
Citation: Ross, M.; Lin, T.-Y.; Gould,

D.; Das, S.; Bindra, H. Projecting the

Thermal Response in a HTGR-Type

System during Conduction

Cooldown Using Graph-Laplacian

Based Machine Learning. Energies

2022, 15, 3895. https://doi.org/

10.3390/en15113895

Academic Editor: Hany

Abdel-Khalik

Received: 28 March 2022

Accepted: 23 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Projecting the Thermal Response in a HTGR-Type System
during Conduction Cooldown Using Graph-Laplacian Based
Machine Learning
Molly Ross 1, T-Ying Lin 1 , Daniel Gould 1, Sanjoy Das 2 and Hitesh Bindra 1,*

1 Department of Mechanical & Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA;
molly199@ksu.edu (M.R.); tyinglin08@gmail.com (T.-Y.L.); gouldani@gmail.com (D.G.)

2 Department of Electrical & Computer Engineering, Kansas State University, Manhattan, KS 66506, USA;
sdas@ksu.edu

* Correspondence: hbindra@ksu.edu

Abstract: Accurate prediction of an off-normal event in a nuclear reactor is dependent upon the
availability of sensory data, reactor core physical condition, and understanding of the underlying
phenomenon. This work presents a method to project the data from some discrete sensory locations
to the overall reactor domain during conduction cooldown scenarios similar to High Temperature
Gas-cooled Reactors (HTGRs). The existing models for conductive cooldown in a heterogeneous
multi-body system, such as an assembly of prismatic blocks or pebble beds relies on knowledge
of the thermal contact conductance, requiring significant knowledge of local thermal contacts and
heat transport possibilities across those contacts. With a priori knowledge of bulk geometry features
and some discrete sensors, a machine learning approach was devised. The presented work uses an
experimental facility to mimic conduction cooldown with an assembly of 68 cylindrical rods initially
heated to 1200 K. High-fidelity temperature data were collected using an infrared (IR) camera to
provide training data to the model and validate the predicted temperature data. The machine learning
approach used here first converts the macroscopic bulk geometry information into Graph-Laplacian,
and then uses the eigenvectors of the Graph-Laplacian to develop Kernel functions. Support vector
regression (SVR) was implemented on the obtained Kernels and used to predict the thermal response
in a packed rod assembly during a conduction cooldown experiment. The usage of SVR modeling
differs from most models today because of its representation of thermal coupling between rods in the
core. When trained with thermographic data, the average normalized error is less than 2% over 400 s,
during which temperatures of the assembly have dropped by more than 500 K. The rod temperature
prediction performance was significantly better for rods in the interior of the assembly compared to
those near the exterior, likely due to the model simplification of the surroundings.

Keywords: machine learning; thermography; thermal contact conductance; inverse heat transfer

1. Introduction

Deployment of Advanced Reactor (AR) designs for energy generation is dependent
upon cost effective Operation and Maintenance (O&M). Currently operating Nuclear Power
Plants (NPPs) have much higher O&M costs due to higher manpower requirements for
surveillance, involvement of various manual or complex procedures due to regulatory
requirements, and lack of efficient O&M planning, while these concerns were aggravated
by public opinion after the disaster at Fukushima Daichii, improvements on NPPs and
their infrastructure are still a pressing concern. O&M activities such as startup, shutdown,
or power level changes require the completion of comprehensive and time-intensive check-
lists and procedures for safety related equipment. Even more costly are O&M routine
procedures and inspections that must be conducted based on a pre-planned procedure—
independent of real need. Similarly, part replacement is also often dictated by a pre-planned
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program, instead of being based on field data followed by a risk-informed decision making
process [1–3]. These challenges become more pronounced with the associated aging pro-
cesses in NPPs. O&M procedures could be dramatically improved by automating some of
these processes using imaging and sensory information.

In all of these scenarios, the development of effective O&M strategies is dependent
upon effective sensing of field variables (such as temperature, flow, strain, and neutron
flux) and processing the data to assess safety and autonomous control; while developing an
applicable model is feasible for normally operating systems, abnormalities introduced by
external forces render these models unusable. Creating models for off-normal NPPs is much
more difficult because of the inability to validate the predictive models of reactor systems
and passive heat removal systems under seismic activity or similar external impact. The
next generation of nuclear power plants, such as HTGRs (High Temperature Gas-cooled
Reactors), have passive safety design features, but it is unclear whether their safety systems
will perform as per design requirements in case of externally initiated events. Thus, a better
approach needs to be prepared with better on-line monitoring systems and a sophisticated
reactor safety management plan for advanced reactors.

The dynamic flow of heat between multiple reactor core components can be predicted
by implementing a data learning tool on the kernels of the sensor and field locations within
the core or material region of interest. Currently, there are two advanced HTGR designs
with a graphite moderator and helium coolant planned for deployment—fuel moderator
assemblies using prismatic blocks or fuel moderator assemblies using spherical pebbles.
The main passive safety feature of these designs is that under off-normal conditions, they
can passively dissipate heat to the external environment. This is based on the concept
that the reactor vessel can be cooled by the external environment and internal decay heat
within the reactor can be transferred to the vessel surface by heat conduction or radiation
through the high thermal conductivity graphite fuel matrix. With the unpredictability of
an abnormally functioning NPP in mind, there are many models that could be used to
identify unknown temperatures to ensure the safety of the reactor core. There have been
several attempts to adopt data learning models to solve inverse heat transfer problems [4,5].
Examples include the research of Yovanovich and Xu et al. [6,7]. Yovanovich covered
the improvements on older data learning models and how geometry and thermal physics
interact with regards to contact resistances, while Xu et al. proposed a new approach
using the fractal dimensions of the conducting surface. The major issue shared by the
models introduced by Yovanovich and Xu et al. is that both require the geometry of the
conduction contact points to be known on a macroscopic and microscopic level. Without
using data learning models, there are also more traditional approaches of identifying
these unknown temperatures, such as finite element analysis (FEA) or a physics-based
method. However, both 2D simulations and traditional physics based models also require
a detailed investigation on the contact resistance values used for the data learning models.
In addition, it is very difficult to produce accurate models using either method without
extensive knowledge of the reactor’s current physical state. In order to overcome these
limitations, a novel approach is introduced in this paper to quantify the effects of these line
or point thermal contacts via a graphical model based on geometric connectivity instead of
knowledge on the surface contacts. However, graphite fuel upon irradiation can undergo
swell-shrinkage, thus changing block to block or pebble to pebble thermal contacts at
a microscopic level. Modeling thermal resistance across these types of discontinuities
involves complex empirical relations and grid-dependent numerical solutions near the
boundaries, which are not reliable methods of solving such problems. To develop and
demonstrate the effectiveness of multi-region assemblies filled with discontinuities, a
problem setup is developed as described below.

This work mimics the HTGR cooldown scenarios but with the simplified geometry in
the form of cylindrical rods, where the dominant form of heat transfer is conduction with
ambient air providing convection cooling on the exterior of the holding vessel. The choice
of materials such as alumina and quartz for this study was based on the lower thermal
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diffusivity of irradiated graphite and reducing spatial dimension to achieve comparable
intra-rod time-constants as expected in HTGR fuel-moderator elements. This geometry
allows the significant thermal response to occur predominantly in 2D geometry and demon-
strates the performance of this machine learning method in 2D space before its future
application towards more realistic reactor systems. Machine learning regression uses a
large set of samples as data, where each data point consists of an input and output and the
model identifies the relationship between the two. Two disjoint sets are needed for the ma-
chine learning model, the training set and the test set. The training set optimizes the model
and trains it to yield desired results based off the change in input. The test set—which has
data exclusive from the training set—is then entered into the newly trained model to assess
the model’s performance. Although the entire space will be monitored using thermographic
images, only a few randomly selected rods will be used for training the machine learning
models. Using the remaining known temperatures for the rods as references, the model
will then be able to accurately predict the temperatures of the unknown rods. The kernels
used in this research have been devised to weight the relations between the rods using their
thermal connectivity and the two sample observations’ closeness in time. More specifically,
this investigation makes use of the Laplacian of a graph, a symmetric matrix that effec-
tively captures various topological features of the underlying graph. A spatial regression
algorithm is required to fuse the discrete signal response from some sensor locations and
information on the rods’ physical properties to obtain the temperature map for the entire
domain. Thus, if spheres are touching, they are then considered as point-contacts and if
cylinders (such as the ones in our experiment) are touching each other along the curved
surfaces, they can be considered as line contacts. Instead of modeling the heat transfer
resistances across these point contacts or line contacts from physical models, these spatial
or spatio-temporal regression models can be directly obtained from experimental data with
high- or low-resolution instrumentation. The geometric connections and representative
mathematical graphs in combination with the known data points are used in this work to
construct a response function using a support vector regression algorithm. The response
functions can then be used to predict responses for the unknown locations. In order to
validate this algorithm, data which are not used in the support vector regression (SVR) are
obtained during the experiments.

The presentation of this work involves the problem description with details on ex-
perimental setup, followed by procedure to generate experimental data for this study, the
mathematical description of the predictive algorithm, and the discussion of results. The
final section discusses the conclusions from this work.

2. Experimental Description

To develop and test a model for predicting temperatures in a simulated core dur-
ing conduction cooldown, a high temperature experimental facility was constructed to
record the temperatures of a randomly packed rod assembly over time [8]. The following
subsections outline the experimental setup and procedure.

Experimental Setup

The experimental apparatus, built to analyze and test the regression model, consists of
a quartz process tube and a radiative heater that is able to reach the desired temperature
range (1000–1500 K). Depictions of this apparatus can be seen in Figure 1. Quartz was
chosen to hold the test samples within the furnace because of its infrared transmission
and low thermal conductivity. The radiative heat from the electrical heater can transmit
through quartz easily, ensuring that the sample quickly reaches the desired temperatures.
Both ends of the tube were sealed using compression fittings which in turn allowed for
KF style fittings to be attached. Although these connections would have been difficult to
achieve without complex cooling equipment if a metal or ceramic tube had been selected,
the low thermal conductivity of quartz resulted in end tube temperatures low enough that
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the compression fittings could achieve a seal by simply compressing their O-rings against
the tube surface.

Figure 1. Experimental test setup.

To allow for the long wave IR (LWIR) camera to measure the temperature variation
inside the experimental domain, a custom ZnSe view port was commissioned to interact
with the KF flange interface. As the ZnSe window has a substantial variation in the LWIR
transmission as a function of wavelength, it was necessary to determine its transmission
over the LWIR domain. By comparing two sets of images—one with the window, the
other without—the correction factor for transmission can be obtained. For this process, a
test piece was painted with a paint known to possess a constant emissivity in the LWIR
spectrum over a range of temperatures [9] for calibration purposes.

This setup provides a highly customizable apparatus for examining the effects of high
temperature environments on test pieces of up to 4.6 cm in diameter. Utilizing a quartz
process tube, samples of interest can be heated up to 1473 K in an inert environment ranging
from a rough vacuum to pressures over 150 kPa. The complete experimental setup is shown
in Figure 1a.

Quartz and alumina were chosen for the two test assemblies to test the model’s
versatility when used with different materials. The first assembly was used to test the
machine learning model with a simpler geometry and only used seven rods of alumina.
The second assembly uses 68 rods of graphite. Important thermal properties for quartz and
alumina can been seen in Table 1.

Table 1. Thermal properties of quartz and alumina.

Material Quartz Alumina

Conductivity (k) 1.4 W/m ◦C 25 W/m ◦C

Emissivity (ε) 0.93 0.75

Density (ρ) 2500 kg/m3 3800 kg/m3

Specific Heat (cp) 750 J/kg ◦C 880 J/kg ◦C

Thermal Diffusivity (α) 7.467 × 10−7 m2/s 1.047 × 10−5 m2/s

Both assemblies were placed in the quartz process tube near the IR camera’s minimum
focal distance while being far enough away to avoid heat damage to the ZnSe window.
After being carefully positioned inside the process tube, the process tube was vacuum
sealed, and the radiative electrical heater turned on. Heating continued until all rods
reached the desired steady state temperature of 1150 K for the 7-rod assembly or 1200 K
for the 68-rod assembly. To initiate the assembly’s cooldown phase and record the actual
data for experiments, the heater was unplugged and removed from the test section. This
ensured that the residual heat from the heater did not reduce the heat removal from the test
section. Figure 1b depicts the experimental setup, highlighting the sliding heater assembly.



Energies 2022, 15, 3895 5 of 14

As the assembly cooled, temperatures were monitored and recorded for approximately
450 s using the IR camera. An example image observed of a single time snapshot of the test
section during thermal transient is shown in Figure 2a. Once the data were collected, the
individual rods were identified and numbered, and the average temperature of each rod at
each time step was recorded.

Figure 2. IR image of rod assembly with rods numbered (a), along with the corresponding connections
between rods in graph space (b), and eigenspace (c).

3. Machine Learning Model

Thermal analysis using a machine learning model requires the thermal conductivity
of each rod in relation to one another to be established. By solidifying these relations in a
numerical fashion, their edges can then be weighted to show their respective impacts on
one another.

Machine learning models that are most frequently used in estimation tasks (i.e., neural
networks, B-splines, or radial basis function networks) would use the physical coordinates
of the rods, their temperatures θi(t), and other such properties as inputs. These approaches
are infeasible for our proposed setup because the spatial coordinates of the rods do not
capture the interconnectivity between the rods. A pair of rods may be physically close,
but not in direct contact, meaning that their respective impact on one another is relatively
minimal. Meanwhile, a pair of rods that are further apart could be tightly coupled thermally
through multiple intermediate rods. Thermal images from the experiments are used to
construct a graph network based upon adjacent connections between the rods. If the
rod material and size varies then the graph network connections are expected to have
non-uniform weighting. These weights can then be used to form a prediction for the
unknown values in the assembly, but in this given study, all the rods were uniform in size
and made of either quartz or alumina. The aspect ratio of the rods allowed this problem to
be considered 2D, as the length of the rods was large enough to have boundary effects in
the axial direction.

3.1. Graph-Based Learning

In order to effectively produce a method of weighting the interconnectivity between
two rods, the proposed approach makes use of a scheme using algebraic graph theory
described in the next section (Section 3.1.1). This approach allows one to determine a
kernel function k((i, t), (j, t′)) between any pairs of samples (i, t) and (j, t′). The kernel
is an inner product operator defined in a feature space of the samples, and satisfies the
usual properties of inner products. The feature space itself on which the inner products
are defined is irrelevant to our discussion, although it is worthwhile to note that higher
values of the inner product arise when the rods i and j are thermally tightly coupled and
when time interval separating the samples (t− t′), is lower. These kernel products are
used as inputs to the machine learning model which also uses the observed temperatures,
θi(t), (i, t) ∈ Strain, as training data. The specific machine learning model used is SVR, a
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model that relies on kernel functions as inputs instead of physical features to perform heat
transfer analysis.

3.1.1. Graph Laplacian

The Laplacian, L, of a graph G with vectors V and edges E, G = (V, E), is the N × N
symmetric matrix (N being the cardinality of V) defined as:

L = [li,j] (1)

where lij is the entry in row i and column j is defined as follows:

li,j =


−1 i 6= j, (i, j) ∈ E
0 i 6= j, (i, j) /∈ E
−∑

k 6=i
lik i = j

(2)

The Laplacian also takes into account the contact between the outer rods and the
surroundings. In order to account for this connectivity with the surroundings, a node
indexed 0 is added to symbolize the surroundings. The weighting factor between the rods
connected to the surroundings is some number, l0 < 1. Hence:

li,0 = l0,i =

{
l0 i ∈ R0

0 i ∈ R1
(3)

The Laplacian L is a singular matrix since L1 = 0. Hence, L has an eigenvalue λ1 = 0.
In case of a fully connected graph, all other eigenvalues are positive. The N eigenvalues are
sorted in ascending order, so that 0 = λ1 < λ2 ≤ λ3. . . ≤ λN . The spectral decomposition
of L shows several interesting properties. For example, transforming the coordinates of
the vertices in V along the eigenvectors v2 and v3 produces a mapping where the L2-norm
distance between every pair of vertices reflects how closely connected the vertices are. In
the present situation, these distances represent how thermally coupled the corresponding
rods are, as shown in Figure 2c.

3.1.2. Kernel Matrix

The exponential diffusion kernel [10] of the Laplacian L is defined as:

K = e−σL (4)

where σ is a spatial constant. The kernel K is positive definite and contains strictly non-
negative entries. In other words:

K = [K(xi, xj)] > 0, K(xi, xj) ≥ 0 (5)

Furthermore, it can be shown that given any two rods i 6= j:

K(xi, xi), K(xj, xj) > K(xi, xj) (6)

Thus, the matrix K satisfies Mercer’s conditions [11] and can be used for kernel-based
regression methods as described below.

In order to extend the kernel inner product to samples that are also separated in time
by an amount ∆t, we include a factor e−

∆t
τ in the kernel, where τ is a time constant. Under

these circumstances, the kernel function between two samples can be stated as:

k((i, t), k(j, t′)) = ka
i,je
− |t−t′ |

τ (7)
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The graph G = (V, E) is constructed in the following manner. Each vertex in the set
V corresponds to a rod. Since the data used for the second test section involved a total of
68 rods (see Figure 2), the cardinality of V was also N = 68. For every pair of rods i and j
that were in direct contact, the representing edge (i, j) belongs to E. Since the radii of the
rods were equal, the edge weights between touching rods were kept at unity.

3.2. Support Vector Regression

Given the points (xi, θi), i = 1, 2, . . . N, with θi denoting the temperature of rod i, the
objective is to obtain an approximator θi

∼= θ(xi). SVR, which is known to perform optimal
estimation while minimizing the VC-dimensionality, was used [12].

3.2.1. Primal Form

Two sets of slack variables can be used, ξ+i ≥ 0 for points above the regression surface,
and ξ−i ≥ 0 for points below it. Furthermore, we apply a threshold ε ≥ 0. With the
ε-insensitive loss function being the objective, the problem is formulated as below.

Minimize:
1
2

K(w, w) + C
N

∑
i=1

ζ+i + C
N

∑
i=1

ζ−i (8)

Subject to:

θi −K(w, xi) + b) ≤ ε + ζ+i
(K(w, xi) + b)− θi ≤ ε + ζ−i

(9)

where w is a vector of weights and b is the hyperplane bias vector.

3.2.2. Dual Form

Introducing Lagrange multipliers λ+
i and λ−i for the constraints in the primal formula-

tion above, the dual can be readily obtained as below.
Maximize:

−1
2

N

∑
i=1

N

∑
j=1

K(Xi, Xj)(λ
+
i − λ−i )(λ

+
j − λ−j )

−ε
N

∑
i=1

(λ+
i + λ−i ) +

N

∑
i=1

yi(λ
+
i − λ−i )

(10)

Subject to:

N

∑
i=1

(λ+
i − λ−i ) = 0

0 ≤ λ+
i , λ−i ≤ C

(11)

Let λ be a vector consisting of both sets of Lagrange multipliers as shown below:

λ =

[
λ+

λ−

]
(12)

Using λ, the kernel matrix K can be rewritten for the above dual problem as:

− 1
2

λT
[
+K −K
−K +K

]
λ− λT

[
+ε1− θ
+ε1 + θ

]
(13)
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Let B+ = {0 < λ+
k < C}, B− = {0 < λ−k < C} be the dual variable sets corresponding

to rods whose temperatures are in the active region. It can be shown that the bias b of the
primal form can be obtained as:

b =
1

|B+|+ |B−| ∑
k∈B+

(
yk −∑

i=1
(λ+

i − λ−i )K(xi, xk)− ε

)

+
1

|B+|+ |B−| ∑
k∈B+

(
yk −∑

i=1
(λ+

i − λ−i )K(xi, xk) + ε

) (14)

The weight vector w of the primal form can be shown to be as follows:

w =
N

∑
i=1

(λ+
i − λ−i )xi (15)

3.2.3. Training and Testing Datasets

In order to predict rod temperatures, both spatial and temporal inputs are required. In
this application, both training dataset Strain and Stest use (i, t), where i is the rod index and
t denotes the time instance. For example, the training dataset for the 68 rod setup consists
of the temperatures for 34 randomly selected rods (RK) at each time instant across the entire
time domain, as well as the remaining 34 rods where the temperature will be unknown
(RU) from the initial time to some time, t = T0. As addressed earlier, the temperature θ0 of
the surroundings is treated as an extra training sample, with index i = 0. Together these
samples make up the training set:

Strain = {(i, t)|i ∈ RK ∪ 0, 1 ≤ t ≤ T∞} (16)

∪{(i, t)|i ∈ RU , 1 ≤ t ≤ T0} (17)

Furthermore, testing data can be mathematically written as:

Stest = {(i, t)|i ∈ RU , T0 < t ≤ T∞} (18)

3.2.4. Unknown Temperature Estimation

Using the dual formulation, it can be seen that w need not be determined explicitly.
This is because during regression of unknown points xj, only kernels K(w, xi) are required,
and the weight vector itself is a linear combination of the xis of the rods with known
temperatures.

Given any rod j with unknown temperature θj, the estimated temperature θ̃j is deter-
mined as follows:

θ̃j =
N

∑
i=1

(λ+
i − λ−i )K(xi, xj) + b ∼= θ(xj) (19)

The SVR algorithm then uses the extended kernel matrix K. For any sample datapoint
(i, t) ∈ Strain, with corresponding temperature θi(t), the purpose of the SVR formulation is
to obtain temperature estimate θ̂(x(i,t)) = θ̂i(t) ∼= θi(t). The estimate θi(t) and θ̂i(t), which
are denoted as ξ−i and ξ+i , can be formulated as:

ξ−i,t =

{
|θ̂(xi,t)− θi(t)| − ε, θ̂(xi,t) ≤ θi(t)− ε

0, otherwise
(20)

ξ+i,t =

{
|θ̂(xi,t)− θi(t)| − ε, θ̂(xi,t) ≥ θi(t)− ε

0, otherwise
(21)
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If |θ̂(xi,t) − θi(t)| < ε, no penalty is incurred. The SVR formulation leads to the
θ̂(xi,t) as:

θ̂(xi,t) = 〈w, xi,t〉+ b (22)

Figure 3 shows the formulation of a hyperplane, θ̂(xi,t) from known rod temperatures
using the loss functions, ε+ and ε−, and slack variables, ξ+ and ξ−.

Figure 3. Development of the hyperplane for predicting temperature, with the green dots indicating
over-prediction and the red dots indicating under-prediction.

4. Results and Discussion

To test the efficacy of the support vector regression, a simple geometry of seven
alumina rods was used. The training dataset consisted of the temperatures for all seven
rods over the first 300 s of cooling and the temperatures of six over the entire cooling time.
This training set was used to train the kernels in order to predict the temperature of the
remaining rod over the final 1200 s of the cooling period. The rods used for training, as
well as the test rod, are shown in Figure 4.

Figure 4. Locations of rods used to train the kernel (train) and the one rod in the test dataset (test).

Figure 5 shows the measured temperature of the test rod in the test setup as it cools
from 1150 K as well as the predicted temperature from the support vector regression model.
Because the first 300 s are used for training, the model’s results only begin to diverge
after that initial training period; however, the predicted temperature closely matches the
measured temperature over the entire cooling period, only reaching a maximum error of
10%. This shows the method is adequate in predicting a single rod temperature in a simple
geometry, and can be tested on more complicated rod bundle geometries.
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Figure 5. Comparison of measured temperatures and predicted temperatures for an unknown
alumina rod.

To analyze the SVR method with a more complex geometry, a randomly packed
assembly of 68 rods was placed in the process tube and heated to a uniform temperature
of approximately 1200 K. An IR camera was used to record the temperatures of each rod
as the randomly packed rod assembly was allowed to cool to ambience. The training
dataset consisted of the temperatures for all rods for the first 30 s and the temperatures
for 34 randomly selected rods over the entire time domain. Figure 6 shows the locations
of the 34 randomly selected rods where the temperatures are known over the entire time
domain. The values of parameters used in both regression models are shown in Table 2.
These locations are intended to mimic the locations of working temperature sensors in a
reactor core. The test dataset consists of the temperatures for the remaining 34 rods over
the time domain after t = 30 s. These rods are intended to mimic the locations in a reactor
core where there are missing or inoperable temperature sensors. The training dataset is
inputted into the model to predict the temperatures of these rods, and then compared with
the measured temperatures.

Table 2. SVR parameters.

Geometry 7 Rods 68 Rods

lo 0.625 0.625

θo 0.0095 0.0095

C 2000 5000

ε 0.1 1.1

τ 0.1 2.1

σ 2.1 2.1
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Figure 6. IR images of randomly packed rod assembly with locations of rods with known tempera-
tures indicated in purple.

Figure 7a shows a temperature map of the 68 rod assembly at t = 264 s. Figure 7b
shows the same temperature map with the model predicted temperatures overlaid for the
34 rods in the test set. At this point in time, the model shows good agreement with the
measured temperature values. Figure 8 shows a comparison of the rod temperature over
time for the rod with the greatest relative error, where the measured temperature is shown
in blue and the temperature predicted with the SVR method is shown in red. As a whole,
the predicted temperatures show no major deviation from the measured temperatures. The
normalized error for each rod, i, at time, t, is defined as:

Error =

∣∣∣∣∣ θ̂(xi,t)− θi(t)
θi(t)

∣∣∣∣∣ (23)

The error over time for each rod is shown in Figure 9, with the mean squared error in
black. The error is negligent in the first 30 s, as the temperatures are known for all rods
and are used to train the regression model. The error jumps to approximately 1.5% in the
first 25 s after T0 as the predicted temperature deviates from the calibrated training data
and begins using the regression model. The error then levels off over the remaining time;
however, there is a slight increase in the error as time progresses. This is to be expected, as
this model only takes into account the connectivity of rods and their temperatures over time.
As the cooling process progresses over time, heat transfer coefficients change, meaning
there will be some variation in the thermal coupling both between the rods themselves and
between the rods and the surroundings. The SVR model does not account for these thermal
changes, so it is completely reliant on current and previous temperature values and their
thermal connectivity, which are likely to change slightly over time.
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Figure 7. IR image showing actual temperatures (a) compared with an IR image overlaid with model
predicted temperatures (b).

Figure 8. Comparison of measured temperature and SVR predicted temperature for the rod with the
greatest error in the 68-rod assembly.

Figure 9. Normalized error between the measured rod temperature and SVR predicted rod temperature.
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Through the entire time domain, the average error stayed below 2% and the maximum
error for any rod stayed below 7%. Although maximum error reaches 7%, this is only
observed when all the rods have cooled down below 600 K. Error increases for some rods
as the assembly reaches lower temperatures because radiation losses to ambience reduce
considerably. However, the prediction error was not consistent across the spatial domain.
Throughout the entire cooling time, the prediction error for rods on the outside ring of the
rod assembly had significantly higher error than those on the interior, indicating that the
SVR model is better for interior rods and worse for exterior rods. Figure 10 shows a map of
the rod assembly with the time-averaged percent error for each rod. Rods in the training
set where the temperatures are known in the model, as well as the exterior process tube, are
indicated in black. For the rods whose temperatures are predicted using the SVR algorithm,
the largest positive error (over-predicted) is indicated with a dark blue, and the largest
negative error (under-predicted) is indicated with dark red. As is shown, all of the rods
with the highest error are in the outer ring of the rod assembly, while all the rods with the
lowest error are on the interior. Rods which are contacting the process tube are also more
likely to have higher error than those on the exterior which do not contact the process tube.
This is likely due to the non-constant effects of the heat transfer properties from the process
tube to the environment, while the SVR model includes a node to model the connection
to the process tube and surroundings, this single node is likely not enough to model the
complexity of heat transfer through the process tube and surrounding environment. For
horizontally oriented reactor cores, the heat removal rate to the surroundings is likely to
vary azimuthally, meaning that the heat transfer rates for rods contacting the bottom of the
process tube could vary significantly from the heat transfer rate for rods contacting the top
of the process tube. This error, while small, could be magnified by a more complex heat
removal process at the boundary of the rod assembly than the one presented in this work.

Figure 10. Map of rod assembly showing normalized error after 160 s (a) and 420 s (b) of cooling.

5. Conclusions

Previous incidents at nuclear power facilities made it clear that even with rigorous
safety procedures and in-depth computer models, it is difficult to predict or control the
progression of off-normal events impacting nuclear power plants. Inherently safe reactors
with passive cooldown capabilities are essential for the future of nuclear energy around
the world. One way to improve safety in advanced reactors while keeping autonomous
operation is by using sensors and machine learning effectively. These data model-based
projections will not only be critical for enhancing safety, but will also aid in reducing
O&M costs by enabling autonomously controlled safety systems. Two high-temperature
conduction cooldown experiments were performed, the first using 7 alumina rods and the
second using 68 graphite rods. Thermographic images were obtained and used to record
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the temperatures of the rods to serve as both validation for the predicted values as well as
training data for the model. This machine learning technique was devised to construct the
thermal response of the entire domain using discrete random sensor data under conduction
cooldown experiments. Initial tests with the seven-rod setup proved that the method was
capable of providing accurate predictions with a maximum error of 1.0%. For the second
set up, with knowledge of the temperature data for 34 rods in a randomly packed assembly,
the temperatures of the remaining 34 rods could be accurately predicted over 400 s with an
average accuracy within ±2%.

The accuracy of the model was significantly better for the rods in the interior of the
assembly over the rods in the outer ring. This is likely due to the uncertainty of heat transfer
properties and their impact on the heat removal from the core to the surroundings. Future
work will involve changing the model to better represent the external convection as well as
extending this approach to 3D spherical pebble beds and prismatic block geometries with
decay heat generation, which are more common HTGR designs.
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