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Abstract: This paper analyzes the electromagnetic torque (EMT) fluctuation characteristics in syn-
chronous generators under rotor interturn short-circuit (DRISC) fault. The novelty of this paper
is that the DRISC fault is proposed based on the intermittent interturn short circuit existing in the
actual operation and compared with the static rotor interturn short-circuit (SRISC) fault. In the
work, by studying the influence of DRISC with different positions and different short-circuit degrees,
the fluctuation characteristic of the EMT is analyzed and verified. The results show that when the
DRISC5% fails, the location is in slot 3, the amplitude of first harmonic decreases by 7.2%, second
harmonic amplitude increases by 33.4%, third harmonic decreases by 4.3%, and fourth harmonic
increases by 26.8%. As the degree increased and positioned away from the large tooth of the DRISC,
the overall EMT amplitude and reverse pulse increased, first and third harmonics decreased, and
second and fourth harmonics increased.

Keywords: synchronous generator; dynamic rotor interturn short circuit (DRISC); electromagnetic
torque (EMT); magneto-motive force (MMF); harmonic component

1. Introduction

Rotor interturn short circuit (RISC) is a common fault, and can usually be divided
into dynamic rotor interturn short circuit (DRISC) and static rotor interturn short circuit
(SRISC). This kind of fault is usually due to the small radius, and the external insulation
part will be broken and cause a short circuit. On the other hand, in the operation of the
generator, the high temperature makes the rotor winding expand, causing deformation and
displacement. Meanwhile, the generator vibration will lead to insulation damage. Further,
the rotor short-circuit failure occurs [1–3].

At present, the domestic and foreign RISC diagnosis method is mainly based on
electrical and mechanical parameters. Electrical parameters include stator voltage, stator
current [4–6], and parallel branch circulation characteristics [7–9]. The mechanical pa-
rameters include unbalanced magnetic tension, stator core vibration, winding vibration
characteristics, electromagnetic torque, etc. [10,11].

In terms of the electrical characteristics, Huang et al.’s study concluded that when RISC
appears, it will reduce the excitation current, resulting in reactive power [12]. D’Angelo
proposed a simulation model of a generator rotor winding detection system, which is a
mathematical model established by using the divine network MLP to study the operating
power of generator set when RISC appears [13]. Junqing Li et al. analyzed the mathematical
expressions of the magnetic momentum and current under RISC conditions and presented
the relationship between different harmonic changes of the stator branch current and the
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RISC short-circuit position [14]. In [15,16], the stator current and circulation characteristics
of the composite failure of the generator are analyzed, and the stator voltage RMS decreases
when the RISC occurs. Hao et al. used the multi-loop theorem to obtain an expression
for the current of each loop. Both the experiment and simulation met the theoretical
analysis, and therefore a method of online fault monitoring using a multi-loop current was
obtained [6]. Mazzoletti et al. calculated the stator current difference, obtained the fault
correspondence of the residual current vector, and realized the fault diagnosis of RISC for
the permanent magnet generator [17].

According to the mechanical characteristics, Albright, D. R. measured the change rate
of the air-gap flux density of the rotor by a fixed search coil, which can obtain the short-
circuit position more sensitively [18]. In [15], the expression of the unbalanced magnetic
pull is obtained by the analysis of the magnetic flux density. Through simulation and ex-
perimental verification, the unbalanced magnetic tension makes the generator rotor vibrate
at the base frequency under the RISC condition. When RISC occurs, the influence of elec-
tromagnetic torque on motor vibration is more obvious. By analyzing the electromagnetic
torque under the composite fault of rotor short circuit and eccentric, it was concluded that
the generator rotor vibrates at three times the frequency, and the vibration intensifies with
the deepening of the fault [16]. Hao used the virtual displacement method to analyze the
steady-state harmonic characteristics after EMT failure, and concluded that RISC produces
AC pulsation components, which are closely related to the stator winding structure [3].
Hang, J detected the positions of the interturn fault based on the amplitude and initial phase
angle of the zero-order voltage component (ZSVC), and proposed a method to directly
diagnose the interturn fault by directly collecting the electromagnetic torque [19].

The above literature establishes the basis for the diagnosis of RISC, but rarely studies
DRISC. As an improvement, this paper presents a comprehensive study on the EMT
fluctuating properties via the new DRISC model with different degrees and positions in
synchronous generators. On the basis of comparative studies, variable differences between
SRISC and DRISC are further obtained.

2. Analysis Model of DRISC

When the rotor short circuit occurs, the effective turns of the rotor winding decrease,
which will affect the decrease of the air-gap magnetic potential. The excitation current in
the rotor winding no longer circulates through the fault site and creates a new loop. There
will be a reverse current in this loop to create a reverse magnetic potential.

The DRISC from rotor insulation damage over time is investigated by analyzing fault
schematics and simplified models, see Figure 1.
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occurs in the form of a pulse signal. Moreover, in the late stage of short-circuit fault, the 
insulation is seriously damaged, and the exposed line is completely touching. Meanwhile, 

Figure 1. (a) Fault schematic diagram, (b) simplified model.

At the initial stage of short-circuit failure in the generator, intermittent contact occurs
at the coil insulation damage. Therefore, in a steady-state excitation circuit, a new circuit
occurs in the form of a pulse signal. Moreover, in the late stage of short-circuit fault, the
insulation is seriously damaged, and the exposed line is completely touching. Meanwhile,
a reverse loop occurs in the excitation circuit, and the reverse signal appears in the form of
a step, such as:
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step
{

0 · · · · · · t < 0
R0 · · · · · · t ≥ 0

pulse
{

0 · · · · · · t < 0, t > ε
H
ε · · · · · · 0 ≤ t ≤ ε

(1)

The response of the pulse and step signals to a stable system is shown in Figure 2.
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Figure 2. Signal response map.

It is known that the rotor dynamic short circuit is a transient short-circuit process,
which can be equivalent to the reverse pulse current generated by the short circuit, resulting
in the addition of a reverse pulse magnetic potential based on the original magnetic
potential. The static short circuit can be understood as a reverse magnetic potential in
generating a step, as shown in Figure 3.
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In DRISC, T is the fault cycle, k is the duty cycle of the short circuit, and h is the peak
generated by the short circuit. When the short circuit starts and ends, the h pulse is infinite.

According to the Gaussian magnetic flux theorem, the reverse magnetic potential
generated by the reverse current is:

Fd(θr) =

{
− I f nm(2π−αr)

2π · · · · · · · · · β′ ≤ θr ≤ β′ + αr
I f nmαr

2π · · · · · · · · · · · · · · · · · · θr < β′, θr > β′ + αr
(2)

In (2), Fd is the reverse MMF, If is the excitation current, nm is the number of short-
circuit turns, θr is the circumferential angle of the rotor surface, β’ is the starting angle of
the groove, where the interturn short circuit occurs, and αr is the angle of the two grooves,
and the angle where the short circuit turns are located.

For a better understanding, the schematic DRISC and the rotor magnetic potential
vector diagram are displayed in Figure 4.
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In Figure 4, Fr is the normal base principal magnetic potential, Fs is the normal
armature reaction magnetic potential, and Fc is the synthetic magnetic potential for the
composite magnetic potential of the gap base wave. Eo is the empty load potential, I is the
positive phase current, and ψ is the internal power angle of the generator. In Figure 4c, the
sub-angle marked 1 indicates the parameters after the interturn rotor.

2.1. Impact of DRISC on MFF

The reverse magnetic potential may be expanded by a Fourier series as:

Fd(θr) = A0 +
∞
∑

n=1
[An cos(nθr) + Bn sin(nθr)]

A0 = 1
2π

∫ 2π
0 Fd(θr)dθr = 0

An = 1
π

∫ 2π
0 Fd(θr) cos(nθr)dθr = −

I f nm [sin(n(αr+β′))−sin(nβ′)]
nπ

Bn = 1
π

∫ 2π
0 Fd(θr) sin(nθr)dθr =

I f nm [cos(n(αr+β′))+cos(nβ′)]
nπ

(3)

Moreover, Fd can be represented as:
Fd(θr) =

∞
∑

n=1
Fdn cos(nθr − φ) =

∞
∑

n=1
Fdn cos(nωt− φn)

Fdn =
√

A2
n + B2

n =

√
2I f nm
nπ

√
1− cos(nαr) =

2I f nm
nπ sin nαr

2
φn = arctan Bn

An
= cos[n(αr+β)]−cos(nβ)

sin(nβ)−sin[n(αr+β)]

(4)

In order to simplify the calculation model, the higher harmonics can be ignored, and
only the cases when n = 1 (indicating odd harmonic) and n = 2 (representing even harmonic)
are considered. After the DRISC, the air-gap magnetic potential of the generator is as shown
in Figure 4c. Fd1 and Fd2 are the base amplitude and second harmonic amplitude of the
reverse magnetic potential after the DRISC. Therefore, the magnetic potential after the
DRISC can be expressed as:

f (αm, t) =



Fs cos
(
ωt− αm − ψ− π

2
)
+ Fr cos(ωt− αm)

= Fc cos(ωt− αm − γ1) · · · · · · · · · · · · · · · · · · · · ·Normal
Fs1 cos

(
ωt− αm − ψ− π

2
)
+ (Fr − Fd1) cos(ωt− αm)

−Fd2 cos 2(ωt− αm − φ2)
= Fc1 cos(ωt− αm − γ2)− Fd2 cos 2(ωt− αm − φ2) · · · SRISC

Fc cos(ωt− pαm) · · · · · · (i− 1)T < t < (i− 1 + k)T
∆h1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · t = (i− 1 + k)T

Fc1 cos(ωt− pαm)− Fd2 cos 2(ωt− pαm)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (i− 1 + k)T < t < iT

∆h2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · t = iT

· · ·DRISC

(5)
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It can be seen that when DRISC occurs in the generator, the even harmonic component
increases. In the DRISC cycle, during the short circuit and normal state switch, the RMS of
the magnetic potential should be between normal and SRISC (SRISC can be considered a
special case of DRISC with a duty cycle of 1). Due to the DRISC period of the normal state,
the fluctuation of the magnetic potential amplitude will change accordingly.

2.2. Impact of DRISC on MFD

When DRISC occurs, the magnetic tension per unit area remains unchanged, and the
magnetic flux density is:

B(αm, t) =



Fc cos(ωt− pαm)Λ0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·Normal
[Fc1 cos(ωt− pαm)− Fd2 cos 2(ωt− pαm)]Λ0 · · · · · · · · · · · · · · · · · · · · · SRISC

Fc cos(nωt− pαm)Λ0 · · · · · · · · · · · · · · · · · · · · · · · · (i− 1)T < t < (i− 1 + k)T
∆h1Λ0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · t = (i− 1 + k)T
[Fc1 cos(ωt− pαm)− Fd2 cos 2(ωt− pαm)]Λ0 · · · (i− 1 + k)T < t < iT
∆h2Λ0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · t = iT

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·DRISC

(6)

Combined with the previous analysis, the B amplitude of the DRISC of the rotor
can be seen from (6). In addition to the original odd harmonic component, the harmonic
component also increases. With the increase of the short circuit, the amplitude of the original
odd subharmonic decreases, and the amplitude of the newly generated even subharmonic
increases. There is a pulse at the short-circuit and normal state transition moments, and the
overall magnetic density amplitude of DRISC is between normal and SRISC.

As mentioned above, both location and degree will affect the change of the air-gap
magnetic density, so the influence on the air-gap magnetic density can be obtained by
Formula (7): 

Fd1 =
2I f
π nm sin αr

2 =
2I f N

π
nm
N sin αr

2 = 0.637FrPs sin αr
2

Fd2 =
I f
π nm sin αr =

I f N
π

nm
N sin αr = 0.3185FrPs sin αr

Ps =
nm
N

(7)

where Ps is the percentage of short circuit (the ratio of short circuit turns, nm, to the total
turns, N), which can be obtained from Formula (7). As the degree of RISC increases, both
Fd1 and Fd2 will increase. When the short circuit is away from the large tooth, Fd1 increases,
and Fd2 increases first and then decreases.

2.3. Impact of DRISC on EMT

According to the virtual displacement principle, the EMT studied here can be ex-
pressed as:  T = p ∂W

∂ψ

W =
∫

v
[B(αm ,t)]2

2µ0
dv

(8)

The EMT depends on the square of the MFD. Qualitatively, the trend of EMT should
be consistent with MFD, and the trend of the squared operation will be more obvious.
Consequently: (1) The appearance of DRISC will reduce the RMS value of EMT, and with
the increase of the degree of DRISC, the RMS value of EMT is smaller. (2) The DRISC
position also affects the electromagnetic torque, while the farther the DRISC is from the
large tooth, the smaller the EMT will be. (3) The appearance of DRISC will bring additional
odd harmonics in the electromagnetic torque, because even harmonics are newly produced
in MFD, and normally only even harmonics (usually only odd harmonics in MFD, because
the DC excitation current can only produce odd harmonics, and the square of MFD only
contains even harmonics). The DC component and even harmonics decrease, while the odd
harmonics increase. (4) The time domain curve of EMT will be affected by the influence of
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the dynamic short-circuit pulse. (5) Under the same position and degree, the SRISC fault
has more of an effect on the RMS of EMT than DRISC.

3. FEA and Experimental Validation

In this paper, the CS-5 hidden pole synchronous generator is studied. The finite
element calculation and the experimental verification were conducted on the dynamic and
static rotor. Parameters are listed in Table 1.

Table 1. Parameters of the CS-5 prototype generator.

Parameters Values Parameters Values

rated power 5 kW stator core length 130 mm
pole-pairs 1 stator coil turns per slot 22

Power factor (cosϕ) 0.8 rotor slots 16
radial air-gap length 1.2 mm rotor core outer diameter 142.6 mm

stator slots 36 rotor core inner diameter 40 mm
stator outer diameter 250.5 mm rotor coil turns per slot 60
stator inner diameter 145 mm Internal power factor (cosψ) 0.62

On the generator, there is a plate with different short-circuit taps. By connecting
different taps, varied short-circuit degrees and positions can be simulated, respectively.
The tap settings are indicated in Figure 5a. During the experiment, four group tests were
performed: (1) common condition without RISC, (2) 5% RISC in slot 1 (L1–L2), (3) 10% RISC
in slot 1 (L1–L3), and (4) 10% RISC in slot 2 (L2–L4). Tests (1)–(3) formed a comparison
for different short-circuit positions, while (3) and (4) were employed for varied short-
circuit degrees.

This prototype generator was specifically designed and manufactured by us, and is
able to simulate RISC. This paper establishes the FEA model in ANSYS Maxwell according
to the CS-5 hidden pole synchronous generator design parameters, and verifies the stability
and convergence of the model through previous calculations.

For vividly simulated failures in the experiment, we treated the photoelectric coupler
in the DC solid-state relay as a short-circuit coil. When the photoelectric coupler moves, the
short-circuit fault starts. Otherwise, the short-circuit fault ends. For a schematic diagram of
the DC solid-state relay, see Figure 5d. During the experiment, the start of the DC solid-state
relay was controlled by the PWM. Moreover, the corresponding short-circuit taps were
connected by the DC solid-state relay to realize DRISC. In this study, square-wave pulses
with a 20 ms period and a forward voltage duty cycle of 15% were generated using PWM.
When the square-wave voltage exceeds the DC solid-state relay trigger threshold, the above
method can realize the high-frequency DRISC simulation of the generator.

To match of finite element analysis and the experimental settings, the physical model
in finite elements was coupled to an external circuit. The external coupling circuit of the
generator excitation winding and the armature winding is shown in Figure 5e. S_A1 is
a short-circuit trigger switch, setting the trigger voltage interval [Von, Voff] to control the
short-circuit switch with the pulse voltage source. The dynamic and static rotor interturn
short-circuit model can be realized. The pulse time setting of the DRISC is shown in
Figure 5c.

To reasonably simulate the short-circuit behavior, the section of the short-circuit
winding bar was divided into two components in the 3D model. One is to represent the
short-circuit part, and the other is to represent the normal part (see Figure 5b). The short-
circuit degree was set by changing the short-circuit turn-numbers of the slot as well as the
values of Rf and Rw (see Figure 5e). During simulation, the band rotation was 3000 rpm,
the start time was 0 s, the termination time was 0.2 s, and the step size was 0.0002 s.
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During the finite element analysis, the external circuit contains parameters such as
normal and short-circuit winding and changes the resistance values of the corresponding
resistors Rw and Rf. Different degrees of fault simulation can be achieved. In Figure 5c, Td
is the delay time, Tr is the rise time, Tf is the fall time, Pw is the pulse width, the DRISC
cycle corresponds to the pulse cycle, and Von is the control switch of the voltage trigger
voltage. When the voltage value of the pulse voltage source is greater than Von, the switch
S_A1 acts and the excitation circuit is a short circuit. Voff represents the blocking voltage of
the voltage control switch. When the voltage value of the pulse voltage source is less than
Voff, the switch S_A1 is turned off and the excitation circuit is normal. Both the duty cycle
of the short-circuit portion and the DRISC frequency can be changed by adjusting the Pw
and the period. The short-circuit portion produced an external circuit of the DRISC with a
period of 20 ms (15% duty cycle) under the same settings used in the experiment.

In the experiment, DRISC simulation with different degrees and at different positions
can be realized by short-connecting short-circuit taps to different degrees. In the finite
element simulation, it corresponds to the experiment by changing the finite element model
and the external coupled circuit parameters.



Energies 2022, 15, 3821 8 of 11

The fault types described in this paper are shown in Table 2. This paper analyzed the
harmonic growth ratio on the basis of the normal harmonic amplitude value.

Table 2. Abbreviation of different cases.

Full Name Abbreviation Full Name Abbreviation

Normal N DRISC 5%0 D5-0
SRISC 5%3 S5-3 DRISC 5%5 D5-5

SRISC 10%3 S10-3 Short Circuit 5%0 5%0
DRISC 5%3 D5-3 Short Circuit 5%3 5%3
DRISC 10%3 D10-3 Short Circuit 5%5 5%5
SRISC 5%0 S5-0 Short Circuit 10%3 10%3
SRISC 5%5 S5-5

1. Effect of Short-Circuit Degree

The MFD results at different RISC degrees by finite element analysis are shown
in Figure 6. As shown in Figure 6a, the appearance and increase of DRISC decreased
the MFD amplitude compared to normal, and the odd harmonic decreased and the even
harmonic increased. Compared with SRISC, the appearance of DRISC caused the amplitude
fluctuation of the reverse pulse produced by the short circuit. As the degree of the short
circuit intensified, the pulse impact became greater. The equivalent degree of DRISC failure
had less effect on harmonics than SRISC, but with the same trend (see Figure 6b). This
result is consistent with a previous theoretical analysis (see Equation (15)).The EMT results
of the FEM model and experiments established in this paper are shown in Figure 7. It
is shown that odd harmonic and amplitude pulses occurred when DRISC occurred. As
shown by the FEA curve in Figure 7d,e, when the short circuit 5% occurred, the amplitude
of first harmonic decreased by 7.2%, second harmonic amplitude increased by 33.4%, third
harmonic decreased by 4.3%, and fourth harmonic increased by 26.8%. With the increase of
DRISC degree, the total electromagnetic torque amplitude, constant component amplitude,
and second harmonic amplitude decreased, while the fourth harmonic and pulse amplitude
increased. The reason for the amplitude fluctuation spikes in EMT is that DRISC generated
reverse pulses in the original stable excitation circuit. The reverse pulse increased as the
short circuit increased.
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Figure 6. MFD variations: (a,b) varied dynamic short-circuit degrees, (c,d) varied dynamic short-
circuit positions.
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Figure 7. EMT in varied DRISC degree cases: (a–c) waves by model, FEA, and experiment, and
(d–g) harmonic variations.

Compared to SRISC, the amplitude of the EMT second harmonics decreased by 17.6%
and fourth harmonic decreased by 10.8% when the same degree of DRISC failure occurred.
The theoretical analysis, FEA, and experiment had the same trends.

2. Effect of Short-Circuit Position

The results of the finite element model analysis are shown in Figure 6. When DRISC
occurred and the position was far from the large tooth, the reverse magnetic potential
generated by the short circuit had a greater influence on the rotor excitation potential.
The overall amplitude of the MFD was compressed, with the odd harmonic component
increasing and the even harmonic component decreasing. When the DRISC occurred, the
MFD curve had a smaller amplitude pulse compared with the SRISC.

The EMT obtained from the proposed model and from the finite element analysis
and experiments are shown in Figure 8. It can be seen that the odd harmonic component
appeared when the DRISC fault occurred. When the DRISC5% fault position changed
from slot 3 to slot 5, the amplitude of first harmonic decreased by 42.5%, second harmonic
amplitude increased by 11.4%, third harmonic decreased by 19.4%, and fourth harmonic
increased by 32.3%. With the short-circuit position away from the large tooth, the total
electromagnetic torque amplitude, constant component amplitude, and second harmonic
component amplitude will decrease, while the fourth harmonic and reverse amplitude
pulse value will increase. This is consistent with the qualitative analysis conclusion obtained
by (19).
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4. Conclusions

This paper presented a new analytical model for RISC fault in synchronous generators.
Further, the EMT fluctuations were comprehensively studied based on the proposed DRISC
model with different degrees and positions. Using the CS-5 fault simulation generator for
the analysis, the FEA calculation and the experimental tests confirmed the validity and the
eligibility of the proposed model. The results showed that:

(1) When the DRISC5% failed, the location was in slot 3, the amplitude of first harmonic
decreased by 7.2%, second harmonic amplitude increased by 33.4%, third harmonic
decreased by 4.3%, and fourth harmonic increased by 26.8%. As the degree of the
DRISC increased, the overall EMT amplitude and reverse pulse increased, first and
third harmonics decreased, and second and fourth harmonics increased.

(2) When the DRISC5% fault position changed from slot 3 to slot 5, the amplitude of
first harmonic decreased by 42.5%, second harmonic amplitude increased by 11.4%,
third harmonic decreased by 19.4%, and fourth harmonic increased by 32.3%. At
the DRISC position away from the large tooth, the overall EMT amplitude and re-
verse pulse increased, first and third harmonics decreased, and second and fourth
harmonics increased.

(3) Compared with SRISC, DRISC had less influence on the EMT amplitude and each
harmonic, but the electromagnetic torque curve showed obvious amplitude pulse.

(4) When a DRISC failure occurred, significant amplitude spikes appeared in the EMT
curve. As the DRISC failure intensified and the fault was away from the large tooth,
the reverse pulse generated by the short circuit became larger. Therefore, the vibration
amplitude of the EMT became larger.
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