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Abstract: Multiple elimination has always been a key, challenge, and hotspot in the field of hydrocar-
bon exploration. However, each multiple elimination method comes with one or more limitations
at present. The efficiency and success of each approach strongly depend on their corresponding
prior assumptions, in particular for seismic data acquired from complex geological regions. The
multiple elimination approach using deep learning encodes the input seismic data to multiple levels
of abstraction and decodes those levels to reconstruct the primaries without multiples. In this study,
we employ a classic convolution neural network (CNN) with a U-shaped architecture which uses
extremely few seismic data for end-to-end training, strongly increasing the neural network speed.
Then, we apply the trained network to predict all seismic data, which solves the problem of difficult
elimination of global multiples, avoids the regularization of seismic data, and reduces massive
amounts of calculation in traditional methods. Several synthetic and field experiments are conducted
to validate the advantages of the trained network model. The results indicate that the model has the
powerful generalization ability and high calculation efficiency for removing surface-related multiples
and internal multiples effectively.

Keywords: multiple; surface-related and internal multiple; deep learning; elimination

1. Introduction

Multiple elimination has always been challenging in the field of seismic data process-
ing. Based on the downward reflection interface where the energy bounces frequently occur,
multiples are categorized into surface-related multiples and internal multiples. At present,
multiple elimination methods usually include two categories: filtering methods and wave
equation-based methods. The filtering method [1–4] works when multiples and primaries
can be separated by parabolic move-out in time domain or mapped into different areas
in other domains. However, move-out discrimination between primaries and multiples
from complex targets and high scattering overburdens are typically small, particularly for
internal multiples in field data. The filtering method may seriously damage primaries
and thus cannot meet the requirements of multiple elimination. The method based on a
wave equation includes the feedback method (SRME, surface-related multiple elimination),
the sparse inversion method (EPSI, estimation of primary by sparse inversion), and the
inverse scattering series method (ISS) for surface-related multiple elimination; the common
focus point (CFP) method, the virtual event method, and the Marchenko method (MME,
Marchenko multiple elimination) are for internal multiple elimination.

SRME [5] is fully data-driven and has been successfully applied in field data. However,
this method requires that the seismic traces are full wavefield data using fixed-spread geom-
etry configuration. Particularly, field data always requires regularization. In addition, due
to the fact that the predicted surface-related multiples have the problem of mismatching
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at phase, amplitude, and travel time, it is necessary to use the adaptive matching subtrac-
tion algorithm to remove surface-related multiples in seismic data. EPSI [6–8] performs
primaries in seismic data through iterative inversion based on the inversion theory without
the steps of multiple prediction and adaptive matching subtraction in SRME. Thus, the
damage generated by adaptive matching subtraction to primary is avoided. However,
iterative implementation of EPSI in multiple elimination requires extensive computation;
meanwhile, unstable source wavelet estimation makes the application of the method more
challenging. ISS [9–11] can predict given-order internal multiples each time without prior
information of subsurface but the amount of computation is still massive, particularly for
3D seismic data. CFP [12] extrapolates seismic records to the subsurface interface and
predicts related internal multiples. This method requires velocity information to obtain
an accurate focusing operator. MME [13–16] is an internal multiple elimination method
developed in recent years, and the method has achieved excellent results in both synthetic
and field data [17]. However, the Marchenko method requires high-density seismic data of
regularly sampled and co-located sources and receivers [18]. High density indicates that
the best internal multiple elimination results will be obtained only when the receiver space
is small, particularly in complex geological regions. Therefore, it is difficult to be widely
applied in field data because of the large acquisition and computation costs.

As new technology in the research of machine learning algorithms emerges, deep
learning proposed by Hinton et al. [19] has been highly considered by both academia and
industry. Its motivation is to establish and simulate the neural network like a human
brain for analytical learning which has been pervasively used in speech recognition, image
recognition, natural language processing, CTR prediction, big data feature extraction, etc.
The deep learning method is fully data-driven and does not need to manually extract data
features for model building. It can represent attribute categories or features by combining
low-level features with generating more abstract high-level features to find effective features
of data and have a certain generalization ability.

In the past few years, deep learning has proven noteworthy achievements in several
applications, and has developed rapidly in the field of hydrocarbon exploration [20–26].
We call this intelligent exploration. In multiple elimination, Siahkoohi et al. [27] utilize the
shot records with and without surface-related multiples, obtained via EPSI or SRME, as
input-output training pairs of the convolutional neural network (CNN). The accuracy of
multiple elimination by the trained neural network considerably increases. Yu et al. [28]
utilize CNN architecture for random noise, linear noise, and surface-related multiple
elimination in seismic data and obtain favorable results in synthetic data. By applying
transfer learning, the trained neural network can successfully remove random noise and
linear noise in field data. Based on the deep learning technique, Qu et al. [29] reconstruct the
near offset of seismic data and then use the reconstructed data as the input for subsequent
surface-related multiple elimination. The neural network trained only by synthetic data
indicates satisfactory results in field data. Vrolijk and Blacquière [30] subsample all shot
records with and without receiver-ghost for training the convolutional neural network,
which can remove the source-ghost from the coarsely sampled common-receiver records.
Song et al. [31] eliminate surface-related multiples based on a deep neural network and
obtain satisfying results in synthetic data from industry.

On the basis of previous techniques, we present a multiple elimination method using
deep learning with a U-net proposed by Hinton and Salakhutdinov [32]. Ronneberger [33]
applied a U-net in medical image segmentation, which can be trained end-to-end from
very few images with a high speed. In this study, the trained neural network model is
applied to remove surface-related multiples and internal multiples, which can address the
problem of difficult elimination of global multiples. We choose the synthetic data with and
without surface-related multiples which are simulated using sigsbee2b model provided by
Society of Exploration Geophysicists (SEG). The shot records with and without internal
multiples are obtained via MME [34] using syncline model-simulated data. The field data
with and without multiples are obtained via the multiple suppression method based on
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iterative inversion [35]. In addition, for other new data sets, we can make the training data
set according to the specific seismic data characteristics and geological conditions. For
example, if seismic data belong to Marine Seismic Data with well-developed surface-related
multiples, we will choose SRME or Radon transform, etc., to eliminate multiples and obtain
training sets; if onshore seismic data includes mainly internal multiples, we can choose the
virtual events method or the multiple suppression method based on iterative inversion, etc.,
to eliminate multiples. Few synthetic records and field data are set as input-output training
pairs of the neural networks, respectively. The trained neural network can effectively
identify multiples and primaries, the former of which are subsequently removed in all
seismic data. In addition, the deep learning method avoids the regularization of seismic
data that most wave equation-based methods require for predicting multiples and reduces
the large amount of calculation, especially for field data.

The paper is organized as follows. After introduction, we briefly review the theory of
multiple elimination using deep learning. Then, we introduce the deep U-net architecture
and network training, followed by several synthetic experiments together with field data,
which validates the effectiveness of our approach. Finally, conclusions are drawn after
detailed analyses and discussion.

2. Theory
2.1. Multiple Elimination Using Network

Assuming that the preprocessed seismic records contain only primaries and multiples,
which can be expressed as:

P = P0 + M, (1)

where P denotes the total wavefield includeing primaries (P0) and multiples (M). The
objective of multiple elimination is to remove M from P, namely:

P0 = P−M. (2)

Traditional multiple elimination methods include two steps. First, multiples are
predicted using the model information. Then, due to the mismatch of phase, amplitude,
and travel time during the prediction process, the adaptive matching subtraction algorithm
is utilized to remove multiples in seismic data.

P0
′ = P− A( f )M′. (3)

where P0
′ represents the seismic records without multiples, M′ indicates predicted multiples

and A( f ) is adaptive filter which reduces the deviation between the predicted and actual
multiples. However, adaptive matching subtraction usually influences the integrity of
primaries. The multiple elimination method using deep learning can distinguish primaries
and multiples by combining low-level features and thus form more abstract high-level
features. Moreover, the method is fully data-driven, without artificially extracting data
features to the model construction process. As long as the training set is abundant enough,
the trained network will indicate strong generalization ability and can be widely used in
multiple elimination with few computation costs. Therefore, the deep learning method
is selected to eliminate multiples in this study; the method establishes the relationship
between P and P0 with the following formula:

P0
′′ = Network(P, η), (4)

where P0 ′′ stands for primaries obtained by neural network model learning. Network
describes the neural network architecture, equivalent to multiple filters. η represents neural
network parameters including the network layers L, the number of kernels K, the weight
matrix W, and bias b, etc. η is written as:

η = 〈 L, K, W, b, · · ·〉. (5)
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According to the above description, the objective function of the neural network can
be expressed as:

J = 1
N ∑

N

∣∣∣∣P0 − P′′0
∣∣∣∣

m

= 1
N ∑

N
||P0 − Network(P, η)||m

(6)

where ||.||m denotes the Lm norm, and N represents the number of training data pairs.
Through network training, we can obtain the reconstructed primaries.

2.2. Network Architecture

Although the convolutional neural network has been used for some time, its success is
limited by the size of available training sets and the network size. U-net uses only scarce
data for end-to-end training with a fast neural network speed and has been successfully
applied in the medical field [36], in which the limited amount of training data resembles
those of our case. Furthermore, some scholars have applied U-net in hydrocarbon explo-
ration. Vrolijk and Blacquiere [30] use U-net to remove source ghosting of coarsely sampled
common-receiver data. Zhang [37] utilizes U-net to image prestack reflection seismic data.
They all prove that U-net can alleviate the problem of few samples, describe the charac-
teristics before and after multiple elimination better, improve the calculation efficiency of
field data, and promote the development of industrial production. Experiments of various
network characteristics also confirm that U-net network can better eliminate multiples. For
example, compared with DDA (Deep Denoising Autoencoder) [38], on the same situation,
the prediction accuracy of U-net is always higher. This study defines convolutional neural
network model of U-net type with convolutional encoders and convolutional decoders
based on TensorFlow deep learning framework [39] to eliminate surface-related multiples
and internal multiples.

Figure 1 presents the deep U-net architecture that is composed of encoder and decoder
connected by a bridge. The depth of network is 4. The encoder consists of two convolution
layers: a max pooling layer (downsample), and dropout for special extraction of seismic
data information. The decoder also consists of two convolution layers: one transposed
convolutional layer (upsample), and a dropout, which maps the low dimensional data
contained in the primary to the high-dimensional space and reconstructs the primary. Each
of the convolution layers and transposed convolutional layers is followed by exponential
linear units (ELU). The bridge is similar to encoders except for the max pooling layer
and dropout.

Figure 1. Sketch of a deep U-net architecture.

Activation function plays an essential role in artificial neural network model learning
and the understanding of complex and nonlinear functions. Since rectified linear unit
(ReLU) activation function was proposed by Alex et al. [40], it has been widely used due
to its ability to sparsely activate neurons. The exponential linear unit (ELU) activation
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function [41] possesses all the advantages of ReLU (Figure 2a). The negative part of ELU
can make itself more robust when the input changes or there is noise in the input data. It
can also accelerate the convergence speed and remove the dead zone of ReLU. The sparse
model realized by ELU can better extract relevant features and fit our training data. Thus,
we choose the ELU for network model training to handle the seismic data properly, and it
can be formulated as:

ELU(x) =

{
x,

a(ex − 1),
x ≥ 0
x < 0

. (7)

where x is the real primary P0, and α is a constant.

Figure 2. Activation functions (a) and Loss functions (b). For (a), f (x) is ELU(x) or ReLU(x); for
(b) f (x) is L1(x), L2(x) or SmoothL1(x).

2.3. Network Training

In this study, neural network training adopts the supervised learning method. The
training set of supervised learning requires input and output, namely, features and objec-
tives. An optimal network model is obtained by training the existing sample, followed
by the process of mapping other unknown input data into corresponding outputs for
prediction. Subsequently, we prepare the training data set and choose the appropriate loss
function and optimization algorithm to obtain the optimal network model.

The data with and without surface-related multiples or internal multiples are input as
labeled training sets for network training. It is worth noting that to increase the convergent
speed of the network model training, the input data set is required to be normalized,
particularly for field data. Since the ELU activation function is selected for the neural network,
the amplitude of data set is normalized to [–1, 1], and the calculation formula is as follows:

xnormal =
x

max|x| , (8)

where x is the data set, xnormal is the normalized value, max|x| is the global maximum
absolute amplitude of the data set.

The loss function is a non-negative real value function which is used to estimate the
inconsistency between labeled data and predicted data. Popular loss functions include
mean square error (MSE, L2), mean absolute error (MAE, L1), and smooth L1 loss function
(Figure 2b). When the regression targets are unbounded, training with L2 loss can require
careful tuning of learning rates to avoid exploding gradients. Smooth L1 loss function
eliminates this sensitivity [42]. In addition, it possesses all the advantages of the L1 loss
function with a faster converge speed and the gradient change is relatively small. We use
smooth L1 loss function to calculate Equation (6) for network training, as presented in
Equation (9) below.

SmoothL1(x) =

{
0.5x2

|x|−0.5
i f |x|< 1
otherwise

. (9)



Energies 2022, 15, 3883 6 of 21

where x = P0 − P′′0 is the difference between the real primary P0 and the predicted
primary P0 ′′ .

In network training, the ADAM (Adaptive Moment Estimation) optimizer [43] is
selected to update each parameter by iteration with a learning rate starting at 10−3. It
is suitable for solving optimization problems with large-scale data and parameters, in
addition to problems including strong noise or sparse gradients, particularly for field data.
In addition, in the initialization phase, we give each network connection weight a small
random number and initialize bias of each neuron with a random number [44]. The number
of filters for the model are tested in Figure 3 (take Sigsbee2B model for example). It is
difficult to understand from the charts which model indicates the best quality. Therefore,
we calculate the standard error of the test data (Table 1). We can observe that the best
quality presents a model with the following parameters: the initial number of filters is
32 and the number of U-net blocks is 5. The number of filters is increased by twice with
downsampling and decreased by twice with upsampling.

Figure 3. Selected parameters (the number of filters) for U-net architecture.

Table 1. The standard error of the test data.

Number of Filters Standard Error

Filters_[32, 64, 128, 256, 512] 0.012465
Filters_[8, 16, 32, 64, 128] 0.013284

Filters_[16, 16, 32, 32, 64, 64, 128, 128, 256, 256] 0.014788
Filters_[32, 64, 128] 0.015832

Filters_[16, 32, 64, 128, 256] 0.016310
Filters_[16, 32, 64] 0.016393

Filters_[32, 32, 64, 64, 128, 128, 256, 256, 521, 512] 0.021159
Filters_[8, 16, 32] 0.026624

Filters_[8, 8, 16, 16, 32, 32, 64, 64, 128, 128] 0.031513

3. Experiments

In this section, we use a Sigsbee2B model with and without synthetic surface-related
multiples, a synclinal model with and without synthetic internal multiples, and field data
with and without multiples to validate the effectiveness of the proposed method.

3.1. Sigsbee2B Model Data Example

Firstly, the sigsbee2b model synthetic data is used to train and test the network of the
elimination of surface-related multiples. The test of surface-related multiples is provided
by SEG with a finite-difference scheme using the sigsbee2b velocity model from Figure 4.
The velocity model size is 80,000 ft × 30,000 ft, grid size is 25 ft × 25 ft, dominant frequency
is 20 Hz, and the maximum frequency is 40 Hz. Sources and receivers are distributed 25 ft
below water surface. There are 500 shot records with a spacing of 150 ft and 348 traces
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per shot record with a lateral interval of 75 ft. The time sampling interval is 8 ms and the
seismic reflection record is 12 s. The direct wave has been removed.

Figure 4. Sigsbee2B velocity model.

In neural network training, considering the calculation efficiency and adjacent data
similarity in seismic data, 20 pairs of shot records are selected with intervals equal to the
training set, and other part of shot records are used for the test set. The convolution kernel
length of the network convolution layer is 5 and the stride is 2. We choose “padding same”
for filling to ensure that the input dimension and output dimension of the convolution
layer are consistent. The length of maximum pool is 2 and the pool_strides is 2. Batchsize
is 32 for one training. Each downsampling and upsampling layer inactivates neurons with
a probability of 5% (dropout_rate = 0.05) to prevent overfitting in the training process,
improving the generalization ability of the deep neural network. Training time per one
batch of size 32 traces is 0.25 s, all training time with batch size 32 is 3:49:45 h. When
the neural network is well trained, it only takes an average of 2:14 min to calculate all
shot records. Figure 5 presents one pair of shot records with and without surface-related
multiples in the training set. Surface-related multiples are mainly developed in the position
as indicated by the red arrow and red box. Figure 6 displays the loss function for training
the network model using the training data sets. Shot records with surface-related multiple
elimination using deep learning are illustrated in Figure 7. Figure 7a–c respectively present
the 10th, 150th, and 310th shot records with surface-related multiples, which are distributed
in different positions of the model for better reflection of the training network quality.
Figure 7d–f present the 10th, 150th, and 310th shot records without surface-related multiples.
Figure 7g–i present the 10th, 150th, and 310th shot records with surface-related multiple
elimination using deep learning, respectively. Figure 7j–l display the difference between
label data and multiple elimination results using the trained network. Zero-offset data
with surface-related multiples, zero-offset data after the elimination of surface-related
multiples using deep learning, and zero-offset data without surface-related multiples are
displayed in Figure 8a,b,d, respectively. In Figure 8, the differences between a and b,
d and b are displayed in c and e, respectively. Figure 9 presents the comparison of the
37th trace from Figure 7a,d,g. The black line is generated from the original shot record
depicted in Figure 7a, the red line comes from the shot record without multiples presented
in Figure 7d, the blue dashed line is obtained from the shot record with surface-related
multiple elimination presented in Figure 7g, and the green line is the difference between
label data and results. It can be observed from Figures 7j–l and 8e that the residual between
the data after surface-related multiple elimination using trained network and label data
is tiny. The blue dashed line and the red line are generally consistent with each other.
The average correlation of the test set exceeds 96.62% when the number of epochs is 250,
suggesting a strong ability of surface-related multiple elimination.
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Figure 5. Partial training data set pairs. (a) Input shot record with primaries and surface-related
multiples. (b) Input shot data without surface-related multiples.

Figure 6. The loss function for training the network model using the training data sets in the Sigsbee2B
model data.

Figure 7. Cont.
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Figure 7. Shot record with surface-related multiple elimination using deep learning. (a) The 10th shot
record with surface-related multiples. (b) The 150th shot record with surface-related multiples. (c) The
310th shot record with surface-related multiples. (d) The 10th shot record without surface-related
multiples. (e) The 150th shot record without surface-related multiples. (f) 310th shot record without
surface-related multiples. (g) The 10th shot record without surface-related multiple elimination using
deep learning. (h) The 150th shot record without surface-related multiple elimination using deep
learning. (i) The 310th shot record without surface-related multiple elimination using deep learning.
(j) The difference between (d) and (g). (k) The difference between (e) and (h). (l) The difference
between (f) and (i).
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Figure 8. Zero-offset data with surface-related multiple elimination using deep learning. (a) Original
zero-offset data with surface-related multiples. (b) Result after using deep learning. (c) The predicted
internal multiples (the difference between (a) and (b)). (d) Original zero-offset data without surface-
related multiples. (e) The difference between (b) and (d).

Figure 9. A comparison of 37th traces from Figure 7a,d,g.
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3.2. Data Example of the Synclinal Model

Figure 10 exhibits the synclinal velocity model that includes a syncline structure with
inclined interface and thin interbedding. We compute the synthetic data with a finite-
difference time-domain modeling code for 601 shot records that each contain 601 traces.
The source and receiver space is 10 m, the time sampling interval is 0.004 s, the time sample
per trace is 650, and the ricker wavelet is produced by an explosive source with a central
frequency of 25 Hz. In addition, we use absorbing boundaries on all sides to test the
internal multiple elimination by the deep neural network model. The direct waves have
been removed. Figure 11a displays 260th the shot records in which internal multiples are
clearly observed; particularly in the red box, these multiples strongly interfere with the
identification of primaries. In this part, the Marchenko method is used to eliminate internal
multiples, and then simple energy matching is conducted between the reconstructed
primaries and original data to obtain label data without internal multiples, as presented
in Figure 11b. As a result, a total of thirty pairs of shot records are selected as the training
set with equal intervals, while others are used as test sets. We input 30 pairs of data with
internal multiples and label data without internal multiples into the network to obtain
the network model for internal multiple elimination. The network configuration is the
same as that utilized in the previous tests. Figure 12 displays loss function for training the
network model using the training data sets. Once the neural network has been trained, it
only takes an average of 3:02 min to calculate the whole synclinal model data, indicating a
high calculation efficiency.

Figure 13 represents shot records after internal multiple elimination using deep learn-
ing. Similar to the description of sigsbee2B model data, we choose the 10th, 300th, and
590th shot records with internal multiples of the synclinal model, which are displayed in
Figure 13a–c, respectively. Figure 13d–f present the label data without internal multiples
obtained by the Marchenko multiple elimination method. Figure 13g–i present the 10th,
300th, and 590th shot records with internal multiples eliminated using the trained network,
respectively. Figure 13j–l present the difference between the label data and multiple elimina-
tion results using the trained network, which only accounts for a small amount of residual
energy. Zero-offset data with primaries and internal multiples, zero-offset data with inter-
nal multiple elimination using deep learning, and zero-offset label data without internal
multiples are displayed in Figure 14a,b,d, respectively. Figure 14c displays the difference
between Figure 14a,b, while Figure 14e presents the difference between Figure 14b,d. It
is prominent that in Figures 13j–l and 14e, the residual between the label data and data
with internal multiple elimination using deep learning is negligible. In addition, a highly
similar distribution of signal trace amplitude between the label data and seismic data after
the elimination of internal multiples is displayed in Figure 15. The average correlation of
the test set exceeds 98.87% when the number of epochs is 250, suggesting a good ability of
internal multiple elimination.
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Figure 10. Syncline velocity model.

Figure 11. Partially training data set pairs. (a) Input shot record with primaries and internal multiples.
(b) Input shot data without internal multiples.

Figure 12. The loss function for training the network model using the training data sets in the
Syncline model data.



Energies 2022, 15, 3883 13 of 21

Figure 13. Cont.
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Figure 13. Shot record with internal multiple elimination using deep learning. (a) The 10th shot
record with internal multiples. (b) The 300th shot record with internal multiples. (c) The 590th shot
record with internal multiples. (d) The 10th shot record without internal multiples. (e) 300th shot
record without internal multiples. (f) The 590th shot record without internal multiples. (g) The 10th
shot record with internal multiple elimination using deep learning. (h) The 300th shot record with
internal multiple elimination using deep learning. (i) The 590th shot record with internal multiple
elimination using deep learning. (j) The difference between (d) and (g). (k)The difference between
(e) and (h). (l) The difference between (f) and (i).

Figure 14. Zero-offset data with internal multiple elimination using deep learning. (a) Original
zero-offset data with internal multiples. (b) Result after using deep learning. (c) The predicted
internal multiples (the difference between ((a) and (b)). (d) Original zero-offset data without internal
multiples. (e) The difference between (b) and (d).
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Figure 15. A comparison of 300th traces from Figure 13b,e,h.

3.3. Field Data Example

We extract a 2D seismic line which is 72 shot records each containing 72 traces from
3D seismic data to better illustrate the practicability of the multiple elimination method
using deep learning. The shot records without multiples are obtained via the multiple
suppression method based on inversion as lab data. The sampling interval of sources and
receivers is 50 m, the time samples per trace is 626 and the time sampling interval is 0.004 s.
We select 20 shot records as the training set in field data for network training in Figure 16,
and other shot records are used as the test set. Multiples are eliminated as indicated by the
red arrows. The network configuration is the same as the previous one, with 400 epochs.
Figure 17 displays loss function for the network model training using the training data sets.
Figure 18a illustrates the shot record with multiples and Figure 18d depicts the shot record
without multiples. Figure 18b presents the shot record with multiple elimination using
deep learning. Figure 18c presents the difference between Figure 18a,b. Figure 18e presents
that the residual between seismic data after multiple elimination using the trained network
and the label data is small, the average correlation of the test set is greater than 93.58%.
Figure 19 sketches attribute analysis with multiple elimination using deep learning. Root
mean square frequency analysis and Root mean square amplitude analysis of seismic data
that multiple eliminated using deep learning in Figure 18b,d are presented in Figure 19a,b,
respectively. The difference of root mean square frequency and root mean square amplitude
between lab and predicted data is extremely small, suggesting the trained network can
eliminate multiples in field data effectively with high coincidence. In addition, to test the
generalization ability of the network better, we choose another shot record that is far away
from the range of the 72 shot records for multiple elimination, the result are shown in
Figure 20.
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Figure 16. Partial training data set pairs. (a) Input shot record with primaries and multiples. (b) Input
shot record without multiples.

Figure 17. The loss function for training the network model using the training data sets in the
field data.



Energies 2022, 15, 3883 17 of 21

Figure 18. Shot record with multiple elimination using deep learning. (a) Shot record with multiples.
(b) Shot record with multiple elimination using deep learning. (c) The predicted multiples (the
difference between ((a) and b)). (d) Shot record without multiples. (e) The difference between (b) and (d).

Figure 19. Attribute analysis with multiple elimination using deep learning. (a) Root mean square
frequency analysis of seismic data with multiple elimination using deep learning in Figure 18b,d.
(b) Root mean square amplitude analysis of seismic data with multiple elimination using deep
learning in Figure 18b,d.
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Figure 20. Shot record with multiple elimination using deep learning. (a) Shot record with multiples.
(b) Shot record with multiple elimination using deep learning. (c) The predicted multiples (the
difference between ((a) and (b)). (d) Shot record without multiples. (e) The difference between
(b) and (d).

4. Discussion

In the data test part, the method is verified using two sets of synthetic data and one
set of field data. Sigsbee2B model data mainly include surface-related multiples, synclinal
model data mainly include internal multiples, and field data include both surface-related
multiples and internal multiples. Compared with surface-related multiples in marine
data, the energy of internal multiples on land is weaker but internal multiples always
generate a hazy and occasionally strong interference pattern [45]. The NMO difference
between internal multiples and primaries is also smaller [46], leading to more difficulties
in eliminating internal multiples in Figure 13. We train the neural network according
to the characteristics of two model data to ensure that excellent results can be achieved
in surface-related multiple and internal multiple elimination using deep learning. Two
different neural network models are obtained to eliminate surface-related multiples and
internal multiples. In field data examples, surface-related multiples and internal multiples
are eliminated to obtain label data. Therefore, the neural network trained with field data
can eliminate surface-related multiples and internal multiples simultaneously.
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Based on the neural network framework, it is essential to collect a large number of
representative labeled data to obtain a good neural network. When the training set is too
small or unrepresentative, the neural network model cannot capture the data characteristics
in the learning process, resulting in poor generalization ability of the neural network model.
For example, when testing sigsbee2B model data and synclinal model data, if we only
choose the first 10 shot records of each model for neural network model training, the
highest average correlation of test set results can only reach 90%. However, if shot records
are chosen from sigsbee2B model data and synclinal model data which are 20 and 30 pairs
of shots respectively for network training, the average correlation of each test set results
can reach over 96%.

Field data are characterized by more intricacies compared to synthetic data. Field data
often have the problems of absorption attenuation, anisotropy, irregular random scattering,
and noise band limit. Moreover, the corresponding source wavelet is spatially variable,
making the multiple elimination using neural networks more challenging. If field data
are directly placed into the trained neural network model which uses synthetic data, the
correlation between the prediction results and field data is extremely low, reaching 45%;
such a low correlation cannot effectively eliminate multiples. Therefore, the corresponding
neural network model needs to be retrained with field data. In the test part of field data,
we choose 20 shot records as the training set in field data. The average correlation of each
test set reaches more than 93%, suggesting excellent practicability of the network.

It is worth noting that we choose another shot record that is far away from the range of
the 72 shot records for multiple elimination to test the generalization ability of the field data
training network model and the correlation of test results reaches 87% (see Figure 20). Such
results undoubtedly provide us more confidence in the network model for training larger
datasets. It illustrates that if a small number of datasets that can reflect the characteristics of
the seismic work area are selected for network model training, the purpose of eliminating
multiples in the entire seismic area can be achieved. Our computer configuration is GPU
4*NVIDIA RTX2080TI 11G for the Sigsbee2B velocity model; training time per one batch
of size 32 traces is 0.25 s, full model (20 pairs of shot records) training time with batch
size 32 is 3:49:45 h, and all seismic data prediction time with batch size 348 is 2:14 min.
Under the same influencing factors, SRME usually takes 25:47 min to predict and 37:42:33
h to subtract all Sigsbee2B seismic data. The adaptive subtraction method is l1/l2 method.
Compared with SRME, the prediction time of the trained network model can be ignored.
If the training set preparation time is not considered, the sum of full model training time
and prediction time is also less than SRME. Therefore, using the trained network model
to eliminate multiples, the calculation efficiency will be greatly improved, particularly
for massive 3D seismic data. Moreover, in an ideal state, the trained network can also
be applied to multiple elimination in other seismic areas directly or through the transfer
learning method [47,48].

5. Conclusions

The multiple elimination method using deep learning adopted in this paper is com-
pletely data-driven without any prior information. The only requirement of the method is
to input few seismic data with and without multiples for neural network training, then it
applies the trained neural network to other seismic data to remove multiples. The test of
synthetic data and field data indicates that the trained network can effectively distinguish
primaries and multiples in seismic data, produce seismic data without multiples success-
fully, and the residual energy of multiples is very small. In addition, compared with the
traditional multiple elimination methods, the prediction time of the trained network model
can be ignored, which proving that the trained network has generalization ability and high
calculation efficiency. It can be used in large-scale seismic data computation, particularly
for massive 3D seismic data. However, the network architecture cannot completely solve
the problem of fewer training samples. Therefore, we can study semi-supervised learning
to better solve practical problems in the next step.
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