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Abstract: Reducing the carbon emissions from hotels on non-interconnected islands (NII) is essential
in the context of a low carbon future for the Mediterranean region. Maritime tourism is the major
source of income for Greece and many other countries in the region, as well as hot-temperate and
tropical regions worldwide. Like many NIIs, Rhodes attracts a high influx of tourists every summer,
doubling the island’s energy demand and, given the high proportion of fossil fuels in the Rhodian
energy supply, increasing carbon emissions. Using the theoretical framework ‘FINE’, this paper
presents the optimisation of a medium-sized hotel’s energy system with the aim of reducing both
cost and carbon emissions. By introducing a Photovoltaic (PV) net metering system, it was found
that the carbon emissions associated with an NII hotel’s energy system could be reduced by 31%
at an optimised cost. It is suggested that large-scale deployment of PV or alternative renewable
energy sources (RES) in NII hotels could significantly reduce carbon emissions associated with the
accommodation sector in Greece and help mitigate climate change.

Keywords: energy system optimisation; carbon dioxide reduction; tourism; Rhodes

1. Introduction

International tourism contributes to almost 5% of total global carbon emissions [1],
and the NII Rhodes is one of the most popular tourist destinations in Europe [2]. The island
is a host to a medieval old town, which has been declared a UNESCO World Heritage
Site [3] and boasts a number of attractive beaches. These attractions, combined with
the island’s hot summer weather [4], draw a large influx of visitors in the high season
from June to September. Between 2010 and 2020, the number of tourists visiting Rhodes
reached an annual peak tourist-to-resident ratio of 3:1 in the months of July and August [2].
Whilst tourism is undoubtedly of enormous benefit to the economy of the island [5], it
not only generates higher demand for hotel accommodation, swimming pool amenities,
and bar and restaurant services but also causes a spike in the use of air conditioning
for thermal comfort [2]. With 85.7% of the energy demand on Rhodes met by fossil
fuels [6], increased energy consumption is closely correlated with higher greenhouse gas
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emissions. Data recorded on the popular Greek holiday island of Crete highlights that
13% of carbon emissions per visitor trip can be attributed to the accommodation sector.
The remaining carbon emissions are associated with transport and visitor activities (81%
and 6%, respectively) [7]. Moreover, as [8] points out, 10% of total Greek energy demand
is attributable to the hotel sector, a significant proportion of this demand (75%) being
generated by heating and cooling spaces and for heating water, respectively. Both studies
demonstrate the considerable impact of tourist hotels on increased energy demand and,
consequently, carbon dioxide emissions, in particular in the case of the Greek islands.

Electricity consumption data for Rhodes, published by the Hellenic Electricity Distri-
bution Network Operator (HEDNO), closely correlate with the evidence provided by other
sources [5,7,8] (Figure 1). As expected, a spike in electricity consumption can be observed
during the peak of the tourist season. The comparative dip in electricity consumption in the
summer of 2020, when visitor numbers fell in the wake of the global COVID-19 pandemic,
is further evidence of the impact of tourism on electricity consumption. On a positive
note, like most NIIs, Rhodes offers a high potential for renewable energy production, in
particular wind and solar [2,9], providing the island with ample opportunity to cover part
or all of its energy requirements with renewable energy sources (RES). Moreover, the large
proportion of carbon emissions attributed to the tourist accommodation sector highlights
the vast carbon reduction potential associated with increased use of RES and reduced
energy consumption in hotels and other residential buildings [10]. This may prove to be a
highly beneficial attribute with a view to mitigating climate change.
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Figure 1. Electricity consumption for Rhodes recorded by the Hellenic Electricity Distribution
Network Operator (HEDNO) between January 2019 and March 2021. Blue represents the proportion
of the electricity demand supplied via renewable energy sources (RES) (wind and solar), and orange
represents fossil fuel-based electricity supplies (diesel and heavy fuel). The proportion of energy
demand met by RES per month has been outlined above each bar [6,11].
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It is evident that there is a strong interest in reducing carbon emissions in the European
hotel sector. However, very few studies have analysed individual hotels on NIIs where
the levels of tourism-related carbon emissions are extremely high, and fossil fuels are
extensively consumed. This study was conducted in order to characterise the key energy
usage patterns of a typical Mediterranean hotel and identify a suitable supplementation of
grid-supplied, fossil-derived power by low-carbon, locally installed photovoltaic renewable
energy systems, the aim being to generate significant savings in both carbon emissions
and energy expenses. In view of the currently high share of fossil fuels in the hotel’s
energy mix, it is hypothesised that the introduction of RES into the hotel’s energy system
will reduce both total annual cost (TAC) and carbon emissions. This case study seeks to
provide a template framework which can be extrapolated to other NII hotels. It is expected
that large-scale deployment would reduce carbon emissions associated with the tourist
accommodation sector on NIIs. As the analysis is performed with the flexible, open access
framework for energy systems modelling FINE, the study can be easily adapted to other
cases and locations in the world.

2. Literature Review
2.1. Current State of Affairs—Greece

In summer 2021, Greece was impacted by what is considered to be ‘its worst heatwave
in more than 30 years’ [12]. With close to record-breaking temperatures of 46-degrees
Celsius [13], wildfires have caused residents near Athens to flee their homes. This heatwave
is considered to be the worst since July 1987, when over one thousand deaths were recorded
in and around the capital in the period 20–31 July [14]. One concomitant cause of these
fatalities was the heat stress experienced by residents when daytime air temperatures
ranged between 40–45 degrees Celsius [14]. It should be noted that cooling technologies
were then not as widely accessible as they are today. Given that a major proportion of
the energy demand of the Greek hotel sector is attributable to cooling [8], the use of air
conditioning can be expected to have risen even further throughout the 2021 heatwave,
and in general, given the increasing frequency of such heatwaves caused by climate change.
This means that in order to meet the increased cooling demand, Rhodian fossil fuel power
plants will be operating at maximum capacity, thereby further exacerbating climate change.
Moreover, the unreliability of NII energy systems causes frequent blackouts and energy
shortages during periods of high demand [10]. Loss of electricity for cooling is a major risk
during heatwaves when heat stress has proven to be a threat to human health [14]. The rise
in heatwave frequency and extremity, coupled with the increased risk of energy shortages,
demonstrates the importance of creating self-sustaining energy systems with an increased
share of RES in energy production.

In the wake of the current climate crisis, Greece plans to connect most of its NIIs with
the mainland by 2030 [15]. This will have a positive impact on the energy system of Rhodes,
not only generating a more efficient and reliable energy supply but also reducing the
currently high energy production costs associated with the import of fossil fuels [10]. The
Greek National Energy and Climate Plan has set out specific objectives to attain energy and
climate goals by 2030 [15]. These objectives include a reduction in greenhouse gas emissions
by over 56% compared with 2005 emission levels, an increase in the share of RES in energy
consumption to a minimum of 35%, and greater efficiency of energy use [15]. To support
this initiative, a number of schemes have been implemented to help private individuals,
small businesses, and public entities to expand the proportion of RES in their energy mix.
An initiative of specific interest in this context is a support scheme for electricity generation
by means of PV panels on both the mainland and NIIs [16]. This scheme is a net metering
programme that allows users who produce their own electricity by means of PV systems
to export their surplus energy back to the grid. It has to be noted that in the framework
of net metering, maximum capacity limits are defined for the installed PV systems: for
non-interconnected islands, PV systems need to be smaller than 10 kWp or have less than
50% of the agreed power consumption [16]. For the hotel under investigation, 50% of the
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agreed electricity consumption of 265.8 kW is not reached even with maximum expansion,
so the expansion of PV in the case presented here is not limited by the maximum capacity
limit. Incentives of this kind encourage individuals to increase the share of RES in energy
production and thus contribute to reducing carbon emissions.

2.2. Sustainable Energy Systems

A wide range of studies have already analysed the most effective methods of reducing
carbon emissions in energy production. For the purposes of this report, papers analysing
sustainable island energy systems and individual residential energy systems were evaluated
in order to identify appropriate strategies to reduce carbon emissions within the tourist
accommodation sector on NIIs.

The high costs associated with fuel imports, the vast RES potential available on Greek
islands, and the National Energy and Climate Plan initiatives have provided an incentive
for various Greek NIIs to maximise the use of RES in their energy systems in recent years.
A string of Greek islands are currently striving towards or have already achieved a self-
sustained or carbon-neutral energy supply (Table 1). However, inadequate interconnection
to the mainland poses a number of challenges to the integration of high RES ratios [17].
Given the intermittent nature of RES, guaranteeing sufficiently high energy storage capacity
to accommodate excess power generation during high generation periods (e.g., high solar
irradiance or optimal wind conditions) is particularly critical in this context [11].

Table 1. NII Greek islands and their objectives to achieve carbon neutrality.

Island Main Actions/Objectives References

Astypalea Currently replacing the existing vehicle fleet with e-vehicles; the introduction of a hybrid
RES system has already reduced the use of fossil fuels. [10,18]

Kythnos Increased use of solar and wind energy sources; installation of village-scale microgrids
and lithium-ion battery storage systems. [11,19]

Ikaria Introduction of a hybrid RES system with energy storage. [11]

Tilos Introduction of a hybrid power station (wind and solar) as well as battery energy storage. [20]

Sifnos Targeting self-sufficiency by means of a 100% renewable energy supply to be achieved
using wind energy, solar, and wind hybrid power plants and hydro hybrid power plants. [21]

Analysis of studies on the carbon reduction in European hotels or buildings highlights
that the following factors contribute to promoting sustainability in the accommodation
sector as a whole:

• Improving a building’s structure to enhance energy efficiency and prevent unnecessary
heat losses/gains [8,22];

• Incorporating renewable energy technologies [10,18,20];
• Implementing energy-saving strategies—inter alia key cards, thermostat controls and

energy-saving light bulbs [8]—to reduce energy consumption;
• Understanding public perception as a critical element in promoting the popularity of

‘green hotels’ [23];
• Hotels are ultimately businesses that seek financial gain [8], hence the importance of

optimising a hotel energy system in terms of both carbon emissions and costs.

3. Materials and Methods
3.1. Case Study—Kolymbia Bay Hotel (KBH)

KBH is a popular tourist hotel situated in the village of Kolymbia on the northeastern
coast of the Greek island Rhodes (36◦14′45.63′′ N 28◦09′40.3′′ E). It is a family-run business
with 58 guestrooms in three buildings and also features a swimming pool, a bar, a restaurant,
and a supermarket. The hotel currently sources all its electrical energy from the local
utility provider, which primarily relies on fossil fuel-based sources. The hotel’s hot water
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requirements are covered by 42 two-square-metre solar thermal panels, supplemented by
electrical heat pumps during the winter. The location of the hotel offers a high solar capacity
with a long-term average photovoltaic power potential of approximately 1700 kWh/kWp
per year [24]. Unlike the south and west of the island, the potential for wind power at this
location is insignificant [25]. PV technology is therefore prioritised in this particular case
study. High external temperatures experienced during the summer months in Kolymbia
village significantly increase the demand for air conditioning at the hotel. This, coupled
with increased visitor numbers, results in a large peak in energy consumption between
April and October (Figure 2). Positively, it can be seen that the hotel’s energy demand
peaks when the solar potential is at its highest (Figures 2 and 3). This points to solar energy
as an appropriate choice. In 2021, with a price of 0.23 EUR/kWh and an assumed energy
demand for a regular year of 385 MWh, the total annual cost (TAC) for electricity was about
EUR 88,550 for the KBH. The price of electricity recently increased to 0.30 EUR/kWh (exact
value obtained for March 2022). This value was taken as the upper bound of electricity
price in our parametric study shown in Section 4.1.
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Figure 2. Total electricity consumption recorded during 2019 at the Kolymbia Bay Hotel. Data
supplied by Volterra [26]. Total annual consumption equates to 385 MWh, with a TAC of EUR 88,550
for an electricity price of 0.23 EUR/kWh.
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Figure 3. Monthly average of total PV power output for the location (36◦14′45.6′′ N 28◦09′40.3′′ E)
based on a medium-sized commercial PV system with installed capacity of 100 kWp, which delivered
about 161 MWh in 2019 [24].

3.2. Theoretical Framework—FINE

The FINE python package provides a framework for modelling, optimising, and
assessing energy systems. This framework can be used for a number of applications, includ-
ing residential, industrial, and mobility energy systems. Moreover, systems with multiple
regions, commodities, and time steps can be modelled. This optimisation programme aims
to minimise the TAC of an energy system while at the same time factoring in environmental
and technical constraints, e.g., carbon emissions [27,28]. A number of studies have applied
the optimisation approach to a range of energy systems [29–32]. Each study varies in the
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scale of the energy system examined and the approach adopted in the search for an optimal
solution. For example, a study could compare potential RES sources or potential storage
systems. All these studies have the common objective of reducing carbon emissions and
increasing the share of RES in the residential sector at optimal cost.

3.3. Energy System Modelling

In view of the hotel’s PV power potential [24], the Greek National Energy and Climate
Plan objectives [15] and the roll-out of PV incentive schemes [16], the KBH energy system
was modelled and optimised by adding a PV net metering system (Figure 4). The model
took two PV technologies into consideration, as well as the location, orientation, and tilt
of the panels and also accounted for the quantity of energy required from the grid to
supplement the PV system (Figure 4). In order to simulate a net metering system, the
utility provider was added to each model as both an electricity source and a sink. The
hotel’s energy system was modelled using the theoretical framework FINE [27]. FINE
is written in Python language [33] and is supplemented by the programmes RESkit (Re-
newable Energy Simulation Toolkit) and PVlib (Open Source Photovoltaic Performance
Modelling). PVlib provides accessible, reliable, and benchmark implementations of PV
system models [34]. Using the System Advisor Model (SAM) database [35] for a wide
range of PV modules and inverters, PVlib acquired all the parameters necessary for the
introduction of PV technologies to an energy system model [34]. SARAH (Surface Solar
Radiation Data Set—Heliosat) and ERA5 weather data were vital to predict a generation
time series for each PV panel. SARAH data provide solar surface irradiance, the surface
direct normalized irradiance, and the effective cloud albedo derived from satellite observa-
tions. Data are produced at monthly, daily, and hourly averages with a spatial resolution of
0.05◦ × 0.05◦ [36]. ERA5 provides solar radiation data (including global horizontal, direct,
and diffuse irradiance) between the years 2010–2016 with worldwide coverage at hourly
time steps and 0.28◦ lat/lon spatial resolution [37]. Using SARAH and ERA5 weather data,
providing solar irradiance values for a specific location over a selected year, the RESkit tool
simulated a system generation time series for each specified panel (acquired using PVlib).
This generation time series was subsequently extracted and imported into the FINE model,
where it was used to determine the TAC and carbon emissions associated with the hotel’s
energy system [38]. All the models used can be found in the Supplementary Materials.

Energies 2022, 15, x FOR PEER REVIEW 7 of 27 
 

 

to supplement the PV system (Figure 4). In order to simulate a net metering system, the 

utility provider was added to each model as both an electricity source and a sink. The 

hotel’s energy system was modelled using the theoretical framework FINE [27]. FINE is 

written in Python language [33] and is supplemented by the programmes RESkit (Renew-

able Energy Simulation Toolkit) and PVlib (Open Source Photovoltaic Performance Mod-

elling). PVlib provides accessible, reliable, and benchmark implementations of PV system 

models [34]. Using the System Advisor Model (SAM) database [35] for a wide range of PV 

modules and inverters, PVlib acquired all the parameters necessary for the introduction 

of PV technologies to an energy system model [34]. SARAH (Surface Solar Radiation Data 

Set—Heliosat) and ERA5 weather data were vital to predict a generation time series for 

each PV panel. SARAH data provide solar surface irradiance, the surface direct normal-

ized irradiance, and the effective cloud albedo derived from satellite observations. Data 

are produced at monthly, daily, and hourly averages with a spatial resolution of 0.05° × 

0.05° [36]. ERA5 provides solar radiation data (including global horizontal, direct, and 

diffuse irradiance) between the years 2010–2016 with worldwide coverage at hourly time 

steps and 0.28° lat/lon spatial resolution [37]. Using SARAH and ERA5 weather data, 

providing solar irradiance values for a specific location over a selected year, the RESkit 

tool simulated a system generation time series for each specified panel (acquired using 

PVlib). This generation time series was subsequently extracted and imported into the 

FINE model, where it was used to determine the TAC and carbon emissions associated 

with the hotel’s energy system [38]. All the models used can be found in the Supplemen-

tary Materials. 

 

Figure 4. Simplified diagram illustrating energy transfer within the modelled net metering energy 

system. 

3.4. Model Locations 

To account for the different investment costs for the construction of transmission ca-

bles linking the PV technologies on each building to the energy metre, the modelled hotel 

was divided into six locations: buildings 1–5 and the energy metre (Figure 5). The further 

away the respective building is from the energy metre, the higher the investment costs for 

the PV systems of the given building will be (due to the correspondingly higher wiring 

requirements). It was important to ensure that the cost of supplying AC cables from each 

building to the energy metre was only factored in once. The surface area available for PV 

installations on each building and the distance from the energy metre are outlined in Table 

2 and illustrated in Figure 5. In order to define an economically viable positioning of the 

PV panels, the spacing of the PV panels was chosen as a compromise between maximum 

installed capacity and shading losses, as shown in Figure 6. These results were generated 

using the software Helioscope [39] and take the geometric constraints caused by the real 

geometry of the roofs and the panes into account. The shading losses are summarised in 

Table 3. These losses reduce the total PV capacity installed to an effective capacity that is 

used for the simulations. 
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energy system.

3.4. Model Locations

To account for the different investment costs for the construction of transmission
cables linking the PV technologies on each building to the energy metre, the modelled hotel
was divided into six locations: buildings 1–5 and the energy metre (Figure 5). The further
away the respective building is from the energy metre, the higher the investment costs for
the PV systems of the given building will be (due to the correspondingly higher wiring
requirements). It was important to ensure that the cost of supplying AC cables from each
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building to the energy metre was only factored in once. The surface area available for PV
installations on each building and the distance from the energy metre are outlined in Table 2
and illustrated in Figure 5. In order to define an economically viable positioning of the
PV panels, the spacing of the PV panels was chosen as a compromise between maximum
installed capacity and shading losses, as shown in Figure 6. These results were generated
using the software Helioscope [39] and take the geometric constraints caused by the real
geometry of the roofs and the panes into account. The shading losses are summarised in
Table 3. These losses reduce the total PV capacity installed to an effective capacity that is
used for the simulations.
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Figure 5. Satellite image of the KBH highlighting individual buildings 1–5 and the type of PV
technology that can be potentially installed on them: (1) crystalline silicon or heterojunction rooftop
panels, balcony building-integrated photovoltaics (BIPV), and façade BIPV, (2) crystalline silicon
or heterojunction rooftop panels and balcony BIPV, (3) balcony BIPV only (roof occupied by solar
thermal panels, (4) crystalline silicon or heterojunction rooftop panels, and (5) crystalline silicon or
heterojunction rooftop panels. Only one rooftop panel type could be selected per building. The black
triangle indicates the location of the hotel’s energy metre, and the red lines indicate cables required
for AC energy transmission from local inverters to the energy metre.
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Table 2. Possible PV technologies for each building as well as the respective areas available for PV
installation on rooftop, balcony, and façade.

Building
No. Potential PV Technology Available Roof Area (m2)

(Usable Part with 8◦ Tilt)

Available
Balcony Area

(m2)

Available
Façade Area

(m2)

Distance to
Energy Metre (m)

1
Rooftop Crystalline,

Rooftop Heterojunction,
BIPV façade, BIPV balcony

174 (40%) 36 17 100

2
Rooftop Crystalline,

Rooftop Heterojunction,
BIPV balcony

299 (53%) 10 0 70

3 BIPV balcony 0 (occupied by solar
thermal panels) 36 0 35

4 Rooftop Crystalline,
Rooftop Heterojunction 100 (60%) 0 0 11

5 Rooftop Crystalline,
Rooftop Heterojunction 165 (56%) 0 0 30
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Table 3. Shading losses of the rooftops depending on the PV technology and inclination applied.

Building
Number

Shading Losses (%)

Objects Casting ShadowsCrystalline Heterojunction

8◦ 25◦ 8◦ 25◦

1 1.0 1.6 0.7 1.3 -

2 3.4 4.3 3.6 4.1 adjacent building 1 (3.6 m higher),
ventilation and other equipment

4 4.5 5.7 4.4 5.4 adjacent building 3 (3.6 m higher),
tree in the east

5 1.2 2.3 1.0 1.9 adjacent building 3 (3.6 m higher)

In addition to buildings 1–5, the energy metre was added to the model as a single
location to account for the fact that the hotel’s energy demand applies to the hotel as a
whole, not just individual buildings. It was assumed that all the energy generated by PV
technologies on each building was converted from DC to AC, applying separate inverters
for each building and then transferred to the energy metre. As a result, any interactions
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between PV generation, energy demand, the utility provider, and carbon emissions were
taken into account.

3.5. PV Technologies

Because of the wide variety of available PV technologies, it was necessary to identify
which panels were the most likely to achieve the objective of reducing carbon emissions at
an optimal cost. The two key factors impacting the growth of PV technologies have been
cost and efficiency [40]. The higher the panel’s efficiency, the higher its power output, and
the lower the number of modules required to meet the target energy demand. The cost per
module can nevertheless be expected to rise with increasing efficiency [40]. On the other
hand, a less efficient panel requires a higher number of modules to meet the same demand
but may come at a lower cost. PV panel efficiency varies depending on the panel type,
orientation, tilt, shading effects from structures and large trees, PV cell temperature, and
physical obstructions, e.g., snow or dust [41–43]. In addition to improving cost-effectiveness
and efficiency, studies have focused on developments in the incorporation of PV technology
into the building envelope (building-integrated photovoltaics (BIPV)) [44–46]. The panels
selected for optimisation in the present study represent (i) a standard panel, (ii) a more
efficient but expensive panel, and (iii) building-integrated PV for the façade and balconies
(Table 4). Moreover, rooftop tilt angles of 8 and 25 degrees will be compared. The orienta-
tions of installations on rooftops, balconies, and façades were south, east-southeast, and
south-southwest, respectively (Figure 5). The maximum installed capacity depending on
the PV technology applied to each building is given in Table 5.

Table 4. PV technologies used in the optimisation model and their relevant parameters.

PV
Technology Module Name

Power
Capacity

(W)

Efficiency
(W/m2)

Cost per
m2 (EUR)

Panel Area
(m2)

Possible
Building
Numbers

References

Rooftop
Crystalline

Jinko Solar Co.
Ltd.JKM530M-7TL4-V 530 210 84 2.529 1, 2, 4, 5 [35,47]

Rooftop Het-
erojunction

REC Solar
AlphaREC400AA

Pure Black
400 216 148 1.85 1, 2, 4, 5 [35,47]

BIPV balcony
and façade BIPV BIPV054-T86 54 138 100 0.390 1, 2, 3 [35], own

assumptions

Table 5. Maximum installable capacity for each PV technology on each respective building, taking
into account the shading losses.

Building
Number

Installed Capacities (kW)

Crystalline Heterojunction
BIPV-Balcony BIPV-Façade

8◦ 25◦ 8◦ 25◦

1 14.2 11.5 15.9 12.2 5.3 2.4

2 30.7 21.3 35.1 25.7 1.5 0.0

3 0.0 0.0 0.0 0.0 5.3 0.0

4 11.6 9.0 12.6 9.8 0.0 0.0

5 17.8 12.4 21.4 14.9 0.0 0.0

Information on the selected PV technologies and rooftop tilt angles are shown below.
(i) Crystalline silicon technology
Today, crystalline silicon photovoltaics is the world’s leading PV technology, account-

ing for 70–90% of all installed modules. In addition, manufacturing costs have decreased
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over the last decade, while module efficiency and performance have increased, making it
the most profitable technology today. Cells can either be cut from a single piece of crys-
talline silicon (monocrystalline technology) or assembled from multiple pieces of silicon to
form the PV module (polycrystalline technology). While polycrystalline technology was
popular for many years because of its lower cost, monocrystalline technology has now
gained acceptance because the better material quality increases efficiency more than the
cost [48]. To ensure comparability for validation (cf. Section 3.8), a module from Jinko Solar
was used as the standard rooftop PV technology in our model [47,49].

(ii) Heterojunction technology
A new trend in PV technologies is heterojunction technology. Here, the advantages

of crystalline and thin-film technology are combined. Thin-film modules are cheaper to
manufacture because of the use of only small layers of material, but they are also less
efficient than crystalline modules. The combination of a silicon wafer with thin-film layers
on both sides leads to better absorption of the electric current and thus to higher efficiency.
The cost per capacity is still higher than other technologies, but the efficiency of these
modules reaches higher values than traditional modules, and further optimisations are
expected in the coming years [49,50].

Therefore, this technology is added to the standard technology in this study, as it
can achieve the maximum reduction in CO2 emissions possible today. One of the leading
companies in the production of heterojunction PV modules is REC Solar (Singapore), so
their latest module was chosen for this purpose.

(iii) State of the art: building-integrated PV (BIPV)
BIPV is being increasingly developed on account of the multifunctionality of this type

of panel [44]. The term BIPV covers a wide range of PV technologies, including BIPV
windows, blinds, façades, and thin-film [44–46]. When using BIPV on a building façade
or window, factors such as shadowing effects and building orientation have to be taken
into consideration [44] as they impact panel efficiency and, therefore, the feasibility of
successful integration. Moreover, module temperature may be higher in regions of high
solar irradiance in comparison with other regions. For this reason, a reasonable air channel
should be considered to allow cooling [45]. Because of the abundant solar energy resources
in locations of high solar irradiance and the high-efficiency rating of BIPV panels, this
technology provides significant advantages and environmental benefits [45].

(iv) Optimal rooftop tilt angle
The optimal tilt angle of a PV panel is critical for maximal energy production and

varies according to location and throughout a given year [51,52]. A study analysing the
optimal tilt angle for the province of Izmir in western Turkey concluded that a tilt angle
of 8 degrees was optimal during the months of July and August, whereas an angle of
61 degrees resulted in optimal exposure in December [51]. Because of the similarity in
latitude between Rhodes and Izmir, it was assumed that the results of this study could
be extrapolated to Rhodes. Another study [41] on optimal annual tilt angles chose to
maximise the annual energy yield on Rhodes over a period of an entire year. It drew the
conclusion that 25 degrees was the optimal tilt for maximum energy production from solar.
When considering the energy demand profile of the KBH (Figure 2), it may be preferable to
optimise the tilt angle of PV panels for maximal energy production during the months of
July and August, when the demand is highest. For this reason, the present study analysed
PV generation for rooftop panels at tilt angles of both 8 and 25 degrees. This permitted a
conclusion to be drawn on whether maximum annual or maximum summer PV generation
is preferable for a tourist hotel.

3.6. Hotel Electricity Demand

A key component for the optimisation model was hotel electricity demand at hourly
time steps over a period of a year. This data series was created using the KBH’s monthly
electricity consumption data for 2019 (Figure 2), alongside daily variations in electricity
demand. The daily variations were recorded by the hotel proprietor at 10:00, 14:00, and
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20:00 each day between 17 and 22 July 2021. Under the assumption of a constant daily
energy profile, the two datasets were combined to simulate the expected hourly variation
in electricity demand across a given year (Figure 7a). The total annual electricity demand
equates to 385 MWh. The hotel proprietor underlined that almost 50% of total electricity
demand was attributable to cooling during the summer months when the guestroom
air conditioning is in permanent use to meet holidaymakers’ demands and expectations.
Moreover, the hotel regularly utilises a wide range of electrical appliances, including kitchen
equipment and guest television sets. Under the assumption that the hotel’s energy demand
can be reduced by implementing energy-saving strategies [8], the carbon emissions from an
energy system operating at 80% of the current electricity demand were assessed (Figure 7b).
This reduction in demand was only applied during the months of April to October when
cooling is required, and guests are more likely to be present. This analysis investigated the
benefit of implementing energy-saving strategies within the hotel management in terms of
carbon emissions.

 
Figure 7. Colour map illustrating the electricity demand profile of the KBH across a given year (pe-
riod) and during a given day (timesteps per period): (a) current electricity demand and (b) proposed
reduced electricity demand.

3.7. Model Variations

In summary, KBH operations were optimised in terms of both costs and carbon
emissions. The aforementioned variables—PV technologies, rooftop PV tilt angles, and
reduced energy demand—were assessed with a view to obtaining an optimal solution. In
order to compare multiple variables, a set of model variations was required (Table 6) with
multiple runs per variation. The steps taken were as follows:

1. By consideration of the chosen number of PV panels in the available area and the
power capacity of the respective panels, each technology was assigned a total capacity
value for each individual building. Using these capacities alongside solar irradiation
data, system generation results were simulated for each panel type using the RESkit
programme. This allowed a comparison of the generation capacity of different PV
panel types over a typical year. Figure 8 shows clearly that the 8◦ configuration
should be preferred over the 25◦ tilt angle. Therefore, in what follows, the focus is on
configurations with an 8◦ rooftop tilt angle;

2. FINE was used to simulate results under the assumption that the entire electricity
supply was sourced from the utility provider in order to predict carbon emissions
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associated with the current hotel energy system. This provided baseline results to
which all other model runs could be compared;

3. The model was designed to ensure that only one type of rooftop PV technology could
be selected per building (if at all). However, it was possible to select both BIPV and
rooftop PV technologies for the same building.

4. Because of its design, unless a constraint is applied, the FINE model selects electricity
source components predicting the lowest possible TAC. In order to reduce carbon
emissions associated with the hotel’s energy system (and thus electricity obtained
from the utility provider), a carbon emissions constraint was applied to the model.
This constraint represented the annual carbon emissions (kg CO2 /annum) that the
simulated energy system must not exceed and limited the carbon emitted from the
hotel over a single year (Equation (1));

Carbon constraint =

(
1− % carbon reduction

100

)
× total CO2 (utility) (1)

Table 6. Table outlining the model variations used during energy system optimisation.

Model Variation Electricity Sources Electricity Sinks

1: 8-degree rooftop panels BIPV balcony and façade, crystalline and heterojunction
panels at 8-degree tilt only), utility provider

Current hotel electricity
demand, utility provider

2: Optimised system, reduced demand Optimised PV configuration, utility provider Reduced hotel electricity
demand, utility provider
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Figure 8. System generation (kW) average across all buildings for each PV panel type across a
given year for the rooftop tilt angle of 8◦ (left) and 25◦ (right). The numbers given in the red and
green boxes are the total yearly energy production for crystalline (Jinko) and heterojunction (REC)
cells, respectively.

5. In addition to the costs of the PV systems themselves, various other costs must be
taken into account. For other hardware costs, such as mounting frames, cabling, etc.,
50% of the PV module costs were assumed [53]. For installation and management
costs, half of all hardware costs were multiplied by a factor of 0.75, which takes
into account the lower wages in Greece compared to the European average [53]. In
addition, annual operating costs were assumed to be a fixed cost of EUR 10 per kWp
installed plus 1.5% of total installation costs, which includes insurance fees, service
costs, and reserves for repairs [54];

6. We assume that one inverter is installed in each building. The inverters from SMA’s
Sunny Tripower series [55] have been given as options for the FINE model so that an
inverter with the appropriate power can be installed. The costs per power, as well as
the specific costs per capacity, are shown in Figure 9;
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7. In addition, economic parameters had to be assumed. The interest rate was set at 5%,
and the depreciation period is assumed to be 20 years for all PV systems and five
years for all inverters;

8. Several runs were conducted for each model variation to record a Pareto front. Min-
imum TAC was identified by running the model with no constraints. The lowest
possible carbon constraint can be found by changing the model’s objective function
to the net carbon emissions. To calculate the carbon reduction, the carbon emissions
without any PV modules installed could be evaluated by multiplying the sum of
the electricity demand over the year with the amount of carbon produced when
consuming 1 kWh of electricity acquired from the utility provider;

9. To obtain a relationship between TAC and carbon reduction, results were recorded at
a number of carbon constraints. This was carried out in four steps between the carbon
constraint at minimum TAC and the maximum reduction in carbon emissions;

10. To compare carbon emissions from the optimised energy system to those from the
current hotel energy system, hourly electricity distribution for 24 h in mid-January
and mid-July were extracted from the results simulated from the optimised model run
and the utility-only model, respectively. A line graph was generated for the purpose
of comparison;

11. The same PV technologies selected within the optimised system were rerun under a
reduced energy demand, and the change in carbon emissions and TAC were recorded
to simulate the reduction in carbon emissions as a result of reduced energy utilisation.

3.8. Model Validation

The values on PV generation and solar irradiation simulated from RESkit were vali-
dated using the European Commission’s Photovoltaic Geographical Information System
(PVGIS) [56]. PVGIS simulates the performance of a grid-connected PV system with speci-
fied coordinates and power capacity. Results obtained from RESkit were compared to those
simulated from the PVGIS programme to ensure similarities. Energy demand data were
validated by ensuring that the total energy demand displayed by the energy system model
equated to the total annual energy demand calculated from the monthly energy bills issued
by the hotel’s utility provider, Volterra [26]. Similarly, the TAC predicted by the model for
a ‘utility only’ scenario matched the total hotel energy charges for the period from January
to December 2019. As a validation of the cost modelling used in this study, the results were
compared with bids from local Greek companies: PV generation potential for crystalline
Jinko rooftop panels at 10-degree tilt for building 5 (with 12.19 kWp installed capacity)
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simulated during the present study using RESkit resulted in 17.67 MWh/annum, which
is 14% less than stated in the reference offer. The estimated costs in our FINE model were
11% less. These values show that the costs obtained from the FINE model are realistic.

3.9. Model Assumptions

The following assumptions were made for the modelling of the energy system of
the KBH:

1. Any electricity acquired from the utility provider was assumed to produce 0.42 kg
CO2/kWh [57]. Different prices for electricity were assumed: 0.08 EUR/kWh,
0.15 EUR/kWh, 0.23 EUR/kWh (which is the actual realistic price for electricity
in Rhodes in 2021) and 0.30 EUR/kWh (which is the actual price for electricity in
Rhodes in March 2022), respectively;

2. The energy system was optimised using a net metering scheme. In this scheme, the
energy generated by a PV system can either be consumed by local consumers or
fed into the grid [58]. No storage was included in the energy system model. Using
net metering, there is no direct revenue and CO2 saving from electricity to surplus;
however, the surplus has a positive effect on the total balance. The final cost shown in
the electricity bill depends on the net balance of the energy fed into the grid and taken
from the grid. If the difference is positive, i.e., more electricity was generated and
fed into the grid than was consumed, this surplus is credited to the next electricity
bill. However, surpluses after the end of the year are not paid out by the electricity
trader to the self-generating electricity consumer and are cancelled. If the difference is
negative, i.e., more electricity was consumed than generated, the consumer is obliged
to pay the difference. In the case of the current (virtual) PV net metering scheme
implemented in Rhodes, the assessment period follows a three-year cycle, while there
is a liquidation procedure if the PV system operator switches to another electricity
trader [16];

3. Total cabling costs (the cost of the actual and the installation charges) were estimated
at EUR 16 per metre [59];

4. As the majority of the hotel’s heat demand is met by solar thermal panels, the electric-
ity required for supplementary heat pumps was assumed to be negligible. The hotel’s
annual heat demand was assumed to have been entirely met by solar thermal panels
and was accordingly not included in the optimisation model, which means that the
optimization was performed for electricity only;

5. The interpanel row spacing was assumed to be 25 cm for a tilt of 8 degrees (see the
green bar in Figure 6 (left);

6. BIPV technologies were set at a tilt angle of 90 degrees;
7. Meteorological trends and hotel energy demand were assumed to remain constant

year to year.

4. Results
4.1. PV Technology Selection and Optimised PV Net Metering System for the KBH

Rooftop heterojunction technologies offered the highest generation potential of all
the proposed PV technologies, as shown in Figure 8, with a peak system generation of
85 kW. This slightly exceeds the peak generation of 74.3 kW associated with standard
crystalline panels. BIPV balcony and BIPV façade panels had lower system generation
peaks of 12.1 kW and 2.4 kW, respectively.

There was a distinct variation in the annual generation trends observed between
the 25-degree and 8-degree tilted rooftop panels (see Figure 8). Overall, in the case of
both standard crystalline and heterojunction, the 25-degree tilted panels presented smaller
annual variations in system generation than those titled at 8 degrees (Figure 8). However,
because of shading losses, significantly less electricity can be generated with the 25-degree
system than with the 8-degree system. What is more, the 8◦ tilt increases the PV energy
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production in summer, which corresponds to the electricity demand of the hotel, making
the 25-degree configuration economically unattractive; thus, it is not studied further.

The highest possible carbon reduction using the proposed PV technologies was 35.5%,
corresponding to a carbon emissions reduction of 57.5 t CO2/annum. For an electricity price
of 0.23 EUR/kWh, this resulted in a TAC of EUR 75,614 (Table 7). To achieve this carbon
emissions reduction, the model had to select the maximum capacity of all the available PV
technologies. BIPV panels were installed at 100% capacity on the upper-floor balconies and
facades, where possible. The lowest TAC predicted by the model was EUR 72,908, with a
carbon reduction of 31.1% (i.e., a reduction of 50.3 t CO2/annum, Table 7). In this scenario,
the model selected standard crystalline and BIPV balcony PV technologies at 100% of total
capacity. For an electricity price of 0.23 EUR /kWh, all the model runs containing any PV
generation were less expensive than the run provided by the utility system only.

Table 7. Table illustrating the carbon emissions and TAC associated with the use of PV technologies in
the hotel’s energy system under the current energy demand. The proportion of total capacity of each
PV technology to be installed at the hotel, along with the associated carbon reduction, total annual
cost, and levelized cost of energy, is shown for three variations: utility only, 8-degree tilt rooftop
panels, optimal cost obtained, and 8-degree tilt rooftop panels, maximum CO2 reduction obtained.

Utility Only 8 Degrees, Optimal TAC 8 Degrees,
Max. CO2 Reduction

Total capacity used (%)

Crystalline 0 100 0

Heterojunction 0 0 100

BIPV balcony 0 100 100

BIPV façade 0 100 100

Total annual PV generation (MWh) 0 122.3 139.1

Proportion of PV generation self-consumed (%) - 75 74

CO2 emissions (tons/year) 161.6 111.3 104.3

Reduction of CO2 emissions (%) 0 31.1 35.5

Total Annual Cost (EUR) 88,550 72,908 75,614

Levelized Cost of Energy (EUR/kWh) 0.230 0.189 0.196

It was observed that an increase in the carbon reduction percentage from 31.1%
(at optimal cost) to 35.5% corresponded to an increase of about EUR 2700 in TAC or
0.007 EUR/kWh in levelized cost of energy (Figure 10). This reflects a further carbon reduc-
tion of 6.9 t CO2/annum. However, as the specific cost of this additional reduction stands
at 386 EUR/ton CO2, it seems justified to recommend the configuration with standard
crystalline PV, i.e., the configuration with the lowest TAC.

Figure 11 shows the dependency of TAC on the effective price of electricity. At low
electricity costs, PV is unprofitable; the TAC at 0% annual carbon reduction, i.e., no PV
installed, is less than with PV. At 0.15 EUR/kWh, the total annual costs for electricity
without PV were 57,720 EUR/year, so the PV starts to pay off. At 0.3 EUR/kWh, the
total annual cost of electricity without PV would be 115,441 EUR/year, so that savings
in the order of EUR 24,000 per year are possible. In fact, at this high electricity price, the
installation of heterojunction PV technology in building 5, which has low shading losses
and relatively high installed capacity, is identified to be part of the most cost-effective
scenario. It is evident that further increasing the cost of electricity makes the installation of
highly efficient PV even more attractive.
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Figure 10. Graph illustrating the relationship between TAC and carbon emission reduction associated
with a PV net metering system with 8-degree tilt panels between the lowest simulated TAC system
(green marker, 0.189 EUR/kWh levelized cost of energy) and the system generating the largest carbon
reduction (orange marker, 0.196 EUR/kWh levelized cost of energy). The graph shows the results for
an electricity price of 0.230 EUR/kWh.
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In summary, for an electricity price of 0.23 EUR/kWh, the optimized system for the
KBH yields a carbon emission reduction of 31.1% and a total annual cost reduction of 18%
in comparison with an energy system obtaining all electricity from the utility provider. The
optimised energy system was 23.5% self-sufficient (Figure 12).

Energies 2022, 15, x FOR PEER REVIEW 18 of 27 
 

 

 

Figure 12. Pie chart illustrating the proportion of self-sufficiency attributed to crystalline PV panels, 

BIPV balcony panels, and fossil fuels (utility). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Pie chart illustrating the proportion of self-sufficiency attributed to crystalline PV panels,
BIPV balcony panels, and fossil fuels (utility).



Energies 2022, 15, 3801 17 of 24

Figure 13 shows the evolution of electricity demand and generated power over time
for KBH for a representative day in winter (left) and a representative day in summer (right).
In winter, the electricity demand of the hotel is very low, so the excess PV energy can be
provided to the grid.
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Figure 13. Line graph illustrating the comparison between power demand and generated power for
the KBH for one day in winter (left) and one day in summer (right).

Comparing the optimized energy system with the current hotel system in the high
season (Figure 13, right), it is obvious that the assumed electricity demand of KBH is higher
than what can be provided by PV. Still, a carbon reduction of 203 kg per day was recorded
for the entire hotel. This corresponds to the reduction of 3.5 kg of CO2 emissions per room
per day. Between 04:00 and 18:00, the optimised energy system reduces carbon emissions in
comparison with the current energy system on a typical July day. From 18:00 to 04:00, there
is no production of PV energy and, therefore, no reduction in CO2 emissions. The share of
self-consumed PV energy is 75% (Table 7). It should be noted that with increasing installed
capacity using heterojunction technology, this share decreases slightly to 74% (Table 7) as
the excess energy not consumed in the off-season increases.

4.2. Effect of Energy-Saving Strategies

As outlined above, during later hours of the day, PV cannot help reduce the CO2
emissions of the KBH. Therefore, the question was addressed if a general reduction of
20% energy consumption of the KBH would lead to a different layout of the optimized
system. The simulation showed that the same technology configuration as above should be
applied. Therefore, a 20% reduction in the energy demand would linearly decrease the CO2
footprint and the energy bill of the hotel by 20%. It was demonstrated that by reducing the
current energy demand by 20%, the hotel could reduce its carbon emissions by a further
32.3 t CO2/annum. This represented a carbon emission reduction of 20.9% compared with
the same energy system operating at full load. Moreover, TAC was expected to fall 20.9%,
corresponding to a saving of EUR 17,710 per annum. This demonstrates clearly the high
impact of energy-saving measures.

5. Discussion
5.1. Optimal RES for KBH

As the KBH offered significant solar potential, a PV energy system was selected for
optimisation. This included a comparison of a number of PV technologies and different
roof tilt angles. Given that available RES will vary according to location, the type of energy
system used for optimisation must be selected on a case-by-case basis [17,25].

5.1.1. Rooftop Panels

When comparing the two rooftop panel options and assuming an electricity price
of 0.23 EUR/kWh, the model selected standard crystalline PV panels on each building
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rather than heterojunction PV panels. This was to be expected as the results showed that
the generation of heterojunction systems did not significantly exceed the generation of
standard crystalline PV panels (Figure 8). In this case study, the investment related to the
connection of AC cables to each building was assumed to be the same for each rooftop
panel type. The model was accordingly forced to select the rooftop technology with the
lowest investment per panel capacity unit—in this case, standard crystalline PV.

However, at higher electricity prices, i.e., 0.3 EUR/kWh, the installation of heterojunc-
tion PV technology is part of the most cost-effective scenario. It is obvious that further
rising electricity costs make the installation of high-efficiency PV systems more profitable.

5.1.2. Rooftop Tilt Angles

The generation profile of the 8-degree tilt panel was more closely correlated to the hotel
energy demand profile than for the 25-degree tilt (Figures 7 and 8). It was advantageous
that the PV panel produced more energy during summer when large quantities of electricity
were required. Results comparing tilt angles highlighted the importance of designing a
PV system to maximise energy production as a function of specific energy demand. A
closer correlation between PV generation and energy demand will reduce the proportion
of energy required from fossil fuel sources and hence reduce carbon emissions.

5.1.3. Building-Integrated Photovoltaics (BIPV)

Although BIPV balcony panels had a much smaller generation capacity in comparison
with rooftop panels (Figure 8), this panel type was still selected by the model at 100%
of its total capacity, even in a low-cost scenario. This implies that the installation of this
technology results in carbon reductions at an effective cost. This conclusion is substantiated
by [45], who concluded that BIPV provides huge advantages in regions of high solar irradi-
ance, such as Rhodes. Moreover, placing BIPV on balcony panels not normally equipped
with PV cells significantly improved the hotel’s PV electricity production potential [44].
Although this technology is, due to the small area where it can be applied, less effective in
the case of the KBH, it could be assumed that the installation of BIPV façade panels over a
larger surface area will increase the investment per unit capacity for this technology. It may
therefore be a more advantageous option for hotels in a different location.

5.2. PV Net Metering System Benefits
5.2.1. Carbon Emissions

Extreme meteorological events, such as the Greek heatwave in the summer of 2021 [12],
are frequent reminders that climate change is an ongoing prominent and daunting issue.
Like many NIIs hotels, the KBH currently draws 100% of its electricity from the local utility
provider. As explained above, 85.7% of this energy is obtained from fossil fuels (heavy fuel
oil) imported from mainland Greece at a high cost on account of inadequate electric grid
interconnections. This situation was reflected by high annual carbon emissions and high
TAC associated with the utility-only simulation (Table 7). Analysis of an optimised energy
system for the KBH has demonstrated potential for carbon reductions associated with the
hotel energy sector.

Compared with the current KBH carbon emissions (161.6 t CO2/annum), a carbon
saving of almost 50.3 t CO2/annum is proposed by the optimised PV net metering energy
system. To put this figure into perspective, 50.3 t CO2/annum would offset the carbon
emissions generated by 46 return economy class flights from Aberdeen to Rhodes [60].
Extrapolating the outcomes recorded on the Greek island of Crete [7] to the Rhodian
context, it can be assumed that the proportions of carbon emissions caused by every
tourist trip to Rhodes amount to 81% for transport, 13% for accommodation and 6%
for other activities. This implies that the potential carbon reduction of 31% obtained by
the introduction of a PV net metering system correlates to a carbon reduction of 4% per
tourist trip to the KBH. If deployed on a large scale, the 31% carbon reduction in an
individual hotel could be maximised, providing the opportunity to significantly reduce
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the carbon emissions associated with the tourism accommodation sector. This reduction
is in accordance with the IPCC recommendation for reducing carbon emissions by 2030
to keep global warming below 1.5 K [61]. Moreover, assuming that the National Energy
and Climate Plan’s objectives come to fruition [15] and the NIIs are interconnected to the
mainland, it is to be expected that grid-sourced energy will become cleaner in the course
of the coming decade. In this event, there will be a reduction in the carbon emissions
associated with electricity from the utility provider within a PV net metering system. This
further corroborates the strategy of installing net metering PV systems in NII hotels.

5.2.2. Off-Loading the Grid

Rhodes is currently recording soaring day- and night-time temperatures of 35 ◦C and
28 ◦C, respectively [4], and the island’s power plants are already overstretched by the peak
tourist season and increased cooling demand during these high temperatures. As a result
of the unreliability of the energy supply from power plants [10], heat-related blackouts are
a frequent phenomenon at the KBH. This negatively impacts guest satisfaction and is a
potential cause of unnecessary stress for the hotel owners. Against this background, the
implementation of a PV system or alternative RES in tourist hotels could not only offer the
benefits of reduced carbon emissions but also relieve and stabilize the island’s energy grid
and provide Rhodian hotels with safer and more reliable energy supplies.

5.2.3. Cost

Given that hotel operators tend to be reticent about RES investment [8], it was positive
to note that at the current price of electricity, all the energy system variations equipped
with PV installations were less expensive than the hotel’s current system. A simple solution
would therefore be to install all PV technologies at maximum capacity. However, like many
businesses, hotels opt for the most cost-effective solution whenever possible. The cost of
carbon in Europe currently stands at a price of EUR 47 per tonne of CO2 [62]. This cost is
expected to grow significantly over the coming decade, with a price of EUR 90 per tonne of
CO2 expected by 2030 [63]. Although an 8-degree-tilt system with a 31.1% carbon reduction
generated the lowest TAC, an increased carbon reduction level of a further 4.4% correlated
to a TAC increase of EUR 2706. As stated above, this corresponds to a price of EUR 386
per additional tonne of carbon saved. In comparison with the current cost of carbon in
Europe, this seems to be a high price to pay for a further reduction in carbon emissions.
In view of current expectations on trends in European carbon market pricing, it may be
more cost-effective for the hotel to offset its carbon emissions by other means. This is an
important consideration for hotels for which financial gain is the main priority.

5.3. Energy-Saving Strategies

Carbon emissions are closely correlated to energy utilisation, in particular on NIIs [7].
This was demonstrated by results showing that a 20% reduction in energy demand at the
KBH was correlated to a further carbon reduction of 20.9% (32.3 t CO2/annum) of the
already optimised energy system. Given the wide range of services offered by the KBH
and its permanent use of air-conditioning, a number of potential opportunities to reduce
hotel energy use can be envisaged. However, it is important to note that the success rate
of energy-saving strategies is notoriously low [8]. Unfortunately, consumers tend to be
uncircumspect in their use of energy, being invariably unaware of the correlation between
the energy they consume and the cost it generates. This is a major factor influencing
uncontrolled energy use [64]. Without a clear incentive, guests are less likely to comply
with energy-saving recommendations. This implies that energy-saving strategies over
which the hotel proprietor has the most control will be more likely to succeed and reduce
carbon emissions. The strategies which could be envisaged in this context include energy
use charges per room, timers on appliances such as lights and pool heating systems and
more widespread use of high-efficiency appliances [8].
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5.4. Limitations and Future Works

Whilst significant reductions were expected from the optimised energy system at KBH,
the carbon reduction potential was limited by the fact that the energy system was modelled
as a net metering system. This ruled out the possibility of the hotel achieving a zero-carbon
energy system. Even at maximum potential, the PV system could not meet the energy
demand of the hotel throughout the entire year. Further studies investigating the use of local
battery storage at KBH would be of interest in terms of positive effects on stabilizing the
power grid. Local battery storage could be beneficial in case of a grid blackout. However,
there is no incentive in the framework of net metering for such solutions. It should also be
checked if there are plans to change the PV support mechanism.

The energy demand used during this study was a collation of both monthly energy
consumption and daily fluctuations in energy demand recorded at three daily time points
over a period of five days. This data set provided an approximate estimate of the electricity
consumption of the hotel over 8760 time steps. Although adequate for the purpose of this
study, the energy demand time series could have been further refined by recording hourly
electricity consumption readings over a period of a week, a month, or a whole year. This
would have increased the accuracy of the model. However, it was not feasible to gather
data to this degree of granularity during the timeframe of this project and in the absence of
the appropriate technologies.

One risk is that the price development for PV systems is difficult to predict and
thus to plan. The COVID-19-related global health crisis and the war in Ukraine have
consequences on the stability of supply chains. In Europe, it is currently, above all, the
shortage of available truck drivers that is hindering the timely flow of goods and causing
transport prices to skyrocket. The growing deployment of PV requires more raw materials,
more national and international production, and transport capacities, as well as more
skilled workers in the areas of planning, installation, and service. The shortage is also
causing prices to rise for components, but also for assembly. One solution could be the
re-establishment of PV production in Europe, which would also increase local added value
and, at the same time, mean shorter transport distance and thus further CO2 savings.

Another source of uncertainty is the regulatory framework, which in the current
net metering scheme sets very high incentives for the installation of PV systems. These
incentives could become less strong in the future, e.g., through only a partial remuneration
of the electricity fed into the grid. However, since the further expansion of PV is to be
promoted in Greece as in the EU, this risk is to be considered low.

Last but not least, the years of the COVID19 pandemic have shown that the number
of tourists, and thus the occupancy rate of the hotels, could be lower than planned due to
external influences. These are general uncertainties that have an impact on the investment
climate. In further studies, it can be analysed to what extent the investment in solar systems
is worthwhile even if the hotels are only partially occupied.

An increase in the electricity price is taken into account in the study to the extent that
a variation of the price from EUR0.08/kWh to EUR0.30/kWh, which is the exact price of
electricity in March 2022 for commercial end users in Rhodes, was examined within the
framework of a parameter study. A possibly much higher electricity price is probably only
temporary, or if the higher energy costs persist, the price level for PV will also increase
analogously, so the general results of this study remain valid.

Many companies and individuals utilise carbon offsetting schemes to compensate for
their own emissions [65]. This study demonstrated the potential for one hotel to reduce its
carbon emissions by 50 t CO2/annum at an optimal price. It would be of interest to inves-
tigate the feasibility of a scheme offering the opportunity of deploying carbon offsetting
funds to support the construction of RES in buildings with significant carbon reduction
potential. An approach of this kind could eliminate the economic stress factors associated
with RES investments and maximise carbon reductions within the accommodation sector.
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6. Conclusions

By optimising the energy system of the KBH, it was demonstrated that highly efficient
rooftop PV panels installed at a tilt angle favouring summer generation combined with
BIPV balcony panels would increase the PV generation required to mirror a tourist hotel
energy demand profile. As hypothesised, the introduction of a PV net metering system led
to a reduction in both carbon emissions and the costs incurred by the hotel’s energy system.
The simulation showed that if electricity prices were higher than in 2021, installation of
heterojunction PV technology could be part of the most cost-effective scenario, and that
if electricity prices continued to rise, installation of high-efficiency PV would be even
more attractive.

By using the optimisation approach for other NII hotel energy systems, carbon emis-
sions related to the tourist accommodation sector on NIIs could be lowered. Moreover,
the installation of RES within multiple hotel energy systems could ease the strain on over-
stretched NII fossil fuel power plants during the high tourist season and peak temperatures.

As a general finding, it can be stated that the installation of PV systems for local
self-consumption of green electricity is a key measure to reduce greenhouse gas emissions
associated with fossil electricity generation, especially on NIIs. The green electricity pro-
duced could also serve heating and cooling demand by applying heat pumps and electric
air conditioning systems. Furthermore, local, renewable, smart grids could be established
and create synergies by connecting hotel energy systems with other electricity prosumers
on a local level. This could further increase the level of self-consumption of green electricity
on a local level, thus positively affecting total greenhouse gas emissions on NIIs.

Supplementary Materials: The FINE and RESkit models alongside the datasets used during this
study are available at the link below: https://doi.org/10.5281/zenodo.5795964/ (accessed on
21 December 2021).
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