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Abstract: The RNG k-ε model turbulence model is used to carry out a CFD numerical simulation
of the dual-flow channel pumping station. Through the model test, the accuracy of the numerical
simulation of the dual-flow channel pump device is verified. Using the harmonic response analysis
method, the water pressure fluctuating load calculated under different startup conditions under
the design water level is applied to the pumping station. In this way, the dynamic response law of
the pump station structure under the action of water pressure pulsation is studied. The calculation
results show that the values of pressure pulsation in the drainage condition and the water diversion
condition are relatively close, and the main difference is the difference in the water levels of the
inlet and outlet water. Under different working conditions, the amplitude of the pumping station
building basically shows the characteristics that the vertical amplitude is greater than the horizontal
amplitude. The maximum dynamic displacement under drainage condition is greater than that under
the diversion condition, and the maximum dynamic displacement appears at the control gate. Under
the three working conditions, the maximum dynamic stress of each characteristic part of the pumping
station building is low. The maximum total dynamic stress under the drainage condition is greater
than that under the diversion condition.

Keywords: dual-flow channel pump station; different working conditions; harmonic response; water
pressure pulsation; dynamic response

1. Introduction

The dual-flow channel pump station has the advantages of a small floor area, a compact
structure, and less engineering investment. It is widely used in waterlogging drainage
and irrigation projects in China. There is less engineering land in some areas, which needs
to play the role of flood control, water diversion, and drainage of pump stations at the
same time. Therefore, a two-way channel pump station came into being. However, in
the operation process, due to the influence of mechanical, electric, hydraulic, and other
factors, the pumping station building is prone to vibration, which may have a serious
impact on the safe and stable operation of the whole pumping station. Therefore, it is very
important for the stable operation of the pump station to study the dynamic response of the
water pressure fluctuation of the station structure to the station structure under different
working conditions.

At present, some scholars use measurement point data provided by the manufacturer
or conduct a physical model test to study the pressure pulsation field by arranging the
pressure pulsation measurement points. For example, Wang et al. [1] used the basic
law of pressure fluctuation distribution and the measurement point data provided by
the manufacturer to estimate by the linear interpolation method and they analyzed the
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vibration response of the pump house through various methods. Guo et al. [2] assumed
the pressure pulsation as a simple harmonic load and used the finite element method to
simulate the influence of pressure pulsation on the vibration of the plant. Qian et al. [3]
simulated by SST k-ω turbulence model and studied the position where the flow affects
the maximum pressure fluctuation of the pump turbine under the working condition of
the turbine. Geng et al. [4], combined with CFD numerical simulation, proposed a new
method to study the characteristics of the hydraulic vibration source of powerhouse. Ma
et al. [5] calculated the dynamic displacement and velocity response of key parts under
the action of water pressure pulsation and found that their values met the requirements.
Liu et al. [6] analyzed the feasibility of hydraulic oscillation of the pumped storage power
station. The research shows that the pressure pulsation of a hydraulic turbine will even
cause the resonance and damage of the runner structure in serious cases. Yang et al. [7]
built a physical model and summarized the water pressure pulsation characteristics of the
two-way pump device through experimental research. Jiao et al. [8] used CFD technology
to study the pressure pulsation characteristics of a two-way channel pump device and
verified it in combination with the model test. Tu et al. [9] studied the pressure pulsation
characteristics of the Shangwuwei port pump station under different flow conditions and
obtained the evolution law of pressure pulsation of overflow structure during forward and
reverse operations of the pump device.

Foreign scholars have also carried out a series of studies on the pressure pulsation
of hydraulic turbines. Zobeiri et al. [10] studied the influence of dynamic and static
interference on the pressure pulsation in the vaneless area of the pump turbine. Rezghi
et al. [11] used the one-dimensional characteristic line method of the static characteristic
curve to study the changes of the runner speed and water hammer pressure during the
load rejection transition.

There are many methods to study the dynamic response of station building struc-
ture, including resonance check method, quasi-static method, harmonic response analysis
method and dynamic time history method [12]. The resonance check method is relatively
rough, and the anti-vibration safety of the pump house can only be evaluated inaccurately.
In the pseudo-static method, the dynamic load is equivalent to the static load, and the
dynamic response may have deviation, which can only be used as a reference. In the
harmonic response analysis method, the fluctuating load of water pressure is equivalent to
simple harmonic load, which is different from the actual situation. The transient dynamic
time history method is reasonable, but it is difficult to apply. At present, many experts
and scholars [13–15] use the harmonic response analysis method to calculate the dynamic
response of the structure and check it by analyzing the vibration displacement and stress of
the plant structure.

At present, there are relatively few studies on the dynamic response of water pressure
pulsation [16–21] to the station building structure of a two-way channel pump station. In
this paper, a model test and numerical simulation were used. Taking the three-dimensional
solid modeling of the station building of the two-way channel pump station as the research
object, the vibration displacement and stress response of the station building structure
under the action of water pressure pulsation were comprehensively analyzed, and the
dynamic response of the station building structure of the two-way channel pump station
was analyzed; this provides a basis for the design of the two-way channel pump station
and puts forward reasonable suggestions for the stable operation of the two-way channel
pump station.

2. Research Object and Numerical Methods
2.1. Calculation Model and Grid Division of Station Building

Taking the whole pump station project as the research object, the geometric model of
station building was established. The total length along the water inlet and outlet direction
(longitudinal axis) of the station building is 23.0 m, along the transverse axis of the station
building are four units and sluice gates, with a total width of 38.4 m, a floor elevation of
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6.9 m, and a motor floor elevation of 18.9 m, and a total of 12.0 m. The geometric model of
the station building is shown in Figure 1.
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Figure 1. Geometric model of station building.

Using the non-structural meshing technology with good adaptability, the overall
structure of the station building is meshed, and a high-quality grid is obtained. In order
to improve the measurement accuracy of grid, grid encryption was carried out in the
study of complex main components. The total grid number of the station building model
is 366,000, and the grid quality is 0.81. Figure 2 shows the finite element mesh of the
station building.
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2.2. Calculation Model and Grid Division of Pump Device

Four vertical axial flow pump units were selected. The diameter of the pump impeller
was D = 1600 mm and the speed was n = 245 r/min. the startup conditions included
drainage conditions and diversion conditions. The design flow of a single unit under
drainage conditions was Qd = 7.3 m3/s; the design flow of a single unit under the diversion
condition was Qd = 7.0 m3/s. Under the design drainage condition, the water level at the
inner river side was 14.0 m and that at the outer river side was 16.9 m. Under the design
diversion condition, the water level at the inner river side was 11.3 m and that at the outer
river side was 14.0 m. The water pressure pulsation under two startup conditions was
modeled and calculated, respectively, and a pump device was selected for calculation. The
calculation model of the pump device included the extension section of the inlet and outlet
water channel, the inlet and outlet water channel, the impeller, and the guide vane. The
calculation model is shown in Figure 3.
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Figure 3. CFD calculation model of pump device: (a) drainage condition; (b) diversion condition.

Mesh the impeller, guide vane, inlet, and outlet channels and their extension sections.
The schematic diagram of the grid is shown in Figure 4. Theoretically, the more grids there
are, the more accurate the calculation results will be, but correspondingly more computing
resources will be required. In order to improve the calculation speed and, at the same
time, ensure the accuracy of the numerical simulation results, numerical calculations were
carried out for different grid numbers of the pump device under the design flow condition.
It can be seen from Figure 5 that when the number of grids exceeded 7.56 million, the head
of the device changed little, and the number of grids had little effect on the calculation
results. Therefore, in order to save computing resources, the final overall computing grid
number was determined to be 7.56 million.
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2.3. Harmonic Response Analysis and Computational Fluid Dynamics

For a single degree of freedom system, under the action of resonant force, p0 is the
amplitude of force, ω is the excitation frequency, and the differential equation of motion
is [22,23]

m
..
u + ku = p0 sin ωt (1)

The solution of the equation is

u(t) = u1(t) + u2(t) (2)

u1(t) = u(0) cos ωnt +

[ .
u(0)
ωn
− p0

k
ω/ωn

1− (ω/ωn)
2

]
sin ωnt (3)

u2(t) =
p0

k
1

1− (ω/ωn)
2 sin ωnt (4)

When the system has viscous damping C,

u1(t) = e−ξωnt(A cos ωnt + B sin ωnt)
u2(t) = C sin ωt + D cos ωt

(5)

C =
p0

k
1− (ω/ωn)

2

k
[
1− (ω/ωn)

2
]2

+
[
2ζ(ω/ωn)

2
]2 , D =

p0

k
2ζ(ω/ωn)

k
[
1− (ω/ωn)

2
]2

+
[
2ζ(ω/ωn)

2
]2 (6)

Only steady state response is calculated in ANSYS.
For a multi-degree of freedom system, the differential equation of motion is

[M]
{ ..

u
}
+ [C]

{ .
u
}
+ [K]{u} = {F} (7)
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The matrix and the matrix are simply harmonic, and the frequency isω:

{F} =
{

Fmaxeiψ
}

eiωt = ({F1}+ i{F2})eiωt (8)

{u} =
{

umaxeiψ
}

eiωt = ({u1}+ i{u2})eiωt (9)

Then the dynamic equation of the harmonic response analysis is

(−ω2[M] + iω[C] + [K])({u1}+ i{u2}) = ({F1}+ i{F2}) (10)

The internal flow of the axial pump is three-dimensional viscous turbulence, which
cannot be compressed. It follows the continuity and momentum equations in the fluid
domain. The continuity equation is also called mass equation.

∂ρ

∂t
+∇(ρu)= 0,

Momentum equation:
∂(ρu)

∂t
+∇(ρuu− τ)= F,

The RNG k-ε turbulence model is derived from rigorous statistical techniques. It is a
modified equation of the standard k-ε model. The RNG k-ε model improves computational
accuracy, particularly in terms of turbulent vortices, by adding conditions to the ε equation
that complement the analytical formulation for low Reynolds number flow viscosity. Since
the RNG k-ε model can better handle flows with high strain rates and greater flow curvature,
it is more accurate than other models for complex shear flows and flows with high shear
rates and vortices. The formula k and the equation ε are as follows.

The equation of k:

∂(ρk)
∂t

+
∂(ρku i)

∂xj
=

∂

∂xj

(
αkµe

∂k
∂xj

)
+ρ(P k−ε),

The equation for ε:

∂(ρε)

∂t
+

∂(ρεu j)

∂xj
=

∂

∂xj

(
αεµε

∂ε

∂xj

)
+ρ

ε

k
(C∗1εPk − C2εε)η = (2EijEij)

1
2

k
ε

,

In the formula, C∗1ε= C1ε −
η(1− η

η0
)

1+βη3 ; Eij = 1
2 (

∂ui
∂xj

+
∂uj
∂xi

); the constants take the values:

αk = αε= 1.39, C1ε= 1.42, C2ε= 1.68, µ0= 4.377, β = 0.012.

2.4. Boundary Conditions

For the boundary conditions of the station building calculation, the vibration of the
filling was considered, the bottom of the filling was the fixed end constraint, and the
surrounding was the normal constraint. The boundary nodes of the side wall of the station
building were in contact with the filling in the normal direction, the normal direction
was deformed together, and the tangential direction was not constrained. The schematic
diagram of the setting of boundary conditions is shown in Figure 6.
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The materials of the calculation model are assumed to be isotropic linear elastic
materials, and the parameter values are shown in Table 1.

Table 1. Material parameters.

Material Static Elastic Modulus
E (Gpa)

Dynamic Elastic
Modulus E (Gpa) Severe γ (KN/m3)

Poisson’s
Ratio µ

C25 Concrete 28.0 42.0 25.0 0.167
C30 Concrete 30.0 45.0 25.0 0.300

Fill and foundation 1.3 1.95 19.6 0.250
Stainless steel 206.0 309.0 78.5 0.3

The calculation area of the pump device includes the impeller, guide vane, inlet and
outlet channels, and the extension section. The mass flow inlet boundary condition is
adopted at the inlet of the calculation area. The single unit flow under the design drainage
condition is 7.3 m3/s, and the single unit flow under the design diversion condition is
7.0 m3/s. The pressure outlet boundary condition is adopted for the outlet, which is set as
1 standard atmospheric pressure, and the free water surface at the inlet and outlet is set as
the symmetrical plane by using the steel cover assumption. The diameter of the impeller is
1600 mm, the impeller is set as the rotating domain, the speed is 245 r/min, and the rest is
set as the stationary domain. The non-slip boundary condition is adopted for the wall, and
the standard wall function is adopted for the near wall region.

2.5. Distribution of Monitoring Points

A total of nine monitoring sections were set on the side wall of the inlet channel, the
inlet guide cone, the impeller inlet, the top of the inlet channel, the guide vane outlet, the
side wall of the outlet channel, the outlet horn pipe, the outlet guide cone, and the top
section of the outlet channel. Each section took four abcd nodes at a 90-degree angle in
each quadrant, a total of 36 monitoring points. Figure 7 shows the layout of characteristic
monitoring points.
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2.6. Calculation Conditions and Loads

When the pumping station discharges waterlogging, four units start up at the same
time and run forward. During water diversion operation, units 1 and 2 operate in reverse,
with one for use and one for standby. The startup and shutdown conditions under different
working conditions are shown in Table 2.

Table 2. Unit startup combination.

Number Operating
Conditions Unit 1 Unit 2 Unit 3 Unit 4

1 Drainage condition Power on Power on Power on Power on
2

Diversion condition
Power on Shut down Shut down Shut down

3 Shut down Power on Shut down Shut down

The load loading condition is shown in Table 3. The vibration load of the unit is
applied according to the startup condition of the unit. The dynamic load is generated when
the unit is started, and there is no dynamic load when it is stopped.
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Table 3. Dynamic load of water pump unit (KN).

Working Condition
Motor Base Water Guide

Bearing Seat Water Pump Seat

Axial Force Tangential Force Radial Force Axial Force Axial Force

Rated working
condition 392 78.1 194.9 107.8 176.4

2.7. Model Experiment Verification

In order to verify the accuracy of the numerical simulation of the two-way channel
pump device, the model test of the dual-flow channel pump device was carried out on the
high-precision hydraulic machinery test bench ast Jiangsu Key Laboratory of hydraulic
power engineering. The diameter of the impeller model was 300 mm and the model scale of
the water pump device was 1:5.33. The test speed of the model pump was determined to be
1307 r/min according to the equal head conversion with the prototype. See Figure 8 for the
diagram of the model test device. The test results are converted to the performance data of
the prototype pump device, and the external characteristics are compared with the results
of numerical simulation under different working conditions. The comparison results are
shown in Figure 9. It can be seen from the figure that the overall trend of the performance
curve obtained by the test and numerical simulation is similar, the coincidence degree is
high under the design working conditions, the overall fit between the test and numerical
simulation is good, and the calculation method and results adopted by the numerical
simulation are effective.
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3. Results
3.1. Calculation Results of Pressure Fluctuation

In order to eliminate the influence of the static pressure of the monitoring point on
the overall pressure pulsation, the pressure pulsation coefficient CP was introduced to
represent the pressure pulsation. Taking the water pressure pulsation at the side wall of
the inlet and outlet channel and the monitoring points at the impeller guide vane as an
example, Figures 10 and 11 respectively present the time domain diagrams of the water
pressure pulsation at the characteristic monitoring points under two working conditions.
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By comparing the amplitude of water pressure fluctuation under the two working
conditions, it can be seen that the amplitude of the drainage working condition at the inlet
of impeller is 0.06 and that of diversion working condition is 0.07, with a difference of
0.01. At the outlet of guide vane, the amplitude of the drainage condition is 0.018 and
that of the diversion condition is 0.02, with a difference of only 0.002. The average period
calculated under the drainage condition is 12, the average period calculated under the
diversion condition is 10, and the difference between the average periods is 2.

The main difference between the drainage working condition and diversion working
condition is the difference of inlet and outlet water levels. Therefore, it can be considered
that the inlet and outlet water levels have little influence on the distribution of water
pressure pulsation in the channel. Therefore, the dynamic response of station structure
under the action of water pressure pulsation under the drainage working condition and
diversion working condition can meet the demand.

3.2. Pressure Pulsation Zone Loading

Because the harmonic response calculation can convert the input water pressure
pulsation load into a simple harmonic load for calculation, the harmonic response analysis
method is used to solve the dynamic characteristics of the structure under the action
of water pressure pulsation. Due to the non-uniformity of water pressure fluctuation,
according to the pressure distribution of water pressure fluctuation monitoring points, the
water pressure fluctuation in the inlet and outlet channel is divided into four areas for
zoning loading, as shown in Figure 12.
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Figure 12. Schematic diagram of water pressure pulsation loading zoning.

The harmonic response analysis method is used to calculate different startup condi-
tions under the design water level. The amplitude of water pressure fluctuation in different
parts is different, the phase is the same, and all points reach the amplitude at the same
time. See Table 4 for the amplitude of the water pressure fluctuation loaded in different
areas. During the actual operation of the unit, the unit vibration load and water pressure
pulsation load act on the structure at the same time. Therefore, the calculation includes
water pressure pulsation and unit vibration load.

Table 4. Amplitude of zone loading.

Partition Zone I Zone II Zone III Zone IV

Working condition Amplitude (Pa) Amplitude (Pa) Amplitude (Pa) Amplitude (Pa)
Drainage condition 54,496 68,713 96,940 101,525
Diversion condition 55,246 69,254 96,602 101,459

3.3. Displacement Response of Characteristic Parts of Station Building

According to the characteristics of two-way inlet and outlet channels, the following
10 characteristic parts were selected for analysis, which are the floor slab of the ground
powerhouse, the floor slab of the coupling floor and the bottom plate of outlet channel from
unit 1 to unit 4, and are labeled from 1–10. The response of the maximum dynamic dis-
placement and maximum dynamic stress of these characteristic parts of the station building
were analyzed. In order to intuitively compare the amplitudes in different directions of
different parts, we made the amplitude histogram of different parts under different working
conditions under the action of the rated switching frequency, as shown in Figure 13.
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It can be seen from the above figure that comparing the amplitudes in three directions
of each part, the station building basically shows the characteristics that the vertical ampli-
tude is greater than the horizontal and vertical axial amplitudes. It shows that the whole
station building, and the inside of the channel will not produce large vibration due to the
influence of water pressure fluctuation.

Comparing the different operation modes of the station building, it can be seen that the
maximum dynamic displacement in each direction under each working condition appears
on the floor slab of the ground plant. The amplitudes of each characteristic part of diversion
conditions I and II in the longitudinal and vertical directions are relatively close and are
less than those in the corresponding direction of drainage conditions, showing different
laws in the transverse axis. The amplitude of diversion condition II at each characteristic
part is more different, in particular, the amplitude of the bottom plate of the outlet channel
is relatively large, which may be because the startup of the intermediate unit has a great
impact on the whole station building.

Comparing the amplitudes of different parts, it can be seen that in the vertical axis and
horizontal axis, the amplitudes of the bottom plate of the inlet channel and the bottom plate
of the outlet channel are larger and smaller in each working condition, which is different
from the regularity in the horizontal direction, and the vertical amplitudes of different
parts of each working condition do not show a certain regularity. However, on the whole,
the change trend of each characteristic part of waterlogging drainage condition and water
diversion condition is opposite.
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Figure 14 shows the cloud diagram of the total dynamic displacement of the station
building structure under various working conditions. It can be seen from the cloud diagram
that the overall displacement of the station building shows a symmetrical trend due to
the simultaneous operation of four units under waterlogging drainage conditions. The
amplitude of the units on both sides is small, and the amplitude of the units in the middle
is large. Among them, the maximum dynamic displacement appears on the beam on the
outlet side of the sluice, but the minimum dynamic displacement is still greater than the
water diversion working condition. By comparing the two water diversion conditions, it can
be seen that the overall dynamic displacement of water diversion condition II of operating
unit 2 is greater. Therefore, during the water diversion operation of the station building,
the best starting condition is that unit 1 is started and unit 2 is shut down for standby.
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3.4. Stress Response of Characteristic Parts of Station Building

In order to more intuitively see the stress trend of the different parts in all directions,
the histogram of maximum dynamic stress at different parts under different working
conditions under rated frequency was made, as shown in Figure 15.
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It can be seen from the above figure that the maximum dynamic stress under various
working conditions in the transverse axis direction appears on the floor slab of the ground
plant, which is consistent with the trend of maximum dynamic displacement. The max-
imum dynamic stress of each characteristic part of the station building under the three
working conditions is low, and the maximum dynamic stress does not exceed 0.187 mpa,
which is at a low level, which is consistent with the law of amplitude. By comparing the
maximum dynamic stress in each direction, it can be seen that the maximum dynamic stress
in the transverse axis direction of different parts is greater than that in the longitudinal axis
direction and vertical direction.

Comparing the maximum dynamic stress in each direction under different working
conditions, the maximum dynamic stress in most characteristic parts under waterlogging
drainage working conditions is at a large value. After removing the special value, the
dynamic stress relationship trend of each part is relatively consistent under the two water
diversion working conditions.

The total dynamic stress nephogram of the station building structure under each
working condition is shown in Figure 16. It can be seen from the nephogram that the
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maximum total dynamic stress under the drainage working condition is greater than that
under the other two working conditions, the stress distribution trend and amplitude trend
under the drainage working condition are basically the same, and the dynamic stress of
the bottom plate of the inlet and outlet channel is affected by the water pressure pulsation
acting on it, which is greater than that of the upper floor slab. Under the two diversion
conditions, the dynamic stress of the bottom plate of the inlet channel is greater than that
of the bottom plate of the outlet channel. By comparing Figure 16b,c, it can be seen that the
startup of unit 2 has a greater impact on the whole gate station.
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4. Conclusions

The calculated pressure pulsation load and unit foundation vibration load under
different working conditions were applied to the station building by the harmonic response
analysis method, and the maximum dynamic displacement and maximum dynamic stress
responses of characteristic parts of the station building under different working conditions
were compared and analyzed. The following conclusions are drawn:

(1) Under the three working conditions, the inlet and outlet water level have little effect on
the distribution of water pressure pulsation in the channel, the frequency distribution
range of water pressure pulsation in the inlet and outlet water channel is wide, and the
inlet and outlet water level have little effect on the distribution of the water pressure
pulsation in the channel.

(2) By analyzing the displacement response of each characteristic part of the station
building under different working conditions, it can be seen that the vertical amplitude
of the station building is basically larger than that of the transverse and longitudinal
axes. In the design process, the influence of water pressure fluctuation should be
considered. The maximum dynamic displacement in all directions under the drainage
condition is greater than that under the diversion condition. During the drainage
operation, the overall displacement of the station building shows a symmetrical trend,
and the maximum dynamic displacement appears near the sluice. During the water
diversion operation of the station building, the best startup condition is that unit 1 is
started and unit 2 is shut down for standby.

(3) By studying the dynamic stress response under each working condition, it can be
seen that the maximum dynamic stress of each characteristic part of the station
building under the three working conditions is low. By comparing the maximum
dynamic stress in each direction, it can be seen that the maximum dynamic stress in
the transverse axis direction of different parts is greater than that in the longitudinal
axis direction and vertical direction. The maximum total dynamic stress under the
drainage condition is greater than that under the diversion condition. The stress
distribution trend and amplitude trend under the drainage condition are the same.
The dynamic stress of the bottom plate of the inlet and outlet channel is affected by
the water pressure pulsation acting on it, and the dynamic stress is greater than that
of the upper floor slab. Under the water diversion condition, the dynamic stress of the
bottom plate of the inlet channel is greater than that of the bottom plate of the outlet
channel. When unit 2 is started, it has a greater impact on the whole pump station.
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Nomenclature

ω excitation frequency
P0 amplitude of force
A integral constant
B integral constant
[K] stiffness matrix
[M] quality matrix
[C] structural damping matrix
{u} displacement vector{ .

u
}

node velocity vector{ ..
u
}

acceleration vector
Fmax load amplitude
ψ phase angle
F1 real part of load
F2 imaginary part of load
umax displacement amplitude
u1 real part of displacement
u2 imaginary part of displacement
k turbulent kinetic energy
ε dissipation rate
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