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Abstract: Data driven approaches are utilized for optimal sensor placement as well as for velocity
prediction of wind turbine wakes. In this work, several methods are investigated for suitability
in the clustering analysis and for predicting the time history of the flow field. The studies start by
applying a proper orthogonal decomposition (POD) technique to extract the dynamics of the flow.
This is followed by evaluations of different hyperparameters of the clustering and machine learning
algorithms as well as their impacts on the prediction accuracy. Two test cases are considered:
(1) the wake of a cylinder and (2) the wake of a rotating wind turbine rotor exposed to complex flow
conditions. The training and test data for both cases are obtained from high fidelity CFD approaches.
The studies reveal that the combination of a classification-based machine learning algorithm for
optimal sensor placement and Bi-LSTM is sufficient for predicting periodic signals, but a more
advanced technique is required for the highly complex data of the turbine near wake. This is done
by exploiting the dynamics of the wake from the set of POD modes for flow field reconstruction.
A satisfactory accuracy is achieved for an appropriately chosen prediction horizon of the Bi-LSTM
networks. The obtained results show that data-driven approaches for wind turbine wake prediction
can offer an alternative to conventional prediction approaches.

Keywords: aerodynamics; Bi-LSTM; CFD; data driven; machine learning; POD; wake; wind turbine

1. Introduction

Predicting wind turbine wakes is an important topic in wind farm design and opera-
tion. It is well known that the inflow conditions of wind turbines in the wind farm are highly
influenced by the wake of neighboring turbines. This can result in a significant power
loss and increased transient loads. Numerous analytical, numerical and experimental
investigations were conducted in the past to understand the wakes of wind turbines [1–11].
These models can vary in complexity and fidelity levels.

Capturing the whole physics of wind turbine near wake by means of experimental
approach is a challenging task due to the highly unsteady nature of the flow. Numerous
studies were focused on laboratory scale investigations with controlled flow conditions [4–6].
In contrast, the situation is much more complex in reality, including the effects of wake inter-
action, controller activities and atmospheric flow conditions. These aspects make it difficult
and expensive to capture the whole dynamics of the near wake. Although complex wake
structures can be captured by high fidelity computational approaches, as done in [7–10,12],
they are not suitable for real-time control applications [13]. In contrast, low order methods
are well established in industry because they are cheap and computationally efficient, but the
accuracy depends strongly upon the underlying assumptions and in certain cases they require
a number of empirical corrections [10,14,15].

In recent years, the popularity of machine learning based techniques for reduced order
modeling of physical systems has increased greatly. The same is also true for the data
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reduction techniques for representing the whole system, well known as the optimal sensor
placement. For a high-dimensional system, the cluster-based reduced-order modeling
(CROM) technique proposed by Kaiser et al. [16] enables the derivation of a low-order
kinematic description in the state space and a corresponding probabilistic dynamic model.
A powerful technique for estimating a limited number of optimally placed sensors was
derived by Brunton et al. [17]. The sparse sensor placement optimization for classification
(SSPOC) enables an accurate prediction in classification task. Furthermore, sparse sensor
placement optimization for reconstruction (SSPOR) proposed by Manohar et al. [18] delivers
a useful approach for estimating a small set of sensors which reconstruct a signal with most
possible accuracy.

The great success of machine learning in the recent years is indivisible with huge
improvements of artificial neural networks (ANNs), including recurrent neural networks
(RNNs). The bidirectional long short-term memory (Bi-LSTM) networks are the prime exam-
ple of a powerful RNN type since they include all available sequential information during
computation [19]. Data-driven approaches enable alternative methodologies for predicting
the wind turbine wakes in real-time applications. Ali et al. [13] demonstrated a procedure
applied to large eddy simulation (LES) results of a wind turbine by applying the CROM
and SSPOC for sensors placement estimation and Bi-LSTM networks for wake prediction.
Despite that, these studies were focused on the far wake prediction. Iungo et al. [20] also
attempted to employ data driven technique for wake prediction based on CFD data as ref-
erence, but no spare sensor placement technique was adopted, requiring it to use the entire
flow snapshots. Other studies were found to focus on the SCADA data [21–23] without
providing an estimate on the flow field predictions. Recently, D’Agostino et al. [24,25]
also attempted to use cluster analysis and time series prediction for different applications,
showing the potential of data driven approaches.

The Bi-LSTM method is deemed suitable for complex timeseries prediction, as already
observed in several works. It has been demonstrated in the field of speech recognition
that Bi-LSTM is advantageous for processing the sequential data. For example, Graves
and Schmidhuber [26] have shown that Bi-LSTM outperformed unidirectional LSTM,
bidirectional RNN, unidirectional RNN and MLPs. Further studies included different
applications in timeseries predictions [27–30]. Huang et al. [27] proposed a TSF-CGANs
algorithm for photovoltaic power forecasting, in which Bi-LSTM was adopted. They chose
Bi-LSTM since it showed the best suitability compared to LSTM, RNN, BP, SVM and
Persistence models. Vo et al. [28] predicted the brent oil price, comparing the performance
of LSTM, a combination of CNN and LSTM, a combination of CNN and Bi-LSTM and
a newly proposed model, the so called BOP-BL model, which is similar to the stacked Bi-
LSTM architecture adopted in this work. Based on the studies, they recommend Bi-LSTM
based models for predicting the timeseries data. Le et al. [29] compared the performance
of linear regression, LSTM, CNN-LSTM and CNN-Bi-LSTM for predicting the electric
energy consumption. The CNN-Bi-LSTM model outperformed the other state-of-the-art
models, and this model is highly similar to the approach will be used in the present work,
i.e., the feature extraction in [29] was provided by the CNN module, whereas in this work
the equivalent feature extraction step will be realized through optimal sensor placement for
estimation of the most informative spatial locations in the snapshot data. Based on all these
past studies, it becomes reasonable to adopt the Bi-LSTM method as the major workforce
of the present investigations.

It can be seen that there are still clear gaps in exploiting the potential of data driven
techniques for the near wake predictions of wind turbines. This paper is aimed at filling
these gaps and providing an alternative method for predicting the wind turbine near wake
using data driven approaches. The capability of several methods to predict the wake
will be investigated in this paper. The studies will be carried out for two different cases
with varying complexity levels: (1) the wake of a cylinder and (2) the wake of a rotating
turbine exposed to complex flow conditions. Results from high fidelity computational fluid
dynamics (CFD) computations are used for defining the training and test data for both



Energies 2022, 15, 3773 3 of 40

cases. Initially, a method proposed by Ali et al. [13] will be followed. Since this method was
only tested on the far wake of wind turbine which contained only large scale fluctuations,
this will be proven challenging. To test this attempt, the cylinder case will be contaminated
with the initial transient phase having only a limited amount of learning datasets. This is
intended because the data of the wind turbine case as the core of the studies is also very
limited. Based on the initial cylinder case study, various different approaches will be
adopted for the wind turbine case, ranging from the clustering method using k-means,
Gaussian mixture model, hierarchical agglomerative clustering to reconstruction (based on
regression) approaches.

A proper orthogonal decomposition (POD) technique will be applied for the sake of
data reduction, followed by a k-means clustering in the POD subspace. A linked approach
between CROM and SSPOC will be applied for estimating the small set of optimally
placed sensors. In addition to that, the usage of SSPOR for optimum sensor placement is
further tested to determine the performance of various modeling strategies. By employing
aforementioned machine learning algorithms, most informative sensor locations in the near
wake are to be identified and will be utilized for a further prediction task by means of
the Bi-LSTM networks. This will allow timeseries predictions of the flow field at sensor
locations to be made. Different settings of the employed training, validation and test data as
well as different lengths of input and output timeseries will be investigated. These include
the studies on the optimal number of layers and number of units per layer of the Bi-LSTM
networks by conducting a grid search. The studies will present strategies for appropriately
perform a data reduction technique and for predicting the velocity measurement timeseries
of the near wake of wind turbine exposed to realistic flow conditions.

This paper is organized as following. Section 2 presents detailed description of
the chosen approaches and the employed datasets. The results will be discussed in Section 3,
containing two major parts for the wake of cylinder in Section 3.1 and for the wake of wind
turbine in Section 3.2. All the results will be summarized and concluded in Section 4.

2. Methodology
2.1. High Fidelity CFD Data
2.1.1. CFD Data for Cylinder Computations

The results of a two-dimensional direct numerical simulation (DNS) of a flow around
a cylinder are used here, downloaded from the web page of the computer graphics labora-
tory of the ETH Zürich, from [31]. This dataset was originally used in Günther et al. [32].
The flow domain consists of a channel with two solid walls, which are considered with
a slip boundary condition. From the left, the fluid was injected. Downstream, nearby
the inflow area, a cylinder was placed. For the solution of this 2D viscous flow, the Gerris
flow solver [33], was utilized. For the simulation, an unstructured grid was used with
adaptive discretization regarding the vorticity. To obtain the solution for a regular grid,
a subsequent resampling was performed. Further details are listed in Table 1.

Table 1. Numerical setting (all variables are dimensionless), from [31].

Physical Quantity Value

regular grid resolution (X × Y × T) 640 × 80 × 1501
simulation domain [−0.5, 7.5] × [−0.5, 0.5] × [0, 15]
Reynolds number 160

kinematic viscosity 0.00078125
obstacle at (0, 0) with radius 0.0625

The dataset comprises 1501 snapshots of the flow field, which are referred by a tempo-
ral index it. They are arranged in chronological order with it = 0 . . . 1500. Each snapshot
consists of the velocity components in x- and y-direction given for each grid point. The x-
axis direction corresponds to the downstream flow direction, the y-axis is perpendicular
to it. Figure 1 illustrates the wake characteristics downstream of the cylinder. The dataset
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can be divided into the transient flow initialization phase and a following periodic quasi
steady state.

Figure 1. Flow field in the wake of cylinder during the periodic quasi steady state.

2.1.2. CFD Data for Wind Turbine Computations

For the main investigations in this work, a dataset is considered describing the three-
dimensional fully turbulent flow around a horizontal axis wind turbine and the near-
wake [10]. The dataset consists of 2250 snapshots of the velocity field. They are equally
spaced in time, with a time step between two snapshots of ∆t = 4.115× 10−2 s. Consistent
to the cylinder flow dataset, in the context of this work the snapshots are referred by
their corresponding temporal index it = 0 . . . 2249. Each snapshot provides the velocity
vector at each grid point on the x-z-plane for y = 0 m. The velocity vector contains
the velocity components in x-, y- and z-direction u, v and w, respectively. The uniform grid
in which the velocity field is stored consists of nx = 581 and nz = 251 grid points in x- and
z-direction, respectively.

In the studies, the NM-80 (DanAero) wind turbine was adopted. This turbine has a rated
power of 2.3 MW with a rotor diameter of 80 m. This turbine is also thoroughly investi-
gated within the IEA Wind Task 29 Phase IV, commonly referred as MEXNEXT project [34],
and now within the IEA Wind Task 47, commonly referred as TURBINIA project. The turbine
was measured during the DanAero measurement campaign between 2007–2010 in coop-
eration between the Technical University of Denmark (DTU) and the industrial partners
Vestas, Siemens LM and DONG Energy. The NM-80 turbine measurement was located
in the Tjaereborg wind farm.

The CFD computations were done by employing the FLOWer code [35] with the ad-
vanced DDES (delayed–detached eddy simulation) technique implemented at IAG [36].
The adopted numerical scheme was based on a finite-volume formulation implemented on
block-structured grids. The spatial discretization used a second order central discretization
with artificial damping according to Jameson-Schmidt-Turkel (JST) method [37] in the near
wall area and the 5th order weighted essentially non-oscillatory scheme WENO for re-
solving the turbulent eddies in the wake [38]. The time integration was accomplished by
adopting an explicit multistage scheme. The calculations were done by utilizing the total
number of cells as high as 132 million to properly resolve relevant physical flow characteris-
tics. The turbulent inflow was generated by Mann turbulence box, injected in all directions
as a momentum source term [39] at x = −320 m upstream of the rotor. The simulation
results were validated with experimental data [10], and good agreements were obtained.
Figure 2 illustrates the wake characteristics downstream of the turbine. It can bee seen that
the flow is far more complex than the cylinder case in Figure 1.

Figure 2. Flow field in the wake of a rotating wind turbine showing the complex characteristics of
the flow interactions.



Energies 2022, 15, 3773 5 of 40

2.2. Sensor Placement

For the datasets described in Sections 2.1.1 and 2.1.2, a set of optimally placed sensors was
estimated. Therefore, in the following, two different approaches are reported: (1) classification
based approach in Section 2.2.1 and (2) reconstruction based approach in Section 2.2.2. Firstly,
a similar approach as performed by Ali et al. [13] which utilizes the CROM (cluster-based
reduced-order modelling) [16] in combination with SSPOC (sparse sensor placement optimiza-
tion for classification) [17] was adopted. Furthermore, for the wind turbine case, sparse sensor
placement optimization for reconstruction (SSPOR) proposed by Manohar et al. [18] was applied
as a second distinct technique for optimal sensor placement based on data reconstruction.

2.2.1. Classification Based Approach

A linked approach of CROM in combination with SSPOC was adopted for both
cylinder and wind turbine cases. In detail, a proper orthogonal decomposition (POD)
was conducted with a subsequent clustering analysis by means of the k-means algorithm.
The step of data reduction by means of the POD decreases the computational effort required
for k-means clustering, since the snapshots are represented in the low-dimensional POD
subspace, which reduces the memory requirements significantly. Note that the distance-
based metric of the k-means algorithm is more effective for low-dimensional data [40].
Optimally, the cluster analysis delivers an appropriate partition of the snapshot data
in the state space. Furthermore, each snapshot is labeled with one certain cluster label,
which is necessary for application of SSPOC.

Application of POD in this paper is primarily for dimension reduction, for a more
efficient application of the k-means clustering. In case of an orthonormal basis, the Eu-
clidean distance of the snapshots in the state space is also valid in the mode coefficient
subspace [16]. Hence, application of the k-means clustering in the mode coefficient subspace
is significantly more efficient, since the dimensionality of the POD subspace is significantly
smaller compared to the state space of the snapshots. Physical interpretation and inves-
tigation of the achieved POD modes will be conducted as an additional secondary task.
Since the modes obtained from the other method, e.g., dynamic mode decomposition
(DMD), are not orthogonal in general, DMD was considered less suitable for exploiting this
approximation. Furthermore, in the context of SSPOR, Manohar et al. [18] suggested that
utilization of non-normal modes for sensor selection is still accompanied by some problems
and is subject of ongoing research.

In the preprocessing step, the raw snapshot data was prepared for suitable treatment
by POD and clustering algorithms. A single snapshot contains the velocity components
in x-, y- and z-direction u, v and w, respectively, for each grid point. For each velocity
component separately, the grid point data was rearranged row by row, i.e., after transposing
each row they were all stacked vertically in a column vector. The final snapshot column
vector was obtained by vertically stacking the vectors of each velocity component. Hence,
each snapshot of the raw dataset was rearranged in a column vector. In Equation (1) to
Equation (2), the procedure for rearrangement is illustrated. Variables nx and nz denote
the number of grid points in x- and z-directions, respectively.

 φi
11 . . . φi

nx1
...

. . .
...

φi
1nz

. . . φi
nxnz


it

→



 φi
11
...

φi
nx1


... φi
1nz
...

φi
nxnz




it

with i ∈ 1, 2, 3 ; φ1 = u, φ2 = v, φ3 = w (1)
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 u11
...

unxnz


it

,

 v11
...

vnxnz


it

,

 w11
...

wnxnz


it

→


 u11

...
unxnz


 v11

...
vnxnz


 w11

...
wnxnz




T

it

= q(it) (2)

After estimating the temporal mean vector of the m snapshots

q̄ =
1
m

m−1

∑
i=0

q(it = i), (3)

the fluctuating component of each snapshot was obtained by

x(it) = q(it)− q̄ with it ∈ [0, m− 1] ⊆ N . (4)

All fluctuation vectors were collected in

X = [x(0) x(1) . . . x(m− 1)] . (5)

After estimating X, by means of the modred library [41], the POD was computed.
The number of POD modes to estimate was set to the maximum possible value, since it is
always nPOD ≤ m− 1 [16]. By applying the method of snapshots [42], the desired POD
modes Φi, the corresponding eigenvalues λi and the vectors containing the temporal POD
coefficients a(it) were obtained.

The subsequent clustering analysis of the snapshots was performed in the POD sub-
space, in which each snapshot q(it) ∈ R2nxnz is represented by a(it) ∈ Rm−1. For better
clustering performance the input data was normalized, i.e., transformation of the data
to the range [0, 1] ⊆ R, by means of the MinMaxScaler provided by the Python package
scikit-learn [43]. The k-means clustering was performed for different values of k, since
the appropriate number of clusters k was unknown beforehand. By means of the elbow
method and silhouettes, an appropriate k should be chosen.

Instead of random seeding in case of the standard k-means algorithm, k-means++ is
applied here for better performance. Finally, one obtains the centroids c1, . . . , ck, the snap-
shot labels y = [y1, . . . , ym] and the inertia I (sum of squared distance of snapshots to its
corresponding centroids).

An eigenvalue λj can be considered as a measure of the contributed portion of a POD
mode Φj to the total fluctuation kinetic energy. To capture the portion εPOD of kinetic fluctuating
energy, the number r of minimum required first POD modes can be estimated with:

r = arg min
r′
{r′}, subject to εPOD ≤

∑r′
j=1 λj

∑nPOD
j=1 λj

, (6)

with nPOD denoting the total number of POD modes. To investigate truncation of POD
modes, the four setups listed in Table 2 were considered for k-means clustering for the wind
turbine case. For the cylinder wake, all available POD modes were considered. In each
case, only the first r POD modes were considered to capture the fraction εPOD of the total
fluctuating kinetic energy. The respective kmax for each setup is also listed. In case of
the cylinder wake dataset, subsequent to the CROM, SSPOC was applied for optimal
sensor placement. The dataset was split up into training and test data for model training
and error evaluation, respectively. The optimum parameters of the SSPOC model were
estimated employing the Bayesian optimization, Gaussian mixture model and hierarchical
agglomerative clustering.
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Table 2. Different settings for k-means clustering for the wind turbine case.

Setup r kmax εPOD in %

1 2249 300 100
2 11 20 45
3 19 50 59
4 27 75 69

2.2.2. Reconstruction Based Approach

For the wind turbine dataset, additionally, a further approach for optimal sensor
placement was employed. Sparse sensor placement optimization for reconstruction (SSPOR)
proposed by Manohar et al. [18], is a powerful technique to estimate optimally placed
sensors tailored on a specific type of signal for a maximum possible signal reconstruction.
In this context the python package PySensors [44] was used.

Within the framework of SSPOR, an SVD is conducted and the snapshot data is
represented in the POD subspace. It is possible to truncate higher POD modes; hence, they
are not used as basis modes. It is assumed that the number of used POD modes compared
to the total number of available POD modes has a substantial influence on the accuracy
of the flow field reconstruction based on the estimated sensors. This assumption is based
on the argumentation that each POD mode captures some portion of the flow dynamics
and by truncation of dominant POD modes it is not possible to reconstruct the dominant
flow structures. In the following, the conducted investigations regarding the influence
of the number of used basis modes on the reconstruction accuracy are described. Firstly,
the reconstruction error based on the number of basis modes was considered. Furthermore,
the statistical properties of predicted and true signals at some few spatial locations were
compared for variation of the number of used basis modes. In all cases the number of
sensors was always set equal to the number of basis modes.

The preprocessing step of the snapshot data is always the same. The raw snapshot
data was rearranged in column vectors, as already described in Section 2.2.1. According
to Equations (1) and (2) for each velocity component the data of a single snapshot was
rearranged in a column vector and the distinct vectors were stacked vertically so that
finally each snapshot was rearranged in a separate column vector. The snapshot data
was split up into a training set X train and test set X test in the ratio of 3:1, i.e., the first
mtrain = 1688 snapshots were used for training and the last mtest = 562 snapshots were
used for evaluation of the reconstruction error.

a. Variation of basis modes

For a desired number of basis modes r, by means of SSPOR it is possible to estimate
a set of sensors which are optimally placed in the near-wake. With measurements obtained
from these sensors, the corresponding flow field can be reconstructed with some error.
In the following, the dependency between the reconstruction error and the number of used
basis modes r should be investigated. Hence, different values of r within SSPOR are to be
applied and the reconstruction error will be evaluated. The number of sensors is always
set to ns = r. Hence, the dependency between the reconstruction error and the number of
sensors is implicitly considered as well.

For a given r, a SSPOR model is fit to the training data X train. Thus, a set of optimally
placed sensors is obtained. Each snapshot of the test data X test is sampled at the estimated
sensor locations and a reconstruction of each snapshot is made. The reconstruction error
is estimated by comparing the reconstructed and true snapshots of the test data. Here,
the root-mean-square error (RMSE) over the entire test data is considered:

RMSE =

√√√√ 1
mtest

mtest

∑
i=1

(
1

3nxnz

3nxnz

∑
j=1

(qij,pred − qij,true)2

)
, (7)
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with qij,pred denoting the predicted velocity component at grid point j for the i-th test
snapshot and qij,true representing the corresponding true value. Values of r were chosen
from different intervals [rmin, rmax] ⊆ N with a corresponding step size sr. In Table 3,
the settings are summarized.

Table 3. Different setups for variation of basis modes.

Setup rmin rmax sr

1 1 20 1
2 1 201 10
3 301 1001 100

b. Estimation of the smallest possible set of sensors

Since the evaluation of the reconstruction error over the whole flow field is compu-
tationally expensive, in the following another approach for evaluating the reconstruction
error was applied.The reconstructed and true test data snapshots are evaluated at np = 10
measurement points, according to the following equation:

RMSE =

√√√√ 1
3np

np

∑
i=1

(
(ui,pred − ui,true)2 + (vi,pred − vi,true)2 + (wi,pred − wi,true)2

)
, (8)

where ui,pred, vi,pred and wi,pred denote the reconstructed velocity components in x-, y- and
z-direction, respectively, for the i-th point. Variables ui,true, vi,true and wi,true denote the cor-
responding true values. The measurement points are arranged vertically at x = 240 m with
equal spacing in z = 11.5 m . . . 113.5 m, as depicted in Figure 3.

Figure 3. Vertically placed measurement points (white rhombuses) used for error estimation. Snap-
shot at it = 0 in the background.

A final set of sensors as small as possible should be estimated. This is needed to enable
real application because each sensor placed in a wind farm increases the installation and
maintenance costs in practice. For further evaluation, some additional metrics are considered,
which are derived in the following. The mean of the true signal at point ip is given by

ūip ,true =
1

mtest

mtest

∑
j=1

ujip ,true, (9)

with ujip ,pred(r) denoting the reconstructed velocity component in x-direction at measure-
ment point ip for the j-th snapshot of the test data and ujip ,true(r) being the corresponding
true value. The averaged signal mean over all measurement points can be estimated with

ūtrue =
1

np

np

∑
ip=1

ūip ,true . (10)
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Equations (9) and (10) refer to the velocity component in x-direction, but also apply
accordingly for the velocity components in y- and z-directions. For the total mean of
the true signals, one obtains

x̄true =
1
3 ∑

c∈{u,v,w}
c̄true . (11)

Accordingly, for the variance of the true signals similar formulations can be given:

s2
ip ,u,true =

1
mtest − 1

mtest

∑
j=1

(ujip ,true − ūip ,true)
2 (12)

s2
u,true =

1
np

np

∑
ip=1

s2
ip ,u,true (13)

s2
true =

1
3 ∑

c∈{u,v,w}
s2

c,true . (14)

A similar formulation for the mean and variance of the reconstructed signals can
be given. However, the dependency of r must be considered. Hence, for the mean of
the reconstructed signals, one obtains

ūip ,pred(r) =
1

mtest

mtest

∑
j=1

ujip ,pred(r) (15)

ūpred(r) =
1

np

np

∑
ip=1

ūip ,pred(r) (16)

x̄pred =
1
3 ∑

c∈{u,v,w}
c̄pred(r) . (17)

Finally, for the variance of the reconstructed signals, it is

s2
ip ,u,pred(r) =

1
mtest − 1

mtest

∑
j=1

(ujip ,pred(r)− ūip ,pred(r))2 (18)

s2
u,pred(r) =

1
np

np

∑
ip=1

s2
ip ,u,pred(r) (19)

s2
pred(r) =

1
3 ∑

c∈{u,v,w}
s2

c,pred(r) . (20)

For each number of basis modes

r ∈ {1, 6, 12, 17, 23, 28, 34, 39, 45, 51}, (21)

SSPOR was applied and the reconstructed snapshots were evaluated. In this sense,
ns = r was chosen accordingly.
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2.3. Wake Prediction
2.3.1. Wake Prediction for Cylinder Case

For the velocity measurements at the sensor locations, predictions should be made. In this
work, a data-driven approach was applied. By means of a bidirectional LSTM (Bi-LSTM) net-
work predictions of ouptut timeseries based on input timeseries should be made. For estimating
the appropriate hyperparameters, several grid searches were conducted for different settings.
Different sets of training and test data were derived for investigating the learning performance
of Bi-LSTM networks regarding periodic flow data, unsteady flow data and a dataset containing
both cases.

For the investigations conducted in this work, a stacked Bi-LSTM architecture was
chosen as depicted in Figure 4. The input data is processed through nl Bi-LSTM layers
with nu units per each layer. A single-layer perceptron (SLP) was used as output layer,
with each unit connected to each unit of the previous layer. For the units of the output
layer, the linear activation function was applied. Meanwhile, the tanh-function was used as
activation function for the Bi-LSTM layers and the sigmoid-function was used for the gates
of the Bi-LSTM units. The loss was estimated by means of the root-mean-square error
(RMSE) between the validation data and its predicted values. For training of the Bi-LSTM
network, the Adam algorithm was applied. In this context, the keras [45] submodule of
TensorFlow [46] was used.

Figure 4. Stacked Bi-LSTM structure adopted in the present studies.

From the snapshot data at the locations of the estimated optimally placed sensors,
the velocity component u (i.e., in x-direction) was extracted for each time step. Hence,
for each sensor a timeseries can be derived:

(uis ,1, uis ,2, . . . , uis ,m) with is = 1, . . . , ns . (22)

For a suitable treatment with Bi-LSTM, the data was normalized, i.e., the data was
transformed into the range [0, 1] ∈ R. The raw timeseries are too long for an appropriate
treatment with Bi-LSTM. In practice, timeseries are often used containing not more than
250 to 500 observations [47]. Hence, the timeseries were preprocessed using a sliding
window approach. All sensors were considered as input data. In the context of this dataset,
predictions should only be made for sensor 4. This was arbitrarily chosen, but each of
the remaining sensors is also a possible choice. Hence, the output timeseries contain only
data of sensor 4. With the desired number of observations contained in a single input and
output series nin and nout, respectively, the preprocessing of the raw timeseries applies as
followed. The set of derived timeseries

S = (Sin, Sout) (23)

contains the column vector Sin comprising the input timeseries, with its elements defined by

Sin,(its+1) =




u1,its
u2,its

...
uns ,its

,


u1,its+1
u2,its+1

...
uns ,its+1

,


u1,its+2
u2,its+2

...
uns ,its+2

, . . . ,


u1,its+nin−1
u2,its+nin−1

...
uns ,its+nin−1


 with its ∈ [0, nts − 1] ⊆ N (24)

and the column vector Sout comprising the output timeseries, with its elements defined by
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Sout,(its+1) = (u4,nin+its , u4,nin+its+1, u4,nin+its+2, . . . , u4,nin+its+nout−1) with its ∈ [0, nts − 1] ⊆ N , (25)

with its denoting the index of a single derived timeseries. One obtains nts = m− nin −
nout + 1 derived timeseries. uis ,j denotes the measurement of the velocity in x-direction at
sensor is for it = j. The timeseries rearrangement procedure applied the Python function
series_to_supervised from Brownlee [48].

It is not necessary to use all of the derived timeseries. It is also possible to specify
subintervals of the total considered time range it ∈ [0, m− 1] ⊆ N, with m being the number
of snapshots,

it,train ∈ [itrain,start, itrain,stop] ⊆ [0, m− 1] ⊆ N (26)

it,test ∈ [itest,start, itest,stop] ⊆ [0, m− 1] ⊆ N , (27)

and use only the corresponding derived timeseries as training and test data. In general,
the training data is used for training of a Bi-LSTM network, whereas the learning progress
is validated with the test data.

For estimating of optimal hyperparameters for each of the different settings, a grid
search was conducted. For a given setting, the search space is spanned by the number of
Bi-LSTM layers nl and the number of units per layer nu

nl ∈ {2, 5, 10, 20} (28)

nu ∈ {5, 25, 50, 100, 200}. (29)

The maximum values were limited by the available computing resources. For each
point (nl , nu) of the parameter grid, a Bi-LSTM network was trained for twenty epochs and
with a batch size of thirty-two. RMSE according to Equation (30) was used as the objective
for the grid search. The RMSE was estimated in each case after the inverse normalization of
the data, i.e., the error validation was performed with data in the original range of values.

RMSE =

√
1

mtest

mtest

∑
i=1

(u4,i,test − u4,i,pred)2 , (30)

with mtest denoting the number of snapshots comprised in the test data, u4,i,test being
the true value of sensor 4 at instant it = i and u4,i,pred representing the corresponding
value predicted by the Bi-LSTM network. Different sets of training and test data and
different lengths for input and output series were investigated. In Table 4, the setups are
summarized. For each setup, a grid search was conducted as described above.

Table 4. Different setups for the performance of a grid search.

Setup Type of Flow nin nout it,train it,test

1 periodic 50 200 [751, 1125] [1126, 1500]
2 unsteady 50 200 [0, 524] [525, 799]
3 periodic & unsteady 50 200 {[175, 474], [901, 1200]} {[475, 774], [1201, 1500]}
4 periodic & unsteady 25 100 {[175, 474], [901, 1200]} {[475, 774], [1201, 1500]}
5 periodic & unsteady 50 50 {[175, 474], [901, 1200]} {[475, 774], [1201, 1500]}

In the 1st setup, only data with periodic flow conditions was used. The number of ob-
servations contained in each input and output timeseries was set to nin = 50 and nout = 200,
respectively. For the 2nd setup, only data from unsteady flow conditions was used. In the
3rd setup, data for both flow conditions, periodic and unsteady, were considered to investi-
gate the capability of Bi-LSTM network of learning different flow conditions simultaneously.
In setup 4, nin and nout are reduced to half the values in the previous setup. To investigate the Bi-
LSTM performance for equal lengths of input and output series, it was set nin = nout = 50
in setup 5. For setups 3, 4 and 5, the same training and test datasets were used.
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2.3.2. Wake Prediction for Wind Turbine Case

In this paper, velocity measurements in the near wake of the turbine will be predicted
by means of a Bi-LSTM network. Formally, the prediction task can be categorized as univari-
ate multistep timeseries forecasting. In the context of this work, the estimation of optimal
sensor locations could be regarded as an equivalent to feature selection in the context of
CNN. SSPOR delivers the most informative locations in the flow field. This was done to
provide the most appropriate locations to install “physical sensors” in the wake to extract
the most useful data. This is primarily useful for wind turbine control purpose. Hence,
no further feature selection was conducted. The stacked Bi-LSTM architecture was chosen
for a most suitable capturing of the highly nonlinear temporal dependencies within each
single sensor signal. The procedures are similar to those of the cylinder flow investigations
(see Section 2.3.1).

a. Spatial sensor data split

The set of sensors was randomly divided into a training set and a test set with a ratio
of 3:1. In Figure 5 the sensor division is illustrated. For the training sensors, the entire time
range was temporally divided in a training interval and a validation interval, again with
a ratio of 3:1. In contrast to the approach described in Section 2.3.1, here the data is split up
to training, validation and test data. The training data was used for the training of Bi-LSTM
networks, with a simultaneous monitoring of the learning progress by means of the val-
idation data. An obtained Bi-LSTM network was finally tested on the independent test
data to evaluate the performance of the model and its ability of generalization. A Bi-LSTM
network should be designed which is capable to predict sensor timeseries without explicitly
specifying which particular sensor is considered. Hence, the networks were trained with
timeseries from all training sensors, but during training it was not specified which sensor
belongs to which timeseries. The intent behind this approach was to obtain a Bi-LSTM
network which can be applied to an arbitrary test sensor without specifying its location
in the flow field.

Figure 5. Training sensors (green) and test sensors (red) with snapshot at it = 0 as background.

b. Standard setup

In the context of this work, a stacked Bi-LSTM architecture was chosen, as depicted
in Figure 4. The input timeseries are processed through nl Bi-LSTM layers with nu units
per each layer. A single-layer perceptron (SLP) was used as output layer, with each unit
connected to each unit of the previous layer. For the units of the output layer the linear
activation function was applied, as activation function for the Bi-LSTM layers the tanh-
function was used and for the gates of the Bi-LSTM units the sigmoid-function was used.
The network loss was estimated by means of the mean squared error (MSE) between
the validation data and its predicted values:

MSE =
1

nts

nts

∑
i=1

(
1

mval

mval−1

∑
j=0

(uij,pred − uij,true)
2

)
. (31)
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Here, nts denotes the number of timeseries used for validation of the Bi-LSTM network,
mval denotes the number of observations contained in a single validation timeseries, uij,true
is the j-th timeseries observation of the i-th validation series and uij,pred is the corresponding
prediction. For training of the Bi-LSTM network, the Adam algorithm was applied.

By extracting the measurements of the velocity at each sensor location, one obtains
ns = 20 raw timeseries. In this work, only the velocity component in x-direction is considered:

(uis ,1, uis ,2, . . . , uis ,m) with is = 1, . . . , ns . (32)

The timeseries were normalized to the range [0, 1] ∈ R for suitable treatment by Bi-
LSTM networks. In practice, for treatment with Bi-LSTM networks, timeseries are often
used containing not more than 250 to 500 observations [47]. Since the raw timeseries are
too long for an appropriate treatment with Bi-LSTM networks, they were preprocessed
using a sliding window approach. With the desired number of observations contained
in a single input and output series nin and nout, respectively, the preprocessing of the raw
timeseries applies as follows. From a raw timeseries of a certain sensor is, a set of shorter
timeseries is derived, which divides into input series and output series for subsequent
Bi-LSTM training:

Sis = (Sis ,in, Sis ,out) . (33)

The column vector Sis ,in comprising the input timeseries is defined by its elements

Sis ,in,(its+1) =
(
uis ,its , uis ,its+1, uis ,its+2, . . . , uis ,its+nin−1

)
with its ∈ [0, nts − 1] ⊆ N (34)

and the elements of the column vector Sis ,out comprising the output timeseries are defined by

Sis ,out,(its+1) = (uis ,nin+its , uis ,nin+its+1, uis ,nin+its+2, . . . , uis ,nin+its+nout−1) with its ∈ [0, nts − 1] ⊆ N . (35)

Consequently, one obtains nts = m− nin − nout + 1 derived timeseries from the raw
timeseries of sensor is. ui,j denotes the measurement of the velocity in x-direction at sensor
i for it = j. For implementation of the timeseries rearrangement procedure the Python
function series_to_supervised from Brownlee [48] was used.

The previous scheme was applied to the raw timeseries of each sensor. In case of the test
sensors, the complete time interval it = 0 . . . 2249 was considered for derivation of the test data.
In case of the training sensors, the above given scheme was applied to the training time interval
it = 0 . . . .1686 and the validation time interval it = 1687 . . . 2249 separately for derivation of
the training and validation data, respectively. Finally, each of the derived sets of timeseries for
training, validation and test data is split up into input and output data:

X train, ytrain (36)

Xval , yval (37)

X test, ytest. (38)

To find an appropriate network configuration, a grid search was conducted. The parame-
ters of the grid search were the number of Bi-LSTM layers and the number of units per each
layer. The number of layers was varied between two and eleven, with a step size of three.
The number of units per layer was varied between five and fifty, with a step size of fifteen.
The choice of this parameter grid was, among other things, influenced by the limitation of
computational resources. In Table 5, further settings for the grid search are listed.
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Table 5. Grid search settings for the spatial sensor data split.

Quantity Symbol Value

layers nl {2, 5, 8, 11}
units per layer nu {5, 20, 35, 50}

epochs ne 20
batch size sb 32

input window width nin 150
output window width nout 150

With the best setup determined from the grid search, a subsequent training was
conducted. However, this time the number of epochs was not fixed to twenty. Instead,
an EarlyStopping callback and a ModelCheckpoint callback, provided by keras, were ap-
plied to estimate the optimal number of training epochs. By means of the ModelCheckpoint
callback, the validation loss over the number of epochs was monitored and the model with
the overall minimum validation loss was saved finally, i.e., the optimally trained Bi-LSTM
network was estimated. This prevents overfitting, which is indicated by a decrease of
the validation loss over epochs curve until a minimum and a subsequent increase [49].

By means of the EarlyStopping callback, an adaptive training abortion is employed.
The validation loss is monitored and the learning process is stopped, if the validation loss
does not improve for a specified number of epochs. Here, the epochs limit is set to 25.
Finally, for the best hyperparameters estimated from the grid search, a Bi-LSTM network
trained with the optimum number of epochs is obtained. Subsequent to the training process,
the model is evaluated by making predictions on the test sensor timeseries.

c. Adjusted window size

By means of the autocorrelation function (ACF) it can be estimated whether a time-
series is autocorrelated or not [50]. To adjust the length of the input and output timeseries
in a more reasonable way, here ACF was applied for estimation of appropriate values of
nin and nout. For calculation of ACF the Python module statsmodels [51] was used. It was
assumed that for an appropriate window length, all observations of a certain timeseries
are autocorrelated.

By means of ACF for all training sensor timeseries, the maximum number of time
steps were estimated for which all observations of one timeseries are correlated. The overall
minimum number was chosen in such a way that a correlation between all observations of
a certain timeseries derived by the sliding window approach is ensured. As criterion for
statistical significance, the 95% confidence interval was used. With the estimated maximum
reasonable time lag lmax, the necessary number of observations nobs in a timeseries is
obtained by

nobs = lmax + 1. (39)

Hence, the number of observations contained in a single input and output series nin
and nout, respectively, was each set to nobs. With adjusted settings for nin and nout, the grid
search described in the previous section was conducted again. The changed parameters are
listed in Table 6.

Table 6. Grid search settings with adjusted window lengths.

Quantity Symbol Value

input window width nin 46
output window width nout 46
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3. Results and Discussion
3.1. Cylinder Case
3.1.1. Sensor Placement

Considering the first three POD modes in Figure 6, a regular periodic pattern can
be observed for the first and second modes, capturing the large scale vortex structures of
the Kármán vortex street. The temporal POD coefficients of the first two modes, shown
in Figure 7, also reveal a periodic behavior. The envelope begins to increase from it ≈ 200
on and reaches a constant value for the periodic steady state. It can be seen that both
coefficients are phase-delayed. A phase shift of around a quarter period time can be
estimated. The interaction of POD mode 1 and 2 describes the fluctuation dynamics of
the large vortex structures in the wake. This is consistent with observations described
by Weiss [52] of a two-dimensional flow around a cylinder at Re = 100. In contrast to
the POD modes described by Weiss, [52], here 18 POD modes are necessary to capture
90% of the fluctuation kinetic energy, not only two. A reason for this discrepancy could
be the different Reynolds number (here it is Re = 160). Another aspect could be the fact,
that here a significantly larger flow domain is considered. This could be a reason for
more complex POD modes and a wider distribution of the fluctuation kinetic energy
among the POD modes. Another reason could be the fact that the dataset is comprised by
the transient flow initialization and the followed periodic quasi steady state flow.

Figure 6. First three POD modes from the cylinder case. Top: 1st mode, middle: 2nd mode, bottom:
3rd mode.

Figure 7. Temporal coefficients of POD mode 1 and 2 over the snapshot index.

POD mode 3 exhibits a significantly different structure, as can be seen in Figure 6.
It has some similarity with the time-averaged mean velocity field. It seems like it represents
rather a translational portion of the flow than a periodic convection of the vortices. A closer
look at the temporal coefficient of the 3rd POD mode in Figure 8 indicates the representation
of the transient evolution for the flow initialization.
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Figure 8. Temporal coefficient of POD mode 3 over the snapshot index.

Following the POD, k-means clustering was applied to the snapshots in the POD subspace.
The obtained values of the inertia I for different k are evaluated. The points above the ’elbow’
point indicate that an increase of k leads to no more significant improvement of the inertia.
According to the elbow method, for the following investigations it was chosen k = 6.

In Figure 9, a visualization of the CTM (cluster transition matrix) is given. The yellow
squares on the main diagonal show that between most of the snapshots, the assigned
cluster remains the same. However, there are some transitions between different clusters,
which are indicated by the green and dark purple squares. In Figure 10 an equivalent
visualization is shown, however, with the number of transitions from cluster Ck to cluster Cj
of the CROM. The column indices correspond to cluster Ck and the row indices correspond
to cluster Cj. It can be seen that the dark purple squares in Figure 9 correspond to cluster
transitions, which occur only once in the used dataset. Furthermore, the main diagonal
entry of cluster 2 contains a larger number than the other main diagonal entries, because the
snapshots of the flow initialization until it ≈ 440 were assigned to cluster 2. During the
flow initialization, the snapshots in the POD subspace were clustered in a single cluster.
This means, in the POD subspace and thus also in the state space, the snapshots of the flow
initialization are more similar to each other than to the remaining snapshots. At around
it ≈ 440, some cluster transitions occur between clusters 2 and 3. After the transition
from clusters 2 to 5, from it ≈ 450 onward the temporal development shows a clearly
periodic progression.

Figure 9. Visualization of the cluster transition matrix (CTM). Transition occurs from cluster Ck to cluster Cj.
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Figure 10. Visualization of the number of transitions from cluster Ck to cluster Cj.

By applying the approach described in Section 2.2.1, the results presented in Table 7 are
obtained. The corresponding SSPOC model achieved a classification accuracy of a = 96%
for the test dataset. The estimated sensor locations are depicted in Figure 11. The sensors
are placed at different locations. Three sensors are located downstream the cylinder,
approximately one and a half times the diameter of the cylinder. These sensors are placed
in the area of vortex shedding. Further sensors are placed more downstream. It can be
seen that the sensors 4 to 7 as well as the sensors 8, 9 and 10 are aligned in the downstream
direction. Furthermore, it should also be noted that sensors 1, 4 and 5 as well as sensors
6 and 7 are placed each with a distance of approximately half the diameter of a single
vortex. Sensors 8, 9 and 10 are placed each with a distance of approximately a quarter
of the diameter of a single vortex. The estimated sensor locations seem reasonable for
optimally capturing the flow state dynamics.

Table 7. Optimum values for sensor placement by means of SSPOC.

Symbol Value Explanation

ns 11 number of sensors
λ 2.755× 10−3 `1-penalty
r 66 number of basis modes

Figure 11. Sensor locations with snapshot at it = 1500 as background.

For the entire snapshot dataset, classification predictions were made based on the sensor
measurements. The classification predictions are compared to the true values in Figure 12. It can
be seen that the predicted values agree very well with the true values. Besides the omitted
cluster transition 3→ 5 at it ≈ 445, solely some cluster transitions were predicted a few time
steps too early or too late, but no significantly wrong predictions were made.
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Figure 12. True and predicted cluster assignment over the snapshot index it.

3.1.2. Wake Prediction

In this section, the wake prediction results for the cylinder case are presented. Figure 13
presents the time history of the streamwise velocity at sensor 4. The early transient parts of
the flow field are clearly observed before the periodic characteristics occur from the snapshot
data number 800 on. The division between the training and test datasets according to Table 4
is marked in green and red shading.

Figure 13. Velocity timeseries at sensor 4 and the considered time ranges. The time intervals from
which data was used for training and test data are colored in green and red, respectively. Top: setup
1, middle: setup 2, bottom: setup 3, setup 4 and setup 5.

The validation loss values obtained from the grid search of setup 1 are visualized
in Figure 14. High values are indicated by darker gray tones, whereas low values are
indicated by brighter gray tones. The best results are obtained for nl = 2 Bi-LSTM layers
and nu = 200 units per layer. It can be seen that higher number of units tend to achieve
better results. However, a higher number of layers does not yield better predictions. It can
be clearly seen that the Bi-LSTM replicates the periodical variations of the streamwise
velocity. However, a slight vertical offset of the predicted curve can be seen. Furthermore,
the predicted curve is not as smooth as the test data, exhibiting some small fluctuations due
to random noise being superimposed to the signal. Nevertheless, the trend is estimated
well by the model.

Figure 15 presents the observation for setup 2, which includes the transient part of
the flow. The best accuracy is obtained for nl = 2 Bi-LSTM layers and nu = 5 units per
layer. It can be seen that in case of nl = 2 with higher values of nu, higher prediction
errors occur. In case of more than two Bi-LSTM layers, independent of the number of
units, higher prediction errors are obtained. The fact that the minimum possible values for
the hyperparameter are estimated already suggests that no satisfactory results are actually
obtained. This is clearly shown in the timeseries reconstruction results in Figure 15.
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Figure 14. Heatmap and timeseries reconstruction for setup 1 of the cylinder case.

Figure 15. Heatmap and timeseries reconstruction for setup 2 of the cylinder case.

For setup 3, data of periodic and unsteady flow conditions were employed for training
and test data. For nl = 2 and nu = 200 the optimal configuration was estimated, see
Figure 16. The same values for the optimum hyperparameters are also obtained as for
setup 1. The timeseries reconstruction interval is located in the time range in which the flow
initialization merges into a periodic steady state flow (Figure 13). The periodic fluctuations
are captured up to a certain point. However, the higher amplitude of the first wave crest
of the true signal is not predicted correctly. Furthermore, the predicted signal exhibits
a significant amount of noise.

Figure 16. Heatmap and timeseries reconstruction for setup 3 of the cylinder case.

As well as for setup 1 and setup 3, the optimum of the grid search for setup 4 was
obtained for nl = 2 layers and nu = 200 units. The timeseries reconstruction is given for
it = 500 . . . 599 in Figure 17. It is clearly visible that the transient signal was not predicted
correctly. Also here, just a periodic fluctuation of the predicted signal can be observed,
superimposed by some noise.
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Figure 17. Timeseries reconstruction for setup 4 of the cylinder case.

For setup 5, the obtained optimum hyperparameters are nl = 2 and nu = 100.
The timeseries reconstruction in Figure 18 demonstrates that the Bi-LSTM network has a dif-
ficulty in predicting the transient signal. However, a certain tendency of the true signal
is captured. As observed in the previous setups, the predicted signal seems to replicate
the well learned periodic structure of the training data, with an additional amount of noise.

Figure 18. Timeseries reconstruction for setup 5 of the cylinder case.

It is possible to approximate a function by means of a feedforward network consisting
of at least one hidden layer with a nonlinear activation function and one linear output
layer. As long as the network comprises enough hidden units, any desired error greater
than zero can be achieved [53]. Assuming that this relationship is also fulfilled for Bi-
LSTM networks, this confirms the assumption that, for setup 1, setup 3 and setup 4,
possibly better results will be obtained for a higher number nu. In general, deeper neural
networks capture more information of a dataset [54]. Conversely, the captured information
in the Bi-LSTM networks estimated in setup 1, setup 3, setup 4 and setup 5 seem to be less
complex, since only two layers are deemed as optimum. The periodic signals are predicted
appropriately, whereas the models have difficulties in reconstructing the transient signals.
Hence, the estimated low optimum values for nl are in accordance with the clearly visible
simple structure of the well learned periodic signals. Presumably, with more training data
of transient flow conditions available, better predictions can be achieved for unsteady flow
data. It seems logical that for datasets comprising unsteady flow conditions, more complex
relations can be observed. Hence, more data is necessary to capture all statistical relations.
Since the dataset used in this context contained only a relatively small amount of snapshots
showing unsteady flow conditions, it seems plausible that no accurate predictions for
transient signals were achieved (timeseries at early simulation period after it starts building
starting vortices). This poses a real challenge for the wind turbine near wake reconstruction
because the CFD data is scarce and the flow field is far from being periodic. This limited
data for the cylinder case is intended to test the adopted method from Ali et al. [13]. This is
true in reality because the real wind turbine case is very complex and obtaining enough
data for the near wake region will be proven difficult. It has been demonstrated that
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the method already suffers from the data scarcity and non-periodic variations. Therefore,
various different approaches will be evaluated for the wind turbine case and further details
will be given in Section 3.2.

3.2. Wind Turbine Case
3.2.1. Sensor Placement
a. POD results

From the POD analysis, 2249 modes were obtained. Figure 19 shows the flow charac-
teristics governed by three distinct POD modes: mode 1, mode 5 and mode 15. The lower
POD modes capture the large scale flow structures. The higher the POD modes, the smaller
the scale of the flow structures. The 1st POD mode captures the large flow dynamics at
the beginning of the wake recovery at x ≈ 145 m. This POD mode also indicates the devel-
opment of vortex structures due to ground interactions of the flow at x ≈ 80 m. POD mode
5 shows more detailed patterns. The flow dynamics of detached vortices near the ground
at x ≈ 80 m is clearly shown. More downstream, a clearly visible mixing of the flow is
present. The presence of the bade tip vortices as well as the wake of the wind turbine
hub are slightly visible in POD mode 15. In the near ground region, the interaction of
the blade tip vortices with the ground boundary layer and the sheared inflow, respectively,
can be seen. It can be noticed that the vortex structures in the ground area increase more
downstream. The beginning of the wake recovery at x ≈ 145 m is also captured. Higher
POD modes, corresponding to low eigenvalues, only capture some small scale dynamics.
At POD mode 500, for instance, high resolution correlation structures in the turbine hub
wake and in the upper region of the wake recovery are present.

Figure 19. Visualization of three different POD modes of the near wake for the wind turbine case.
From top to bottom: mode 1, 5 and 15, respectively.

In Figure 20, the value of each eigenvalue is depicted. The accumulated fluctuation
kinetic energy portion of the first i POD modes relative to the total fluctuating kinetic energy
is shown. It can be clearly seen that the main portion of the fluctuation kinetic energy of
the flow is captured by only approximately 10% of the POD modes. More detailed, around
90% of the fluctuation kinetic energy is captured by the first 22 POD modes, around 99% is
captured by the first 198 POD modes. As observed in the case of the flow around a cylinder,
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the higher POD modes contribute no significant amount of fluctuation kinetic energy to
the total amount.

Figure 20. Contribution of POD modes to the total fluctuation kinetic energy and the cumulative
portion of POD modes to the total fluctuation kinetic energy.

Considering the mean velocity field in Figure 21, some time averaged properties
of the wake are revealed. The contour plot of u shows a clear delimitation between
the unperturbed flow and the wake of the wind turbine. A distinct velocity deficit of
the flow, which interacts with the rotor blades, is present. The wake of the turbine hub
reduces more downstream and vanishes in the wake recovery region. In the lower region
of the wake, the interaction of the blade tip vortices with the sheared velocity profile leads
to instabilities more upstream than in the upper region of the wake, where the blade tip
vortices evolve in a more delimited area. Approximately one rotor diameter downstream
the wind turbine, the wake recovery is clearly visible. Highly turbulent structures lead to
a significant mixing of the flow.

Figure 21. Time averaged mean velocity field in the wake of the wind turbine case.

In Figure 22 the temporal developments of the POD coefficients of mode 1, 5 and 15
are depicted. A very transient character is clearly visible. The representative of higher
POD modes is plotted in Figure 23. The signal exhibits significantly higher frequencies.
In general, the temporal progression of the POD coefficients shows no obvious regular
macroscopic patterns.

The results obtained from the POD reveal a significantly higher complexity of the dataset
compared to the cylinder flow dataset. Different POD modes capture flow characteristics
over a wide range of spatial resolution. This corresponds to the different turbulence length
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scales of the high resolution turbulent flow data. The temporal POD coefficients show no
obvious regular patterns in their temporal progressions.

Figure 22. Temporal POD coefficients of mode 1, 5 and 15 over the snapshot index.

Figure 23. Temporal POD coefficient of mode 500 over the snapshot index.

b. Clustering and reduced order modeling
b.1 Based on k-means clustering

In this section, sparse sensor placement results based on the classification approach
are presented. The adopted approach is similar to what has been done for the cylinder case
in Section 3.1.1. Four different settings were tested according to Table 2.

For setup 1, the inertia values obtained from k-means clustering are shown in Figure 24.
It is clearly visible, that the curve exhibits no ‘elbow’. This can be caused by several reasons.
The POD was conducted in the 2249-dimensional POD subspace and it is possible that
the dimensionality is too high so that the distance metric of the k-means clustering becomes
ineffective. This problem can be related to the curse of dimensionality (firstly introduced by
Bellman [55]). It is also possible that an appropriate clustering can be achieved for a very
high value of k, but it seems unlikely. A further possibility is the lack of enough snapshot
data, i.e., not enough statistical information are available. Since, in this context a small k is
desired, for setup 1, no reasonable results are obtained.

Figure 24. Relation between inertia and k for setup 1 (left) and setup 2 (right).

For setup 2, the plot of inertia over k is shown in Figure 24. With increasing k, it can
be seen that the slope of the curve flattens. A slight elbow can be seen. In Figure 25, a vi-
sualization of the number of cluster transitions is given. The main diagonal entries show
the number of transitions, for which the assigned cluster remains the same. The off-diagonal
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entries show the number of transitions, which occur between two different clusters. It can
be seen that each transition between two different clusters only occurred once and twice,
respectively. In contrast to the estimated dynamical system for the cylinder flow dataset,
the estimated dynamical model of the wind turbine case corresponds rather to a chain. Hence,
considering the complexity of the flow, the obtained reduced order model is likely not suitable
for a subsequent application of SSPOC.

Figure 25. Counted cluster transitions for setup 2 of the wind turbine case.

The inertia over k plots for setup 3 and setup 4 also indicate the presence of elbow
(not presented in this paper). Similar to what has been observed for setup 2, all off-diagonal
entries unequal zero showed solely the value one for the counted cluster transitions. Hence,
again the dynamical models are rather similar to a transition chain. In this sense, the estimated
reduced order models are also not suitable for a subsequent application of SSPOC.

A reasonable clustering of the snapshot data is necessary as a preliminary step before
applying SSPOC since this technique requires labeled snapshot data. For setup 1 which
considers all POD modes, the corresponding curve of the inertia over k shows no elbow.
Based on the assumption that the k-means metric possibly will be more effective in case of
a lower dimensionality of the POD subspace, only the first r POD modes were considered
in setup 2–4 (and consequently only a part of the total fluctuating kinetic energy) in Table 2
to investigate the influence of the POD subspace dimensionality on the clustering results.
Since no improvements were achieved for these setups, it can be depicted that considering
even more POD modes (and consequently an even higher amount of fluctuating kinetic
energy) will not lead to better results because this further increases the dimensionality of
the corresponding POD subspace.

Furthermore, it was also attempted to reduce the dimensionality of the state space by
means of spatial subsampling. For different values of subsampling factor, further evaluation
was applied to the snapshot dataset. The POD was applied to the reduced dataset and
subsequently k-means clustering was conducted for different values of k. The obtained
plots of inertia over k indicate a constant descend of the curve for each subsampling factor.
Hence, it was not possible to estimate a reasonable value of k.

b.2 Based on hierarchical agglomerative clustering

Since the standard k-means clustering is not suitable for the complex wind turbine
case, the suitability of the hierarchical agglomerative clustering (HAC) was also tested.
For each k ∈ [2, 100] ⊆ N, a HAC and subsequent estimation of the silhouette coeffi-
cients was evaluated. For this, the AgglomerativeClustering and silhouette_score
implementation by scikit-learn [43] were chosen. The Euclidean distance was used for
computing the linkage distance. A minimization of merged clusters variance was adopted
as the linkage criterion.
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For increasing values of k, the silhouette coefficients (also known as overall average
silhouette width) were estimated (Figure 26). It seems like the curve converges against
an asymptotic value. Either a local maximum is located at a higher value of k or the max-
imum silhouette coefficient occurs at k = m, i.e., each snapshot is estimated as separate
cluster comprising only one observation. In case of an optimal clustering, it is expected that
the obtained curve exhibits a local maximum. However, this is not observed here. Instead,
the silhouette plots of each k are visually evaluated. For example, in Figure 27 the silhouette
plot for k = 6 is shown. Each silhouette shows a narrow contour. This shows that in each
cluster only a part of the points is clustered appropriately. It can be further seen that
the silhouette coefficients do not exceed a value of around 0.2. Ideally, the values are close
to one. The red line denotes the overall averaged silhouette width. The given contour plot
shows that no reasonable clustering of the snapshots can be estimated. Similar observations
can be made for k = 10 as depicted in Figure 27. The silhouette plots for the remaining
values of k are of similar patterns. Hence, no reasonable results were obtained. Therefore,
this method is not suggested for further evaluating the complex wind turbine case.
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Figure 26. Silhouette coefficient over k for hierarchical agglomerative clustering with raw snapshot
data in the POD subspace.

Figure 27. Silhouette plot for k = 6 (left) and k = 10 (right) for the hierarchical agglomerative
clustering method.

b.3 Based on Gaussian mixture model

The main weaknesses of k-means are the necessity of circular clusters and the lack
of probabilistic cluster assignment [56]. To overcome these issues, the Gaussian mixture
model (GMM) was considered. Different settings were considered as listed in Table 8.
Three different numbers of considered POD modes were used: r = 2249 POD modes
(no truncation), r = 71 POD modes and r = 198 POD modes, which correspond to 100%,
≈90.0% and≈99.0% captured fluctuation kinetic energy, respectively. For each r, both cases
of raw and normalized snapshot data were taken into account.
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Table 8. Different settings for Gaussian mixture model.

Setup Data r kmax

1 raw nPOD 10
2 normalized nPOD 10
3 raw 71 40
4 normalized 71 40
5 raw 198 25
6 normalized 198 25

For the 1st setup, the obtained values for the Akaike information criterion (AIC) and
the Bayesian information criterion (BIC) are shown in Figure 28. It can be seen that both
raise for increasing values of the number of clusters k. To be exact, in the context of GMMs
k denotes the number of used Gaussian probability distributions in the POD subspace, not
the number of clusters. It is desired to minimize the AIC and BIC. For the AIC, a local
minimum was estimated for k = 3. Here again, the number of transitions from cluster
Ck to cluster Cj were estimated. The corresponding heatmap (not shown here) indicates
the off-diagonal entries only values of zero, one and two. Hence, as argued for the k-
means clustering, no suitable dynamic model was also obtained here. The inertia over
k has a monotone decreasing progression. Consequently, it is not suitable for applying
the elbow method.

Figure 28. Akaike information criterion (AIC) and Bayesian information criterion (BIC) over k for setup 1.

For the 2nd setup, the plot of the AIC and BIC over k show a similar progression. Also
here, for the AIC a local minimum was estimated for k = 3. Interestingly, the estimated
CTM was not sparse. In Figure 29, an equivalent visualization of the number of transitions
from cluster Ck to cluster Cj is given. For a further evaluation of the obtained results,
the progression of the assigned cluster over it was considered. As can be seen in Figure 30,
the temporal progression shows a rather random character, indicating that the clustering
leads to no reasonable partition of the POD subspace. Furthermore, it seems unlikely that
the highly complex flow around a wind turbine can be properly represented by means of
a reduced order model containing only three states.
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Figure 29. Visualization of the number of transitions from cluster Ck to cluster Cj for setup 2.
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Figure 30. Assigned cluster Ck over it for setup 2.

Since no reasonable results were obtained also for the remaining setups (3–6), in the
following only the relevant information is summarized. For the 3rd setup, a local minimum
of the BIC at k = 30 was estimated. The obtained CTM shows the same structure as for
setup 1. As depicted in Figure 31, a local minimum of the BIC was estimated at k = 11.
Again, the CROM approach led to no useful results. In the case of setup 5 and 6, a local
minimum of the BIC was estimated at k = 13 and k = 6, respectively. However, no
meaningful reduced order model of the snapshot data was obtained.

Figure 31. Akaike information criterion (AIC) and Bayesian information criterion (BIC) over k for setup 4.
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In summary, for the wind turbine data set, the pursued approaches of CROM in combi-
nation with SSPOC provide to no reasonable results. It can be seen that the high complexity
of the wind turbine data set makes it is very difficult to estimate a low-order model repre-
sentation of the flow field without significant loss of information. These findings coincide
with the studies of D’Agostino et al. [24] for a four-bladed propeller wake. They applied
k-means clustering to the phase-locked vorticity snapshots of a four-bladed propeller
wake. Considering the entire wake (near- and far-wake), reasonable clustering results
were achieved. Taking only the very near wake into account, no reasonable clustering
results were obtained, which means that a single cluster was estimated as optimum snap-
shot partitioning. The results of the present work are inline with the results obtained
in [24]. This indicates that clustering of snapshot flow data is in general only reasonable for
macroscopic flow structures.

c. Sensor placement based on reconstruction
c.1 Variation of number of basis modes

The estimated reconstruction errors of all setups are summarized in Figure 32. The com-
puted reconstruction error values for each r are depicted as blue crosses. The data points
were interpolated by means of a spline of fourth order. In the range of r = 1 . . . 150, a steep
increase of the reconstruction error can be observed. However, for higher values of r
the curve flattens. One might assume that the reconstruction error for low values of r will
be higher, since fewer flow characteristics will be captured and consequently the reconstruc-
tion will be less accurate. Consequently, the reconstruction error will decrease for higher r.
However, here the opposite is observed. By increasing the number of basis modes for snap-
shot representation, the reconstruction error rises and seems to approach an asymptotic
value for very high r. This is caused by the fact that for low r, the small scale flow structures
are not captured for reconstruction. Consequently, the true values fluctuate around a rather
steady progression of the predicted values. In the case of higher r, also small scale flow
structures are reconstructed. Hence, both the true and the predicted signal exhibit a higher
degree of fluctuation, which partially increases the difference between true signals and
predictions. As mentioned in the POD analysis, around 99% of the fluctuation kinetic
energy is captured by the first r = 198 POD modes. This value coincides with the range
of r in which the curve flattens. Therefore, for 198 employed sensors, reconstructions of
the snapshot data can be made without a significant loss of information.

Figure 32. Reconstruction error over the number of used basis modes.

c.2 Estimation of the smallest possible set of sensors

In the context of this work, a minimum number of sensors is desired. Consequently,
ns = 198 is considered as too high. For estimation of an appropriate value of ns, in the
following, another approach was pursued. At discrete spatial locations, predicted and true
signals were evaluated for different values of r to achieve a maximum possible agreement
of the statistical properties with the true signals.



Energies 2022, 15, 3773 29 of 40

At first, the signal mean averaged over all measurement points and all velocity com-
ponents according to Equations (11) and (17) for true and predicted signals, respectively,
were considered. In Figure 33, the estimated values are denoted as blue crosses. An in-
terpolation curve was estimated by means of a cubic spline. For low values of r, the total
mean of the predictions is higher than for the true signals. At around r ≈ 20 they are equal
and for higher r the prediction mean is lower than the true one. Furthermore, the signal
variance averaged over all measurement points and all velocity components according
to Equations (14) and (20) for true and predicted signals, respectively, were also consid-
ered. It is clearly visible that an increase of r goes hand in hand with a higher variance of
the predictions. At r ≈ 16 the overall variance of the predictions equals the true test data
variance. From this basis, a number of 20 sensors was selected as an appropriate value.
The estimated sensor locations were used for further studies.

Figure 33. Total mean and variance of true and predicted signals (each averaged over all measurement
points and all velocity components) depending on r.

c.3 Final sensor placement

In Figure 34, the twenty finally estimated sensors are depicted. Taking a look at
the spatial distribution of the sensors, it can be clearly seen that the sensors are not equally
distributed. They are agglomerated in two distinct regions, and a single sensor is placed
in a third region. The sensors in the lower part of the flow field domain are located
in the area, where distinct large scale vortex structures evolve. By means of SSPOR
the transition area in the near ground region was estimated as one of the most informative
location for sensors. The second cluster of sensors is located in the region in the upper
right of the flow domain. In this region, the transition area of the wind turbine wake can
be identified, where wake recovery begins. This region seems also to be most informative.
Additionally, in the upper left of the flow domain one single sensor is placed. This one
could possibly indicate the region where the pairing of tip vortices occurs.

Figure 34. Final set of ns = 20 sensors obtained from SSPOR.

In Figure 35, the reconstructed velocity field based on the sensor measurements for two
different time instances is presented. It is apparent, that the predicted velocity fields contain
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less small scale turbulent structures. However, the main characteristics of the flow field are
preserved: the wake area of the wind turbine hub, the large vortex structures in the ground
area at x ≈ 70 . . . 130 m, the distinct velocity deficit of the near-wake, the clear distinction
to the unperturbed flow and the beginning of the wake recovery. The fact that the predicted
flow field snapshots show less small scale turbulent structures is because the POD modes
used as basis modes for SSPOR do not capture these very small scale flow structures. Note
that increasing the number of the employed modes increase the computational effort and
the number of data and sensors, and is counter productive for real applications.

Figure 35. Reconstructed wake field compared against true data for two different time instances.

3.2.2. Wake Prediction
a. Standard setup

The obtained validation loss values for each parameter grid point are visualized
in Figure 36. It should be noted that the MSE was computed for the normalized data, which
explains the perceived really low values. The best result was estimated for nl = 5 Bi-LSTM
layers and nu = 20 units per layer. Interestingly, for nl = 5 and nu = 35 the maximum MSE
was obtained. The remaining values of the parameter grid reveal no regular pattern and
slightly vary around a moderate value.
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Figure 36. Visualization of the grid search results (left) and the learning curve of a subsequent
training for nl = 5 and nu = 20 (right).

With the estimated optimum hyperparameters, a subsequent training was conducted.
The corresponding learning curve is depicted also in Figure 36. It can be seen that no
significant learning progress is achieved for the first twelve epochs. However, around epoch
15, the training and the validation loss drops significantly. For epoch 21, the global minimum of
the validation loss was estimated and the corresponding Bi-LSTM network was saved as final
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model. For further epochs, the training loss decreases further and the validation loss increases,
which shows an indication of overfitting. The relatively constant development of the loss
values for the first epochs demonstrates that the training algorithm has some difficulties
to find a reasonable direction for the gradient descent. This is caused by the unsuitable
window size of the time series for the standard setup, challenging the Bi-LSTM to learn
the data. For training of the Bi-LSTM networks, the Adam algorithm was applied enabling
adaptive learning rates. This explains the smaller number of epochs compared to regular
Stochastic Gradient Descent. Using the network weights corresponding to epoch 21 with
the minimum validation loss—not the weights for the last epoch—ensures an optimal trained
network without overfitting. The limited number of available snapshot data results in a limited
learning success of the Bi-LSTM networks. This explains the remaining difference between
training and validation loss for epoch 21, as well as the limited prediction accuracy. The CFD
datasets were obtained from computationally expensive DDES simulations, even less than
10 min physical time for the complete statistics. The wind turbine is exposed to complex
turbulent flow in combination with shear and yaw [10]. Furthermore, the rotor operates
at a relatively large induction factor [10]. Thus, the prediction becomes very challenging.
However, this is actually what the reality is in wind turbine operation, especially for fast-
controller actions due to incoming wind, e.g., pitch response control. To account for this
drawback, a modification in the method was made by adopting an adjusted window size
based on the autocorrelation approach. This way, the prediction accuracy can be improved
significantly but still maintaining a reasonable computational cost.

With the final model, predictions of the test data timeseries ytest were made. As an
example of the prediction, in the following the obtained results are discussed for sensor 11
(randomly chosen among other sensors). In Figure 37, the true test data signal is depicted
together with a set of chronologically consecutive predicted timeseries. On a first sight,
the predictions show no significant accuracy. It is noticeable that most of the predicted
timeseries seem to strive towards u ≈ 3 m/s. Some of the predictions seem to forecast
some trend of the true signal, but there are also predictions which do not coincide with
the true timeseries.
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Figure 37. Predicted and true timeseries of sensor 11 for the standard setup. The presented data is
discontinuous to illustrate the windows size.

Furthermore, for a general impression of the prediction accuracy and consistency, all
predicted test data timeseries were averaged. This means, for each instant, the mean of all
available predicted observations from different timeseries was calculated. Additionally,
the corresponding standard deviation was computed. In Figure 38, the averaged timeseries
(orange) are shown together with the true signal of sensor 11. The transparent orange band
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indicates the standard deviation. The predictions show a large uncertainty. It can be seen
that the predictions capture some tendencies of the true signal, but the overall averaged
prediction is not performing well against the true signal. Furthermore, the uncertainty is
relatively high.
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Figure 38. Averaged predicted timeseries and true timeseries of sensor 11 for the standard setup.

Considering the overall error mean of each test sensor in Figure 39, it can be seen
that sensor 1 exhibits the largest error. This can be explained by its location in the flow
field. In contrast to the other test sensors, sensor 1 is located relatively far away from other
training sensors, whereas sensors 11, 15, 17 and 19 are located in the cluster of sensors
in the upper right part of the flow domain. It can be concluded that the measurements of
closely placed sensors are more similar due to coherent structures of the flow, and hence
it is easier to make predictions at locations which lie nearby training sensors. Interestingly,
the values of the error standard deviation of sensors 15, 17 and 19 are higher than for
sensor 1, although sensor 1 is more distant to the training sensors. This could be explained
by the fact that sensor 1 is located nearly to the ground, where no large fluctuations are
expected. The other sensors are placed in the wake recovery region, where highly turbulent
structures are present. Sensor 11 exhibits the smallest error standard deviation, as depicted
in Figure 39.
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Figure 39. Mean and standard deviation of each sensor error for the standard setup.

b. Adjusted window size

As a brief example, in Figure 40, the autocorrelation function (ACF) of the measured
velocity component in x-direction at sensor 11 is depicted. The dark blue contour repre-
sents the autocorrelation values over the number of lags, and the light blue area represents
the confidence interval. Correlation values inside the light blue area are regarded as not
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statistically significant. It can be seen that for low lag values the correlation values are high
and decrease slowly for higher lag values. Furthermore, fluctuations are present. This pro-
gression of the ACF indicates a non-stationary timeseries showing a certain seasonality and
also a trend. The frequency of the seasonal pattern can be approximated by the distance
between two local maxima [57]. However, for higher lag values the seasonality pattern
vanishes. It can be seen that the ACF exhibits no strict periodic patterns. This is in ac-
cordance with the fact that the underlying set of snapshots show a highly turbulent flow
characteristic. Furthermore, despite the presence of some seasonality patterns, for high lag
values the correlation values lie within the blue area, i.e., the correlation is not statistically
significant. Similar observations were also made for the ACF of the other sensor locations.
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Figure 40. Autocorrelation function of measured velocity component in x-direction for sensor 11.

The obtained validation loss values of the grid search with adjusted nin and nout are
visualized in Figure 41. A relation can be seen between the number of layers and the re-
sulting prediction accuracy. A high number of Bi-LSTM layers are rather disadvantageous
regarding the prediction error. However, too few layers are also not appropriate. A similar
dependency is also present regarding the number of Bi-LSTM units per layer. Higher nu
delivers higher prediction errors. Hence, the optimum is located at nl = 5 and nu = 20.
Interestingly, these are the same hyperparameters as obtained for the standard setup.
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Figure 41. Visualization of the grid search results for adjusted nin and nout (left) and the learning
curve of a subsequent training for nl = 5 and nu = 20 (right).

For the subsequent training with nl = 5 and nu = 20, the corresponding learning curve
is depicted in Figure 41. In contrast to the learning curve of the standard setup, the curve
of the training loss is always decreasing, indicating a constant learning progress. The vali-
dation loss curve exhibits some noise, but, nonetheless, it can be seen that the validation
loss decreases for the first epochs. Around epoch 20, it can be seen that the validation loss
begins to increase. The minimum validation loss is obtained at epoch 19. The corresponding
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Bi-LSTM weights were then saved as the final model. This methodology was chosen to
prevent overfitting in the setup.

In Figure 42, a set of chronologically consecutive predicted timeseries are depicted
together with the true test timeseries of sensor 11. The visualization of these exemplary
predictions shows the adjustment of the window width based on the autocorrelation
algorithm. It can be seen that the overall accuracy has increased compared to the standard
setup. In contrast to the standard setup, here the predicted timeseries do not strive towards
a common value. Instead, they coincide rather with the progression of the true signal.
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Figure 42. Predicted and true timeseries of sensor 11 for adjusted nin and nout. The presented data is
discontinuous to illustrate the windows size.

In Figure 43, the averaged timeseries are shown. The prediction results are significantly
better compared to the standard setup. The predicted signal shows a significantly better
agreement with the true signal. It can be seen that the uncertainty of the prediction,
indicated by the orange area around the prediction curve, significantly decreases compared
to the standard setup.
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Figure 43. Averaged predicted timeseries and true timeseries of sensor 11 for adjusted nin and nout.

The distribution of the mean error and error standard deviation of each test sensor
in Figure 44 shows a similar relation between the sensors as observed for the standard
setup. However, for this setup, the mean error of sensor 1 is similar to the values of sensor
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15 and 19. Furthermore, the absolute values of the error mean and standard deviation
are in general smaller compared to the standard setup, indicating an improvement of
the prediction accuracy and a successful prediction of the timeseries.
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Figure 44. Mean and standard deviation of each sensor error for adjusted nin and nout.

4. Conclusions and Outlook

In this work, two different flow field data sets were investigated. The first one com-
prises snapshots of a two-dimensional flow around a cylinder, and the second one comprises
snapshots of a fully turbulent flow around a horizontal axis wind turbine. For each data set,
a small set of optimally placed sensors was estimated by means of a specific classification-
based and reconstruction-based technique, respectively. Subsequently, for the velocity
measurement signals obtained from the sensor locations, a data-driven approach for predic-
tion of the velocity component in flow direction was employed. A specific artificial neural
network architecture was chosen: stacked bidirectional long short-term memory (Bi-LSTM)
networks. For different setups each, a grid search was conducted for hyperparameter
optimization. Due to the completely different flow characteristics of the two data sets,
different results were obtained. The results of both data sets were compared to each other.
The following conclusions can be derived from the paper:

• POD successfully reduce the dimensionality of the flow field data both for cylinder
and wind turbine cases.

• SSPOC is sufficient for the cylinder case. On the other hand, this approach is not
successful for the complex wind turbine case.

• SSPOR demonstrates its potential for the complex wind turbine case.
• The wake timeseries prediction of the cylinder case shows a good accuracy for the pe-

riodic signal, but the transient effects are not predicted accurately.
• The wake prediction of the wind turbine case shows a good accuracy by adjusting the pre-

diction horizon based on evaluation of the autocorrelation function of the timeseries.

For subsequent works, several further approaches can be proposed. In this work,
only the prediction of the velocity component in longitudinal direction was considered.
The extension of the prediction task to all three velocity components can be proposed.
Another interesting aspect could be the reconstruction of the vertical wind profile at
discrete horizontal locations based on the predicted velocities at the sensor locations.
The reconstruction of the entire flow field is also conceivable. It seems logical that sensors
located in the near ground region are more economical because they do not require high
and expensive met masts installations. Hence, a further proposal is the investigation
of wake prediction based on locally restricted optimal sensor placement. In the case of
availability of larger data sets and sufficient computational resources, the approaches
for velocity prediction proposed in this work can be enhanced regarding larger Bi-LSTM
networks, presumably enabling larger prediction horizons and better prediction accuracy.
It is recommended to consider the components of the fluctuating velocity as well as the total
velocity components to investigate in which case better prediction accuracy can be achieved.
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Abbreviations

Variable Unit Description
a [-] Accuracy
AIC [-] Akaike information criterion
BIC [-] Bayesian information criterion
i [-] Index
ip [-] Index of measurement point
is [-] Sensor index
it [-] Temporal snapshot index
it,test [-] Temporal snapshot index of test interval
it,train [-] Temporal snapshot index of training interval
its [-] Time series index
I [ m2

s2 ], [-] Inertia
k [-] Number of clusters
kmax [-] Maximum number of clusters
lmax [-] Maximum reasonable lag
m [-] Number of snapshots
mtest [-] Number of test snapshots
mtrain [-] Number of training snapshots
mval [-] Number of validation snapshots
MSE [ m2

s2 ] Mean squared error
ne [-] Number of epochs
nin [-] Number of observations in input time series
njk [-] Number of transitions from cluster Ck to cluster Cj
nl [-] Number of layers
nobs [-] Number of observations
nout [-] Number of observations in output time series
np [-] Number of measurement points
nPOD [-] Number of POD modes
ns [-] Number of sensors
nts [-] Number of derived time series
nu [-] Number of units per layer
nx [-] Number of grid points in x-direction
nz [-] Number of grid points in z-direction
Pjk [-] Conditional probability of state transition
qij,pred [ m

s ] Predicted velocity component at grid point j for the i-th test
snapshot

qij,true [ m
s ] True velocity component at grid point j for the i-th test snapshot

r [-] Number of considered POD modes, number of basis modes
RMSE [ m

s ], [-] Root mean squared error
sb [-] Batch size
sip ,u,pred [ m

s ] Standard deviation of the predicted signal at measurement
point ip
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sip ,u,true [ m
s ] Standard deviation of the true signal at measurement point ip

spred [ m
s ] Averaged predicted signal standard deviation over all measure-

ment points and all velocity components
sr [-] Step size
strue [ m

s ] Averaged true signal standard deviation over all measurement
points and all velocity components

su,pred [ m
s ] Averaged predicted signal standard deviation over all measure-

ment points
su,true [ m

s ] Averaged true signal standard deviation over all measurement
points

u [ m
s ], [-] Velocity component in x-direction

uij,pred [ m
s ] j-th predicted time series observation of the i-th validation series

uij,true [ m
s ] j-th true time series observation of the i-th validation series

ui,j [ m
s ] Measurement of velocity in x-direction at sensor i for it = j

uis ,j [ m
s ], [-] Measurement of velocity in x-direction at sensor is for it = j

ujip ,pred [ m
s ] Predicted velocity component in x-direction at measurement

point ip for the j-th snapshot of the test data
ujip ,true [ m

s ] True velocity component in x-direction at measurement point ip

for the j-th snapshot of the test data
u4,i,pred [-] Predicted value of sensor 4 at instant it = i
u4,i,test [-] True value of sensor 4 at instant it = i
ūip ,pred [ m

s ] Mean of the predicted signal at point ip

ūip ,true [ m
s ] Mean of the true signal at point ip

ūpred [ m
s ] Averaged predicted signal mean over all measurement points

ūtrue [ m
s ] Averaged true signal mean over all measurement points

v [ m
s ], [-] Velocity component in y-direction

w [ m
s ] Velocity component in z-direction

x, y, z [m], [-] Cartesian coordinates
x̄pred [ m

s ] Total mean of the predicted signals
x̄true [ m

s ] Total mean of the true signals
∆t [s] Time step
εPOD [-] Portion of kinetic fluctuating energy
λ [-] `1-penalty factor
λi [-] Eigenvalue of POD mode i
a [-] Vector of POD coefficients
ci [ m

s ], [-] Centroid of cluster i
q [ m

s ], [-] Snapshot column vector
q̄ [ m

s ], [-] Snapshot vector of temporal mean flow field
x [ m

s ], [-] Fluctuating component of the flow field
y [-] Vector containing the snapshot labels
φi [-] POD mode i
X [ m

s ], [-] Matrix comprising all fluctuation components of the snapshots
X test [ m

s ], [-] Input test data
X train [ m

s ], [-] Input training data
Xval [ m

s ] Input validation data
ytest [ m

s ], [-] Output test data
ytrain [ m

s ], [-] Output training data
yval [ m

s ] Output validation data
S [ m

s ], [-] Set of time series
Sin [ m

s ], [-] Input time series
Sout [ m

s ], [-] Output time series
Cj [-] Cluster j
Ck [-] Cluster k
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