characteristic features of acoustic signals. Fault signature is
based on Mel Frequency Spectrum Coefficients. Furthermore, in the paper an extensive evaluation of
the model’s parameters was performed. As a result, a highly accurate fault classifier was developed.
The best models allow not only a detection of fault occurrence, but thanks to multichannel data
provided with a microphone array, the location of the impaired rotor is reported, as well.

Keywords: UAV; fault detection; rotor; data-driven; acoustic

1. Introduction
1.1. Background

The increasing number and variety of applications of unmanned aerial vehicles raise
the question of operational safety and reliability [1,2]. Few recent studies have pointed
out the key causes of drone accidents in flight, with actuator faults being one of the major
issues, both in military and commercial UAVs [3,4]. This challenge is often addressed with
fault-tolerant control systems, which provide minimal performance for the aerial vehicle
in the occurrence of faults [5]. FTC strategies are typically divided into two categories.
Passive approaches aim to provide robustness of control algorithms and utilize hardware
redundancy. On the other hand, active systems are based on the fault detection algorithm
and real-time adjustment of the control laws [6]. The fault diagnosis stage itself is frequently
divided into the basic detection of the fault followed by its isolation, which is defined as
the determination of the exact location of the faulty component [7]. It is believed that
precise fault detection and isolation systems, as crucial components of FTC control schemes,
will significantly increase the safety of operating UAVs and, as a result, accelerate their
introduction to practical applications [8].

1.2. Research Motivation

In this article, a new approach to the problem addressed in a couple of our previous
works [9,10] is presented. The main focus was placed on the problem of efficient fault
detection and isolation of damaged propellers of multirotor UAV. The initial approaches
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were based on the analysis of airframe vibrations thanks to data obtained with microelec-
tromechanical (MEMS) accelerometers. These methods have proven to be efficient, with
classification accuracy exceeding 96%. First, there is still room for improvement in terms
of detection accuracy itself. Additionally, our solutions lacked precision in locating faulty
rotors, especially in a situation where more than one blade was damaged. Finally, the
method based on a sensory network required quite serious interference with the structure
and equipment of the drone. Conducting experiments with vibration data led to the ob-
servation of clearly audible differences in the sound of healthy and damaged rotors. It
leads to the concept of utilizing acoustic emission as a source of information about the
propellers’ condition.

1.3. Literature Review

The topic of FDI schemes designed to detect UAV actuator faults is covered in quite
a few recent papers. The first category of approaches to this diagnostic problem utilizes
model-based fault diagnosis with sophisticated methods to evaluate model residuals and
conclude on the fault’s occurrence. Notable examples are articles published by Cen et al.
that comprise a series of developments, from initial proof of concept to practical imple-
mentation [11–13]. Their method is based on a nonlinear observer which was later boosted
with adaptive mechanisms and implemented in real-time application on multirotor UAV.
However, the study addresses only the consequence of the rotor’s impairment, since the
analyzed type of fault is a simulated loss of effectiveness (LoE) in thrust generation. Some
other papers follow the same approach with various methods of model-based fault esti-
mation algorithms and following control strategies [14,15]. It is worth mentioning that the
literature considers other types of UAV actuator faults, including stuck control signal [16] or
multiple fault class scenarios. An example is an article describing the method that enabled
the detection of wear of rotor shaft bearings, LoE and increases in winding resistance at the
same time [17].

The problem of detecting physical damage to drone rotors is frequently solved thanks
to data-driven FDI methods. They are based on statistical modeling and classification
algorithms with sensory data used as a source of information. Some solutions are based
on analysis of system states, such as attitude, angular rate and values of control signals.
A notable example [18] that allows detection of a significantly damaged rotor is based on
an artificial recurrent neural network (RNN) with long short-term memory architecture
(LSTM) and provides a fault detection accuracy of approximately 92%. However, the
majority of papers focus on two types of raw sensor signals: vibrations and acoustic
emission. Among the first category, a few articles present methods based on characteristic
features of vibration signals obtained with on-board inertial measurement units (IMUs).
The work of Pourpanah et al. shows that such an approach, boosted with motor current
measurements, can improve the accuracy of fault detection by more than 94% [19]. In
another example, the success rate of fault classification is even higher at the cost of long
(over 10 s in most cases) analysis time. It is worth mentioning that our previous works fall
into this category as well.

Only a couple of papers describe FDI systems based on the analysis of acoustic
emission. A notable example is the work of Gino et al. [20], with outstanding fault detection
accuracy that exceeds 98%. However, the experiments were performed with a stationary,
ground-fixed drone and an external high-class microphone. In addition, the detected fault
was an imbalance of the rotor, which, as the authors assumed, was comparable to an actual
partial loss of the blade. The results show a high potential for acoustic waves as a source of
information on the occurrence of faults. In another article, a similar neural-based algorithm
with physically impaired rotors and data collected in a real flight scenario resulted in only
92% of fault detection accuracy [21]. A paper written by Altinors et al. [22] considers even
a wider set of fault conditions, including broken rotor blade, bearing failure and eccentric
shaft faults. The algorithm presented was based on one-second-long sound samples
collected with external recording equipment placed in the vicinity of faulty motors. Several
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different classification algorithms have proven to be very accurate in classifying fault
signatures based on statistical features of audio signals. This is yet another work showing
the potential of using acoustic emission in data-driven FDI systems for UAV actuators.

1.4. Main Contribution

We consider that acoustic-based FDI for UAV rotors proves to be a very promising
field, both in terms of improving accuracy and the possibility of practical implementation.
However, to the best of our knowledge, no method has been developed that would include
the isolation of a faulty rotor. In addition, all of the existing works were carried out with
external audio recording systems and very limited coverage of different flight scenarios. We
consider that the acoustic emission of the hovering drone is significantly different from that
of intensive maneuvers during which the rotors’ angular velocity varies more significantly.
A number of papers show great potential in audio signals as a source of information on
the fault occurrence and its properties. However, no experiments were performed using
the signals recorded on board in close proximity to the rotors. The accuracy of data-driven
FDI based on such data remains unclear. Therefore, we share an extensive dataset of audio
recordings collected in different flight phases with multiple fault classes related to the
location of a broken propeller. The data were collected with our custom-built onboard
microphone array subsystem. Finally, the algorithm presented in this article shows the
practical application of a highly accurate FDI system based on the mentioned dataset with
an onboard acoustic data acquisition and processing system.

1.5. Study Outline

The following parts of this paper are composed as follows: the next section describes
some major technical details of our work. It includes specific aspects of the Falcon V5 UAV
used in experiments and the custom hardware setup for the acquisition and processing
of audio signals. In addition, some initial observations and conclusions about the effects
of operating broken UAV rotors are also presented. The third section provides a broad
description of our fault detection and isolation algorithm, with consecutive steps of signal
processing and feature classification explained. The fourth part of the article presents
an acoustic dataset with multiple fault types and shows the results of the experimental
evaluation. The final section summarizes the paper with some conclusions and future
improvement plans.

2. Analyzed Uav System
2.1. Rotor Impairments

Partial destruction of the rotor leads to a series of consequences. At first, there are
some practical implications of operating the UAV with such a fault. To show these negative
effects, a short series of experiments was carried out using a stationary propulsion test
stand [23]. The rig allows measuring thrust, power consumption and angular velocity
of various motor–rotor setups. Three exemplary types of rotors were used, one in brand
new condition and two that were diversely damaged. Figure 1 shows the blades used in
stationary tests, with (H) a healthy rotor, one with a damaged edge (E) and several ones
with fractured tips (F), as well as the general structure of the test stand.

A BrushLess Direct Current (BLDC) motor, rotor and Electronic Speed Controller (ESC)
used in the experiments were identical to those mounted on our Falcon V5 UAV, which was
later used for validation experiments. Multiple series of test runs were carried out with
a full range of control signal applied and the results were averaged for every rotor. The
performance graphs are shown in Figure 2. The measured values were the total thrust FT
generated by the rotor and the power efficiency η, expressed as the amount of thrust in
relation to a single watt of electrical power.
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Figure 1. Samples of rotors used in fault detection experiments and overview of the propulsion
test rig.

Figure 2. Performance comparison of faulty and undamaged rotors: thrust of a single motor–rotor
unit (top) and achieved power efficiency (bottom).

Stationary analysis of faulty propulsion shows that even slight damage to the rotor
blades results in an observable loss in the thrust produced. The power efficiency drops
significantly as well, therefore reducing flight time and payload capabilities of the UAV.
In addition, during those test runs that utilized faulty units, a vibration resonance was
observed. It confirms state-of-the-art knowledge on the effects of the broken and, as a result,
the imbalanbced rotor [24,25]. In the case of undamaged blades, the mass distribution is
symmetric around the motor shaft, which is the pivot point. After the fracture, it becomes
irregular and the centrifugal forces induced by rotating blades no longer compensate. The
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resultant force leads to observable vibrations. In our previous works, this phenomenon
was measured directly with MEMS accelerometers and used as a basis for fault diagnosis.
In the presented solution, we utilize sound waves as derivatives of vibrations themselves.
We consider several possible advantages of this new data source. Initially, some additional
audio signal features that come from the aerodynamic effects of the broken rotor blade may
increase the accuracy of the FDI system. Furthermore, microphones provide a much wider
frequency coverage compared to inertial data.

2.2. Falcon V5 Uav

The Falcon V5 UAV was used to collect the acoustic recording dataset. It is a custom-
built aerial research platform based on the so-called X8 quadrotor configuration and our
custom-built avionics system. The vehicle provides high lift capabilities, a flight time of
about 8 min and numerous data and power interfaces for attaching additional equipment
used in experiments. An overview of the drone is presented in Figure 3.

Figure 3. The Falcon V5 UAV used for FDI experiments and a detailed view of the coaxial propul-
sion unit.

The main chassis of the UAV is designed as a four-arm cross with coaxial propulsion
units at each end. The span of opposite rotors is equal to 450 mm with a vehicle mass of
2300 g. Eight MN3110 electric BLDC motors allow up to 65 N of total thrust to be produced
within compact external dimensions of the UAV, as small as 610× 610 mm. Each propulsion
unit consists of two vertically aligned motors with 10 × 3.3′′ rotors. This design has been
shown to be redundant in hardware and safer to operate in the event of partial or complete
rotor loss [26], which greatly benefited us during numerous flight tests in faulty scenarios.

2.3. Acoustic Diagnostic System

In order to capture in-flight acoustic signals, a prototype of a data acquisition and
processing system was developed. The aim was to utilize easily available off-the-shelf com-
ponents to shorten preparations for experiments and provide a proof-of-concept solution
that precedes the development of a dedicated embedded subsystem. Our setup is based
on a single-board computer (SBC) Raspberry Pi 3B+ and a dedicated microphone array
module. The latter component is Respeaker 4-mic Array (https://respeaker.io/4_mic_array/,
accessed on 28 April 2022), a printed circuit initially designed for IoT (Internet of Things)
solutions and dedicated to create voice-enabled applications in particular. The stack of
RaspberryPi SBC and ReSpeaker “hat” is shown in Figure 4.

The key components of the ReSpeaker microphone array are four MSM321A3729H9BP
top-port miniature microphones manufactured in MEMS technology. They are located in
every corner of the rectangular printed circuit board, which in our intention will allow one
to locate the faulty rotor. Since these components are equipped with an analog output, the
ReSpeaker module consists of a dedicated AC108 analog-to-digital converter (ADC). The
ADC provides four independent channels of acquisition, a programmable gain block and
a I2S output bus. The maximum sampling rate for all four microphones reaches up to

https://respeaker.io/4_mic_array/


Energies 2022, 15, 3955 6 of 19

48 kSps. Some important parameters of the MSM321A3729H9BP microphone are presented
in Table 1.

Figure 4. The stack of Raspberry Pi 3B+ SBC and microphone array module.

Table 1. Selected properties of the MSM321A3729H9BP microphone.

Parameter Value Unit

Frequency band 100∼10 k [Hz], range of ±3 dB
THD 0.1 [%]
AOP 123 [dB SPL]
SNR 65 [dB]
Sensitivity −32 dB [dB] for 1 kHz in relation to 1 V/Pa

It is worth mentioning that although the performance of the array is quite mediocre in
comparison to high-end components of this class and significantly lower in comparison
to full-scale regular microphones, such a low-cost system provided us with satisfactory
results. However, one of the key parameters in our consideration was the acoustic overload
point (AOP) of the microphones, which is commonly defined as a level of sound pressure
at which the total harmonic distortion (THD) factor exceeds 10%. The importance of AOP
is crucial since the array is located in the direct vicinity of loud rotors. Some of the other
MEMS microphone-based devices tested did not satisfy our needs, as the recorded sound
was distorted beyond the level that would enable accurate fault detection.

The ready-to-flight experimental setup consisting of Falcon drone, SBC and microphone
array is depicted in Figure 5. Custom 3D-printed brackets were prepared to fix the ReSpeaker
module above the main avionics of the UAV.

Custom software was developed for a Linux-based Rapsberry Pi computer. The set
of Python programming language scripts was written based on the official driver for the
ReSpeaker microphone array. Combined with built-in Wi-Fi connectivity and remote ac-
cess mechanism such as SSH, the data acquisition system allows convenient experiments
in flight. In addition, the quite considerable computing power of SBC enables the im-
plementation of not only data acquisition, but also further signal processing and fault
classification algorithms.
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Figure 5. Experimental setup to acquire acoustic data.

3. Proposed Method

Our approach to the stated FDI problem utilizes data-driven fault detection that takes
advantage of a machine learning-based fault classifier with multichannel acoustic signal
features as the model input. The following section describes the processing pipeline in a
sequential manner, from raw acoustic data to the FDI system output indicating detected
fault class.

3.1. Signal Processing

An algorithm is based on short chunks of the acoustic signal acquired with the UAV
onboard microphone array. The length of the signal acquisition period is a factor that affects
the classification performance, since longer chunks contain more information and provide
the classifier with better-quality data.

At first, the raw acoustic signal is multiplied by a window function. The process
is applied to all four channels of the audio file concurrently since the fault classifier is
processing the data from all of the microphones combined. A Kaiser windowing function
was used in presented analysis.

Afterward, the Mel Frequency Cepstrum Coefficients (MFCCs) are extracted indepen-
dently for every audio channel. MFCC-based signal features are applied primarily and
quite broadly in speech recognition systems [27]. However, they have also been used in nu-
merous applications in the field of condition monitoring and fault detection as well [28,29].
The main idea behind the MFCC technique is first to convert every signal frame into a
magnitude spectrum by applying a Fast Fourier Transform (FFT). Afterward, the obtained
spectrum is passed through a set of triangle-shaped band-pass filters known as the Mel
filter bank. The number of filters in the bank, annotated as n f , is an adjustable variable. The
name “mel” corresponds to a unit of measure with variable spacing that is more natural to
the frequency perceived by the human ear. In the next step, the logarithm is applied to filter
bank outputs and finally, the discrete cosine transform of the resultant signal is taken to
obtain MFCCs. In our algorithm, 104 cepstral coefficients are extracted from each channel.
As a result, the fault classifier is provided with a 425-element input vector, consisting
of MFCCs from 4 microphones and 9 labels of considered fault classes. The process of
pre-processing acoustic signals in the FDI system is summarized in Figure 6.

3.2. Fault Classification

Several models were developed for the fault classification task and two of them were
chosen for further evaluation as the most promising ones. The first classifier is based on
the LSTM artificial neural network (ANN) architecture. This kind of ANN falls into the
category of recurrent neural networks with the great advantage of being able to overcome
a vanishing gradient problem. LSTM-based models are commonly used in a variety of
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tasks that involve speech and acoustic recognition algorithms [30]. Such networks have
been shown to be very efficient in time series prediction and keeping track of long-term
dependencies [31]. In recent years, they have received widespread attention in the fields of
fault diagnosis and condition monitoring, with a particularly high number of applications
in the data-driven diagnosis of rotating machinery [32,33].

Figure 6. Summary of the pretraining signal processing steps.

The LSTM-based network is more computationally demanding than the regular RNN
because of the more complicated structure of a single cell of the LSTM network. An LSTM
unit consists of a cell, an input gate, an output gate and a forget gate. The cell stores values
over some arbitrary time intervals and the gates control the flow of data from subsequent
iterations. This ensures that the output is affected by data from any range without gradient
fading. Our model consists of one LSTM layer and two fully connected layers. The latter
serves as an output layer to return the probability of the occurrence of a predefined fault
type. The network outputs 9 such values, of which the first 8 are meant for combinations
of two fault types at four different rotor locations (please refer to Table 2 for details about
considered fault classes). The last output reports whether all the rotors are in healthy
condition. The structure of the described ANN is shown in Figure 7.
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Figure 7. Structure of the LSTM-based fault classifier.

Table 2. Summary of flight experiments conducted and the quantities of data for every fault class
considered.

Flight Scenario No. Flights Audio Data Length [s]
Nominal (healthy) condition 10 2400
Single damaged blade 12 2400

Two damaged rotors
Adjacent locations 9 1800
Opposite locations 5 1000

Fault Class
Broken Blade Location

Fault Type No. Flights Audio Data Length [s]
A B C D

H − − − − none 10 2400
AF + − − − 5 1000
BF − + − − 5 1000
CF − − + − 5 1000
DF − − − +

fractured tip

4 800
AE + − − − 4 800
BE − + − − 5 1000
CE − − + − 3 600
DE − − − +

edge distortion

6 1200

The second classifier developed in our solution is based on convolutional ANN
(CNN). Applications of this architecture proliferated mainly in the field of image processing.
However, many successful attempts at machine diagnosis have been made [34,35]. A
distinguishing feature of CNNs is that in the process of training, the parameters of neuron-
shared filters are affected, instead of training weights that connect each neuron of one layer
with each neuron of the next layer. This approach significantly reduces the memory size of
the network. In each layer, a certain number of kernels move every stride along the input
vector, creating representations that serve as inputs to subsequent layers.

A model consisting of six convolutional layers and one fully connected output layer
was used to solve the rotor fault detection problem. The first convolutional layer has four
channels, which corresponds to the data from the four-channel microphone array collected
during the study. A ReLu activation function is used along with batch normalization to
regularize inputs and prevent overfitting. The second layer has 64 channels, and each
subsequent layer doubles the number of channels. The last convolutional layer reduces the
number of channels down to 1 in order to link it to a fully connected output layer, whose
input size depends on the number of convolutional layers and the size of the kernel. In our
case, it has 9 outputs that serve as fault indicators in a manner similar to the previously
presented LSTM-based classifier. Figure 8 shows a graphical representation of the structure
of the CNN fault classifier.
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Figure 8. Structure of CNN-based fault classifier.

4. Experimental Evaluation
4.1. Acoustic Dataset

In order to train and validate the presented fault classifiers, a series of flight exper-
iments was carried out. The idea behind them was to collect acoustic data in flight in
different scenarios with variable locations and types of faulty rotors. There were 36 flights
in total and during each one of them, 200 to 240 s of 4-channel audio data were recorded.
The rotors were switched in between the experiments, with variable location, type and
number of damaged blades placed in the system. The sampling rate of sound signals is
equal to 44,100 Hz. Recordings made during flights with damaged rotors were shorter due
to the increased power consumption of the propulsion system. The methodology of the
conducted experiments is shown in Figure 9.

Figure 9. Process of gathering samples of acoustic dataset and evaluating FDI method.

During every experiment, the UAV trajectory included a mix of hovering, ascending,
descending and translational motions. The tests were carried out indoors inside the sports
hall with dimensions of about 20 × 10 × 5 m. Three main categories of experiment scenar-
ios were considered: flights with all-healthy rotors, the occurrence of a single damaged
propeller and UAV equipped with two impaired rotors at the same time. In the latter
variant, some of the tests were performed with two adjacent rotors damaged and the others
with faults in opposite actuators. Figure 10 shows the flight variants performed.
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Figure 10. Types of fault scenarios considered in experiments: (1) no faults, (2) single damaged rotor,
(3) dual fault, adjacent, (4) dual fault, opposite actuators.

Multiple specimens of damaged rotors were used and healthy–damaged combinations
were chosen in a way that provides all fault classes with a similar and sufficient amount of
data for training the intelligent classifier. In the analysis, two types of blade impairment are
considered: the fractured rotor tip and distorted edge, just as the initial examples analyzed
with the stationary test stand. The structure and fault classes included in the dataset are
summarized in Table 2.

The signal frames used in processing were extracted from audio files using variable
window length and overlap, thus boosting the number of samples to several thousand for
every model training process. In Figure 11, some selected samples of raw audio signals are
shown. They are taken from the recordings of all-healthy flight (a) and the scenario with a
single damaged propeller present in the system (b,c). Sample (b) was recorded with the
microphone located opposite to the fault location, while frame (c) was acquired with the
sensor located in the closest vicinity of the faulty rotor. Next to the raw signals, a power
spectral density estimate is plotted to show differences in the frequency content of the
recorded sounds.

In further analysis, the dataset was split into training, validation and testing sets.
Signals from different flights were used in each of the three subsets to avoid overfitting
the models. It is worth mentioning that to reduce data bias, the whole dataset was not
always used for training and validation. However, since we aim to share the data publicly,
all of the recordings are included, since some approaches may utilize different parts of the
dataset. Refer to the Data Availability section at the end of the article for more details on
access to the dataset.

Figure 11. Cont.
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Figure 11. Samples of recorded audio signals along with their PSD estimates: (a) all rotors healthy,
(b) single damaged rotor, opposite microphone, (c) single damaged rotor, closest microphone.

4.2. Classification Results

The developed fault classifiers were put through the evaluation process to determine
the impact of certain parameters of the signal processing and classification pipeline on the
final efficiency. A set of conventional performance metrics was used to compare different
models with accuracy, precision, recall and F-score among them. The two best classifiers
mentioned in the previous section were considered as a reference point and several of their
parameters were evaluated to show the capabilities of the proposed FDI scheme.

4.2.1. LSTM-Based Fault Classifier

At first, the lightweight LSTM model was evaluated with regard to the impact of layer
sizes. The smallest ANN considered used 64 LSTM cells and 32 neurons in a linear layer.
From this point on, the size of the network doubled at every step, to the point where no
substantial improvement in performance metrics was observed. Table 3 summarizes the
change in classifier efficiency due to the increase in the size of the layers.

The fourth model was selected for further analysis since no further performance
improvement was observed. It is noticeable that even the smallest network provided
satisfactory results. However, a low precision score meant that a higher proportion of false
positives was reported. Therefore, models based on smaller ANNs provided a higher rate
of false alarms. The hyperparameters of the selected classifier are summarized in Table 4.



Energies 2022, 15, 3955 13 of 19

Table 3. Evaluation of the LSTM-based fault classifier.

Id LSTM Layer Size Linear Layer Size F-Score Precision Recall Accuracy
1 64 32 0.910 0.858 0.969 0.967
2 128 64 0.936 0.900 0.975 0.977
3 256 128 0.982 0.987 0.978 0.994
4 512 256 0.985 0.989 0.980 0.995

Table 4. Parameters of the selected LSTM-based fault classifier.

Parameter Value
Number of input layer neurons 512
Number of hidden layer neurons 256
Number of output layer neurons 9
Batch size 640
Loss function CrossEntropyLoss
Output layer activation function Sigmoid
Optimizer Adam
Compiler metric accuracy
Checkpoint monitor validation loss
Number of epochs 866
Training loss 2.19
Training accuracy 1
Validation loss 2.36
Validation accuracy 0.998
Test accuracy 0.994

For the selected model, a final classification test was performed with a 7900-element
subset of data derived from separate sound recordings. The confusion matrices for every
fault class considered are shown in Table 5.

Table 5. Confusion matrices for the LSTM-based fault classifier.

AF Prediction AE Prediction BF Prediction

True Label 0 1 True Label 0 1 True Label 0 1

0 6727 0 0 6270 66 0 6335 1

1 39 1134 1 52 1512 1 10 1554

BE Prediction CF Prediction CE Prediction

True Label 0 1 True Label 0 1 True Label 0 1

0 6317 19 0 6321 15 0 6726 1

1 29 1535 1 95 1469 1 2 1171

DF Prediction DE Prediction H Prediction

True Label 0 1 True Label 0 1 True Label 0 1

0 6336 0 0 6331 5 0 7404 25

1 0 1564 1 11 1553 1 1 470

The results of the classification test show that although some fault classes are predicted
with more false negatives and positives, the differences are relatively small in comparison
with the correct predictions. Both types of faults are clearly distinguishable from each other.
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4.2.2. CNN-Based Model

The second fault classifier was evaluated first on the basis of the internal parameters
of the network. Different counts of convolutional layers, two kernel sizes and a variable
number of filters were considered. The results are summarized in Table 6.

Table 6. Evaluation of CNN-based fault classifier.

Kernel Size No. Kernels No. Filters F-Score Precision Recall Accuracy

2 0.789 0.707 0.893 0.918

4 0.876 0.839 0.918 0.956

8 0.889 0.850 0.932 0.960

16 0.884 0.817 0.962 0.957

32 0.963 0.968 0.957 0.987

4

64 0.964 0.973 0.956 0.988

2 0.804 0.736 0.885 0.926

4 0.910 0.881 0.940 0.968

8 0.939 0.930 0.948 0.979

16 0.963 0.971 0.955 0.987

32 0.965 0.972 0.958 0.988

5

64 0.969 0.978 0.961 0.990

2 0.811 0.748 0.886 0.929

4 0.910 0.907 0.912 0.969

8 0.957 0.973 0.942 0.986

16 0.967 0.977 0.957 0.989

32 0.963 0.976 0.949 0.987

3

6

64 0.980 0.986 0.975 0.993

2 0.844 0.789 0.908 0.942

4 0.896 0.862 0.934 0.963

8 0.949 0.943 0.956 0.983

16 0.957 0.960 0.954 0.985

32 0.971 0.978 0.964 0.990

4

64 0.973 0.983 0.964 0.991

2 0.862 0.801 0.933 0.949

4 0.937 0.926 0.947 0.978

8 0.948 0.941 0.955 0.982

16 0.966 0.974 0.959 0.989

32 0.965 0.975 0.956 0.988

5

64 0.970 0.978 0.961 0.990

2 0.909 0.898 0.921 0.969

4 0.931 0.938 0.924 0.976

8 0.940 0.958 0.924 0.980

16 0.965 0.974 0.956 0.988

32 0.964 0.974 0.954 0.988

5

6

64 0.971 0.975 0.967 0.990
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Performance metrics increase along with the number of convolutional layers and
filters. Enlarging the kernel size increases accuracy with a small number of filters. However,
it is the latter parameter that affects the memory footprint of the model most significantly.
The best results were obtained with the highlighted model and therefore it was the subject
of final testing. The global parameters of the selected classifier are summarized in Table 7.

Table 7. Parameters of the best developed CNN-based fault classifier.

Parameter Value
Batch size 640
Loss function CrossEntropyLoss
Output layer activation function Sigmoid
Between layer activation function ReLU
Optimizer Adam
Compiler metric accuracy
Checkpoint monitor validation loss
Number of epochs 38
Training loss 2.27
Training accuracy 1
Validation loss 2.38
Validation accuracy 0.997
Test accuracy 0.993

Detailed confusion matrices of the best CNN model are presented in Table 8.

Table 8. Confusion matrices for CNN-based fault classifier.

AF Prediction AE Prediction BF Prediction

True Label 0 1 True Label 0 1 True Label 0 1

0 6725 2 0 6269 67 0 6334 2

1 34 1139 1 43 1521 1 19 1545

BE Prediction CF Prediction CE Prediction

True Label 0 1 True Label 0 1 True Label 0 1

0 6310 26 0 6318 18 0 6725 2

1 63 1501 1 106 1458 1 23 1150

DF Prediction DE Prediction H Prediction

True Label 0 1 True Label 0 1 True Label 0 1

0 6330 6 0 6326 10 0 7394 35

1 0 1564 1 6 1558 1 21 450

Both fault detectors yield satisfactory results, with the main performance metrics
scoring more than 97%. In either case, accuracy was the highest value, since it was a main
metric used in the training process. Slightly better results were achieved with the LSTM-
based model with regard to precision and recall. However, the differences are small enough
to consider both approaches equally successful. On the other hand, the convolutional
network is much more complicated with a larger number of layers and individual neurons.
Therefore, some additional validation steps were performed.

4.2.3. Computation Time

Both models were tested for computational demands. The code was run using a PC
workstation equipped with AMD Ryzen 9 3950X CPU, 128 GB DDR3 RAM and supported
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with an Nvidia RTX 2070 graphics card. Execution time of the signal processing stage,
model training and single sample classification were gathered. The results are summarized
in Table 9.

Table 9. Execution time for feature extraction, training and classification steps.

LSTM CNN
Avg. per frame [ms] 2.860

MFCC extraction
Std dev. [ms] 0.032

Model training Total [min] 24 7
Avg. per frame [ms] 0.037 0.630

Fault classification
Std dev. [ms] 0.003 0.011

As suspected, the time of fault signature classification for a single signal frame with
four channels and 204 cepstral coefficients each is significantly higher in the case of a more
sophisticated CNN-based model. Training of the latter classifier has a shorter duration.
However, it is not a problematic issue since our plans for further development assume
deploying an already pretrained classifier to an onboard embedded system. Another
noteworthy fact is the relation of processing time in consecutive steps of the processing
pipeline. The classification stage that consumes a fraction of a millisecond contributes
to a small extent to the time elapsed from a fault’s occurrence to detection, since MFCC
extraction consumes around 3 ms and the time of signal acquisition for considered models
equals half of a second. However, we expect that the target implementation of signal
processing on a low-power SBC will result in considerably longer computation. Therefore,
substantial effort was put into optimizing the fault classifier.

4.2.4. Signal Frame Length

Since signal acquisition time contributes to the highest degree to a full FDI process,
additional validation of the LSTM model was performed with shorter bursts of audio data.
The main aim was to investigate how far the signal frame can be reduced with satisfactory
performance metrics maintained. The results of the analysis are summarized in Table 10.

Table 10. Effects of the length of the signal frame on the performance of the LSTM-based fault classifier.

Frame Length [ms] F-Score Precision Recall Accuracy
600 0.980 0.986 0.975 0.993
500 0.985 0.989 0.980 0.995
400 0.975 0.980 0.969 0.991
300 0.964 0.972 0.955 0.988
200 0.947 0.956 0.938 0.982
100 0.907 0.896 0.919 0.968
75 0.868 0.842 0.896 0.953

It is clearly seen that buffer lengths below 200 ms result in a significant drop in
performance, with precision and recall falling rapidly in the first place. Acquisition time is
directly related to the spectral resolution of FFT as a part of the MFCC extraction process.
With a constant sampling frequency, frame length becomes the only factor that affects the
process. Therefore, with longer data frames, it is possible to observe and extract more
detailed patterns. The results are consistent with our previous works [9,10], where similar
lengths of vibration signals proved to be sufficient.

4.2.5. Number of Cepstral Coefficients

The last step of validation was to analyze the performance of the selected LSTM-based
fault classifier due to the size of an input vector. Several quantities of MFCCs extracted
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for every channel were selected and performance metrics were computed. Table 11 shows
the results with a similar outcome to the frame length validation. Since the number of mel
filters controls how many frequencies are clustered into one cepstrum, a smaller number of
MFCCs results in less detailed signal features. Some key fault frequencies might contribute
to a smaller number of more generalized values and, as a result, be ignored by the model.
However, the performance of fault classification decreases with the number of coefficients
doubled in relation to the reference model. We suspect that such a phenomenon occurs due
to the size of the ANN layers being insufficient for the 4 × 208 input vector.

Table 11. Performance of the LSTM fault classifier with different numbers of cepstral coefficients
extracted for every audio channel.

No. MFCC F-Score Precision Recall Accuracy
208 0.971 0.980 0.962 0.990
104 0.985 0.989 0.980 0.995
52 0.960 0.959 0.962 0.986
26 0.915 0.891 0.940 0.970
13 0.885 0.836 0.939 0.958

5. Conclusions

In the article, the development of a comprehensive, data-driven FDI method for
multirotor UAV rotor faults is presented. An algorithm is aimed towards early detection
of damaged rotor faults, which lead to degraded flight stabilization, decrease safety of
the UAV operation and increase power consumption of the power train. An intelligent
fault classification algorithm is based on the MFCC-based features extracted from the
four-channel audio signal. The data were recorded in real-life flight experiments using a
custom-built onboard microphone array subsystem. Various rotor impairments and their
locations were considered with flights that included single- and double-damaged rotors
in different combinations. The dataset was split into individual audio frames and MFCCs
were extracted as input for the ANN-based fault classifiers. Two main approaches were
tested, with convolutional and LSTM-based neural networks validated. Both variants
provided satisfactory results, with the prediction accuracy and the F1 metric exceeding
98%. However, the LSTM-based model is more lightweight and consumes less computing
time. Therefore, it was selected for further evaluation with the goal of decreasing fault
detection and isolation time. The final analysis has shown that the longest step of the
process, signal acquisition, can be further shortened with a slight drop in performance.
As a result, the presented FDI algorithm based on 200 ms long signal samples achieved
an accuracy exceeding 98%. The proposed method is able to accurately detect broken
rotor blade faults with an additional ability to precisely predict which propulsion unit
is damaged. Furthermore, both evaluated classification methods correctly distinguished
between two types of impairment—fractured tip and damaged edge of the blade.

Our further development plans include real-time implementation of the fault clas-
sification algorithm on the low-power onboard SBC. Therefore, the method was tested
with a decreased number of cepstral coefficients since the MFCC extraction step introduces
the largest amount of computational load. Furthermore, many possible improvements
to the FDI system are considered, such as training the classifier to recognize different
actuator-related faults. Some initial analysis of the audio data suggests that the statisti-
cal and spectral features of the signals may allow the proposed FDI system to recognize
motor-related bearing faults. Other possible improvements include extending the dataset
with experiments carried out using different UAVs and combining features of vibration
and acoustic signals to boost the FDI capabilities.
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ANN Artificial Neural Network
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CNN Convolutional Neural Network
ESC Electronic Speed Controller
FDI Fault Detection and Isolation
FFT Fast Fourier Transform
FTC Fault-Tolerant Control
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LoE Loss of Effectiveness
LSTM Long Short-Term Memory
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