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Abstract: According to the structural and heat transfer characteristics of soil heat storage, a novel
layered slice algorithm is proposed to realize the rapid and accurate solution to the problem. The
heat transfer process between the double U-tube heat exchanger and the surrounding soil is taken
as an example to analyze its solving performance. The study finds that the layered slice algorithm
has higher simulation precision and faster solving speed. Its maximum relative error of temperature
is only 0.19%. Compared with the traditional 3D simulation algorithm, it can accelerate about
2.2~2.56 times. At the same time, the layered slice algorithm has an excellent parallel characteristic.
Its maximum parallel speedup ratio is more than twice that of the traditional 3D algorithm. Due to
the superior solving performance, the proposed algorithm can help the optimization design of the
buried-tube heat exchangers.

Keywords: soil heat storage; layered slice algorithm; solution performance; simulation precision;
calculation speed

1. Introduction

With the development of the social economy, people pay increasing attention to
developing and utilizing new energy, especially solar energy. However, solar energy has
intermittent and instability characteristics, leading to a mismatch between supply and
demand. Therefore, heat storage must be adopted to solve the contradiction between
supply and demand [1–3].

Conventional heat storage ways include water tank heat storage [4–6], aquifer heat
storage [7–9], soil heat storage [10–12], gravel-water heat storage [13–15], and phase-change
heat storage [16–18], etc. The soil heat storage has the advantages of low cost, high potential,
and excellent environmental friendliness. Therefore, this type of heat storage has become
the research focus in recent years. Guo et al. [19] established an unsteady theoretical model
of solar chimney power generation considering soil heat storage. They researched the
influence of different soil types on the system’s output power. The results showed that it
is beneficial for the system to use the soils with high specific-heat capacity and thermal
conductivity as heat-storage materials. Zhang et al. [20] studied a low-cost seasonal solar
soil heat storage system for greenhouse heating. The heat-storage technology was utilized
to reduce the greenhouse’s energy demand under extreme cold and consecutive cloudy
conditions in winter.

The soil heat storage and the ground-source heat pump can be combined to use the
same set of buried-pipe heat exchangers [21]. The combined system can address prob-
lems of soil thermal imbalance and improve the heat pump efficiency [22,23]. Therefore,
different ground-source heat pump systems assisted with solar energy [24,25], industrial

Energies 2022, 15, 3743. https://doi.org/10.3390/en15103743 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15103743
https://doi.org/10.3390/en15103743
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-2445-5101
https://orcid.org/0000-0002-6724-5681
https://doi.org/10.3390/en15103743
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15103743?type=check_update&version=1


Energies 2022, 15, 3743 2 of 23

waste heat [26], or mixed heat source [27] have been widely studied and applied. Naranjo-
Mendoza et al. [28] experimentally investigated a solar-assisted, ground-source heat pump
system, which uses a set of shallow vertical boreholes to store heat underground seasonally.
The research results show that the system can well meet the demand for building heating
in winter. Solar energy stored underground can be used to restore the soil’s temperature
and improve system efficiency. Cui et al. [29] proposed a novel buried-pipe heat exchanger
with a vertical borehole for the seasonal storage of industrial waste heat. They studied the
influence of some key parameters on its performance. A heating demonstration project [30]
was recently built for urban heat supply in Inner Mongolia, China. The system maxi-
mally utilizes renewable energy and industrial waste heat through large-scale seasonal
heat storage.

For the ground-source heat pump system assisted with soil heat storage, the experi-
mental research, especially the demonstration research, has certain limitations. This type
of research has the disadvantages of high investment costs and long experiment periods.
In addition, generality is lacking for the experimental results. The data from some re-
gions are difficult to apply to other areas. In recent years, the corresponding numerical
simulation research has partially replaced the experimental and demonstration studies
with the rapid development of computer technology. It reduces the research cost, shortens
the research cycle, and plays an increasingly important role in engineering applications.
The core of simulating the system is to calculate the process of heat -and mass-coupled
transfer between the buried-pipe heat exchanger and the surrounding soil. However, it
is difficult to accurately obtain the soil moisture content, porosity, groundwater velocity,
and other parameters in the practical calculation process for heat storage. For overcoming
the problem, the effective thermophysical properties are measured by thermal response
testing [31,32] to replace the actual soil parameters. Then, the complex coupling process
in the soil can be regarded as a single heat conduction problem. At present, based on the
effective thermophysical properties, the linear source theory [33,34], the cylindrical source
theory [35,36], and the three-dimensional (3D) numerical simulation method [37,38] can be
used to calculate and investigate the variation laws of the temperature in the soil. However,
in the first two approaches, it is hard to obtain soil temperature accurately. This issue can
be solved by adopting the 3D numerical simulation method, but its calculation time is too
long to meet actual engineering demand.

In order to obtain the change laws of soil temperature in the process of heat storage
quickly and accurately, a layered slice algorithm is proposed by the present authors. The
construction of the novel algorithm is based on the characteristic of a high heat-transfer
rate in the horizontal direction while low in the vertical direction. Then, the 3D solution
process can be transformed into 2D heat-transfer solutions on different horizontal slices.
Meanwhile, the corresponding heat transfer in the vertical direction is calculated by the
known temperatures and is incorporated into the source term.

In the following, the physical and mathematical models are described first. Then,
the traditional 3D simulation algorithm and the proposed layered slice algorithm are
introduced, followed by systemic comparisons and analyses of these two algorithms.
Finally, some conclusions are drawn.

2. Physical and Mathematical Models
2.1. Physical Model

This paper takes the heat conduction between the double U-tube heat exchanger
and the surrounding soil as an example to illustrate the building process of the layered
slice algorithm and analyze its solving performance. The corresponding physical model
is shown in Figure 1. The heat-storage system mainly includes the double U-tube heat
exchanger, backfill soil, and original soil. For low-temperature soil heat storage in practice
engineering, the U-tube heat exchanger generally adopts an HDPE pipe with a diameter of
32 mm and a thickness of 3 mm, and the center distance between two adjacent pipes is set
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as 56.56 mm. The U-tube heat exchanger is buried in a borehole with a diameter of 150 mm
and a depth of 101.5 m.
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Figure 1. The physical model for soil heat storage system. 

A space of 1.5 m below the ground surface is usually used to arrange horizontal 

pipes. These horizontal pipes connect the inlets and outlets of double U-tube heat ex-

changers in multi-boreholes and are covered with a thermal insulation layer on the out-

side. A space from 1.5 m to 101.5 m is the main body of heat storage. The double U-tube 

heat exchanger is placed in this space and exchanges heat with the surrounding soil. When 

the depth and radius are greater than 111.5 m and 2.5 m, respectively, the soil temperature 

is hardly affected by the ground heat exchanger [39]. Therefore, the computation domain 

is set to 111.5 m (depth) × 5 m (diameter). 

The soil heat storage is affected by many factors. In order to simplify the calculation 

process, the following reasonable assumptions are put forward, based on the actual situ-

ation in the project: 

(1) The backfill still uses the original soil; 

(2) The effective thermophysical properties are adopted instead of the actual soil param-

eter and are set as constants. Then, the complex coupling process in the soil can be 

regarded as a single heat conduction problem; 

(3) Water is selected as the working medium in the U-type tube and is assumed to be an 

incompressible fluid; 

(4) A U-type tube is simplified as two straight tubes with opposite flow directions and 

equal bottom temperature. 

Based on the assumptions above, a simplified physical model for the soil heat-storage 

system is established in this paper, as shown in Figure 2. It should be noted that we neglect 

the connection part at the bottom of the U-type tube. Then, the double U-tube heat ex-

changer is transformed into four straight tubes running from top to bottom. For the four 

straight tubes, the upper and lower parts are all set as the adiabatic boundary condition. 

Figure 1. The physical model for soil heat storage system.

A space of 1.5 m below the ground surface is usually used to arrange horizontal pipes.
These horizontal pipes connect the inlets and outlets of double U-tube heat exchangers in
multi-boreholes and are covered with a thermal insulation layer on the outside. A space
from 1.5 m to 101.5 m is the main body of heat storage. The double U-tube heat exchanger
is placed in this space and exchanges heat with the surrounding soil. When the depth
and radius are greater than 111.5 m and 2.5 m, respectively, the soil temperature is hardly
affected by the ground heat exchanger [39]. Therefore, the computation domain is set to
111.5 m (depth) × 5 m (diameter).

The soil heat storage is affected by many factors. In order to simplify the calculation
process, the following reasonable assumptions are put forward, based on the actual situation
in the project:

(1) The backfill still uses the original soil;
(2) The effective thermophysical properties are adopted instead of the actual soil param-

eter and are set as constants. Then, the complex coupling process in the soil can be
regarded as a single heat conduction problem;

(3) Water is selected as the working medium in the U-type tube and is assumed to be an
incompressible fluid;

(4) A U-type tube is simplified as two straight tubes with opposite flow directions and
equal bottom temperature.

Based on the assumptions above, a simplified physical model for the soil heat-storage
system is established in this paper, as shown in Figure 2. It should be noted that we
neglect the connection part at the bottom of the U-type tube. Then, the double U-tube
heat exchanger is transformed into four straight tubes running from top to bottom. For
the four straight tubes, the upper and lower parts are all set as the adiabatic boundary
condition. The middle section with a length of 100 m is considered the convection heat-
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transfer boundary condition. For the simplified physical model, the top, bottom, and
outside surfaces are set as the convection heat-transfer, isothermal, and adiabatic boundary
conditions, respectively.
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Figure 2. The simplified physical model for soil heat storage system and the corresponding boundary
conditions. (For convenience, this figure shows all the four straight pipes in the middle. Their real
relative positions refer to Figure 1).

2.2. Mathematical Model
2.2.1. Governing Equation for Convection Heat Transfer Inside the Tube

Compared with the tube length, its diameter is so small that it can be neglected.
Therefore, it is assumed that the temperature is uniform on the cross-section of the tube.
The temperature is only a function of time and the axial position of the tube. Then, the
energy equation for the fluid inside the tube can be written as follows:

∂
(

ρ f c f Tf

)
∂τ

+
∂
(

ρ f c f w f Tf

)
∂z

=
∂

∂z

(
λ f

∂Tf

∂z

)
+

2h(Tts − Tf )

r
(1)

where Tf and Tts refer to the temperatures of the fluid and the inner surface of the tube,
h is the coefficient of convection heat transfer, and r is the tube radius. The value of heat
transfer coefficient in calculation comes from reference [40].

2.2.2. Governing Equation for Generalized Heat-Storage Body

For convenience, the soil and the tube wall are unified into a generalized heat-storage
body. The corresponding energy equation can be expressed as

∂(ρcT)
∂τ

=
∂

∂x

(
λ

∂T
∂x

)
+

∂

∂y

(
λ

∂T
∂y

)
+

∂

∂z

(
λ

∂T
∂z

)
(2)

It should be noted that the subscript is omitted when referring to the generalized
heat-storage body. Still, the subscripts t and s are adopted when denoting tube and
soil, respectively.
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2.2.3. Treatment of Interface between Tube and Soil

As shown in Figure 3, when the thermal contact resistance is ignored, the temperature
at the interface e meets

Te|s = Te|t (3)
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The corresponding thermal conductivity coefficient at the interface can be obtained by
the harmonic mean method. First, the heat flux through the interface can be calculated by
Fourier’s law.

qe =
Te − Ts
(δx)−e

λs

=
Tt − Te
(δx)+e

λt

=
Tt − Ts

(δx)−e
λs

+
(δx)+e

λt

=
Tt − Ts
(δx)e

λe

(4)

Then, the following Equation can be obtained from the above Equation.

(δx)−e
λs

+
(δx)+e

λt
=

(δx)e
λe

(5)

Finally, we obtain the thermal conductivity coefficient at the interface.

λe =
(δx)e

(δx)−e
λs

+
(δx)+e

λt

(6)

2.2.4. Boundary Conditions

In Section 2.1, the types of boundary conditions have been introduced for the different
surfaces in the simplified physical model. In the following, we give the corresponding
expressions of these boundary conditions.

For the four straight tubes, the upper, middle, and lower sections’ temperature bound-
ary conditions are expressed as follows:

λt
∂Tt

∂nt
= 0 at


(x + 0.04)2 + y2 = 0, −1.5 m ≤ z ≤ 0
(x− 0.04)2 + y2 = 0, −1.5 m ≤ z ≤ 0
x2 + (y + 0.04)2 = 0, −1.5 m ≤ z ≤ 0
x2 + (y− 0.04)2 = 0, −1.5 m ≤ z ≤ 0

(7)
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λt
∂Tt

∂nt
= h f

(
Tt − Tf

)
at


(x + 0.04)2 + y2 = 0, −101.5 m ≤ z ≤ −1.5 m
(x− 0.04)2 + y2 = 0, −101.5 m ≤ z ≤ −1.5 m
x2 + (y + 0.04)2 = 0, −101.5 m ≤ z ≤ −1.5 m
x2 + (y− 0.04)2 = 0, −101.5 m ≤ z ≤ −1.5 m

(8)

λt
∂Tt

∂nt
= 0 at


(x + 0.04)2 + y2 = 0, −111.5 m ≤ z ≤ −101.5 m
(x− 0.04)2 + y2 = 0, −111.5 m ≤ z ≤ −101.5 m
x2 + (y + 0.04)2 = 0, −111.5 m ≤ z ≤ −101.5 m
x2 + (y− 0.04)2 = 0, −111.5 m ≤ z ≤ −101.5 m

(9)

where nt refers to the normal direction pointing toward the tube wall, hf is the convection
heat transfer coefficient for water, and tf denotes the water temperature.

For the simplified physical model, the temperature boundary conditions of the top,
bottom, and outside surfaces are, respectively, described as

λs
∂Ts

∂ns
= ha(Ts − Ta) at z= 0 (10)

Ts = Tc at z = −111.5 m (11)

λs
∂Ts

∂ns
= 0 at (x− 2.5)2 + (y− 2.5)2 = 0 (12)

where ns refers to the normal direction pointing toward the soil, ha is the convection heat
transfer coefficient for air, ta denotes the air temperature, and Tc is a set temperature.

3. Numerical Simulation Method
3.1. Traditional 3D Simulation Algorithm
3.1.1. Discretization of the Computation Domain

We adopt a one-dimensional grid system to calculate the temperature change along
the tube (see Figure 4). For this grid system, each control volume is a cylinder whose
diameter is equal to the tube’s inner diameter.
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Figure 4. One-dimensional grid system for the interior of the tube. Figure 4. One-dimensional grid system for the interior of the tube.

For the generalized heat-storage body region, the unstructured quadrilateral grid
is adopted on the horizontal section, as shown in Figure 5. The temperature changes
sharply in and near the tube wall, so the mesh is refined locally in this area. Along the
depth direction, the structures of different horizontal sections are the same as each other.
Therefore, a structured grid is made in the depth direction. Then, the corresponding 3D
grid system is generated, and each control volume is a quadrangular prism (see Figure 6).

Based on the one-dimensional grid system (see Figure 4), the finite volume method
is adopted to discretize the energy Equation (1). Because the in-tube fluid temperature
changes little, the corresponding thermophysical properties such as density, specific heat
capacity, and thermal conductivity are assumed to be constant.

If we integrate Equation (1) over the control volume around the central grid point P,
we obtain:
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∫ d

u

∂
(

ρ f c f Tf

)
∂τ

Atdz +
∫ d

u

∂
(

ρ f c f w f Tf

)
∂z

Atdz =
∫ d

u

∂

∂z

(
λ f

∂Tf

∂z

)
Atdz +

∫ d

u

2h(Tts − Tf )

r
Atdz (13)

where u and d refer to the upstream and downstream faces of the control volume, At is the
tube’s cross-sectional area.
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3.1.2. Discretization and Solution of Energy Equation for In-Tube Fluid
When we adopt an explicit time-integration scheme combined with a first-order

upwind spatial scheme, the following discretization equation can be obtained:

ρ f c f

(
Tf ,P − T0

f ,P

)
∆τ

∆V +

[
ρ f c f w f T0

f ,P At

−ρ f c f w f T0
f ,U At

]
=

[
λ f

(
T0

f ,U − T0
f ,P

δzu

)
At − λ f

(
T0

f ,P − T0
f ,D

δzd

)
At

]
+ 2πr∆zPh

(
T0

ts,P − T0
f ,P

)
(14)

where the superscript 0 refers to the current time step, the subscripts U and D denote
the upstream and downstream grid points, ∆V is the volume of the control volume, and
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∆τ is the time step. According to the known temperatures at the current time step, we
can obtain the fluid temperature at the next time step by solving Equation (14). Then,
the calculated fluid temperature can be used as the boundary condition to compute the
generalized heat-storage body’s temperature field.

3.1.3. Discretization and Solution of Energy Equation for Generalized Heat-Storage Body

Figure 6 shows the 3D grid system for the generalized heat-storage body. We focus
attention on the central grid point P0, which has the grid points P1, P2, P3, P4, P5, P6 as its
neighbors. If we integrate Equation (2) over the control volume around P0, we obtain:∫

V

∂(ρcT)
∂τ

dV =
∫
V

∇ · (λ∇T)dV (15)

The unsteady term in Equation (15) can be expanded to obtain:

∫
V

∂(ρcT)
∂τ

dV = ρcpVP0

TP0 − T0
P0

∆τ
(16)

where VP0 denotes the volume of the control volume.
For the diffusion term in Equation (15), we obtain:

∫
V

∇ · (λ∇T)dV = λ
∫
A

(∇T) · dA =
6

∑
j=1

λ(∇T)j·Aj =
6

∑
j=1

(
Dn

j + Dc
j

)
(17)

where Dn
j and Dc

j refer to the normal and cross diffusion fluxes, respectively. The corre-
sponding expressions are:

Dn
j = λ

(
TPj − TP0∣∣dj

∣∣ dj∣∣dj
∣∣
)
·Aj (18)

Dc
j = λ

[
(∇T)0

j − (∇T)0
j ·

dj∣∣dj
∣∣ dj∣∣dj

∣∣
]
·Aj (19)

Substituting Equations (18) and (19) into Equation (17), we obtain:

∫
V

∇ · (λ∇T)dV =
6

∑
j=1

{
λ

(
TPj − TP0∣∣dj

∣∣ dj∣∣dj
∣∣
)
·Aj + λ

[
(∇T)0

j − (∇T)0
j ·

dj∣∣dj
∣∣ dj∣∣dj

∣∣
]
·Aj

}
(20)

where Aj denotes the area vector of the control-volume face j, (∇T)0
j is the temperature

gradient at the control-volume face j. The value of (∇T)0
j can be obtained by the following

linear interpolation:
(∇T)0

j = wp0(∇T)0
p0
+ wpj(∇T)0

pj
(21)

where wp0 and wpj are interpolation factors. (∇T)0
p0

and (∇T)0
pj

are the temperature gradi-
ents at the grid points P0 and Pj, which can be calculated by the least square method [41].

Substituting Equations (16) and (20) into Equation (15), we obtain the corresponding
discretization equation:

ap0 Tp0 =
6

∑
j=1

apj Tpj + bP0 (22)

where

apj = λ
dj ·Aj∣∣dj
∣∣2 j = 1 ∼ 6 (23)
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ap0 = ρc
Vp0

∆τ
+

6

∑
j=1

apj (24)

bP0 = ρc
Vp0

∆τ
T0

P0
+

6

∑
j=1

λ

[(
wp0(∇T)0

p0
+ wpj(∇T)0

pj

)
−
(

wp0(∇T)0
p0
+ wpj(∇T)0

pj

)
·

dj∣∣dj
∣∣ dj∣∣dj

∣∣
]
·Aj (25)

According to the known temperature, time step, mesh geometry parameters, and
thermophysical properties, we can calculate the coefficients ap0 , apj and source term bP0 in
Equation (22). Then, the discretization equations for all grid points are iteratively solved
in the whole 3D space. Finally, we can obtain the unknown temperature field at the next
time step.

3.1.4. Traditional 3D Simulation Algorithm Self-Programming Accuracy Verification

In order to verify the correctness of the traditional 3D simulation algorithm, this
chapter developed the solution program of the traditional 3D simulation algorithm ac-
cording to the above discrete equations and solving steps. Then, the solution program of
the traditional 3D simulation algorithm and FLUENT software were, respectively, used to
simulate the soil heat storage process for 4 h. Finally, the simulation results of traditional
3D simulation algorithm are compared and verified.

In the following example, the same mesh quantity (600,000) and the same time step
(10 s) are used. The physical parameters of raw soil, backfill soil, pipe wall and heat
carrying medium are set, as shown in Table 1.

Table 1. Thermophysical properties of soil, tube wall, and in-tube fluid.

Medium
Thermal Conductivity

Coefficient λ
[W/(m·K)]

Density ρ
[kg/m3]

Specific Heat cp
[J/(kg·K)]

Soil 1.40 1500.0 848.0
Tube wall 0.35 1230.0 1510.0

In-tube fluid 0.64 988.1 4181.5

In this example, the temperature field of soil heat storage was simulated under the
condition that the inlet temperature was constant at 323 K, and the temperature changes
with time at points 1 (0.04, 0, 0) (exit of U-shaped pipe), 2 (−0.06, 0.01, −1.5) and 3 (−0.03,
0.03,−101.5) were recorded, as shown in Figure 7. As can be seen from the figure, the results
obtained by the solution program of the traditional 3D simulation algorithm in the whole
heat storage process are almost identical with those obtained by the FLUENT software.

In order to quantitatively analyze the accuracy of the traditional 3D simulation algo-
rithm, Table 2 lists the maximum temperature errors at the three points in the whole heat
storage process. As listed in the table, compared with the results calculated by the Fluent
software, the absolute temperature errors for the traditional 3D simulation algorithm are
all less than 0.039 K, and the relative errors are all less than 0.25%.

Table 2. Temperature errors at observation points calculated by the traditional 3D simulation algo-
rithm under thermal storage condition.

Error Point 1 Point 2 Point 3

Absolute error [K] 0.0095 0.019 0.039
Relative error [%] 0.056 0.25 0.15

Next, we will propose a layered slice algorithm based on the traditional 3D algorithm
and analyze its performance in depth.



Energies 2022, 15, 3743 10 of 23

Energies 2022, 15, x FOR PEER REVIEW 10 of 25 
 

 

In this example, the temperature field of soil heat storage was simulated under the 

condition that the inlet temperature was constant at 323 K, and the temperature changes 

with time at points 1 (0.04, 0, 0) (exit of U-shaped pipe), 2 (−0.06, 0.01, −1.5) and 3 (−0.03, 

0.03, −101.5) were recorded, as shown in Figure 7. As can be seen from the figure, the 

results obtained by the solution program of the traditional 3D simulation algorithm in the 

whole heat storage process are almost identical with those obtained by the FLUENT soft-

ware. 

 

Figure 7. Evolution of temperature with time at observation points calculated by the Fluent software 

and the traditional 3D simulation algorithm under thermal storage condition. 

In order to quantitatively analyze the accuracy of the traditional 3D simulation algo-

rithm, Table 2 lists the maximum temperature errors at the three points in the whole heat 

storage process. As listed in the table, compared with the results calculated by the Fluent 

software, the absolute temperature errors for the traditional 3D simulation algorithm are 

all less than 0.039 K, and the relative errors are all less than 0.25%. 

Table 2. Temperature errors at observation points calculated by the traditional 3D simulation algo-

rithm under thermal storage condition. 

Error Point 1 Point 2 Point 3 

Absolute error [K] 0.0095 0.019 0.039 

Relative error [%] 0.056 0.25 0.15 

Next, we will propose a layered slice algorithm based on the traditional 3D algorithm 

and analyze its performance in depth. 

3.2. Layered Slice Algorithm 

The above traditional 3D simulation algorithm needs to simultaneously solve the dis-

crete equations in the whole 3D space, making convergence difficult and time-consuming. 

According to the structural and heat transfer characteristics of the simplified physical 

model, this paper proposes a layered slice algorithm, which transforms the 3D solution 

process into the solutions of 2D heat transfer on different horizontal slices. 

The in-tube calculation process is the same for the traditional 3D simulation algo-

rithm and the layered slice algorithm. The essential difference between these two 

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

275

280

285

290

295

300

305

310

315

320

Traditional 3D simulation algorithm

 Temperature at point 1

 Temperature at point 2

 Temperature at point 3T
em

pe
ra

tu
re

/K

Time/s

Fluent Simulation software

 Temperature at point 1

 Temperature at point 2

 Temperature at point 3
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and the traditional 3D simulation algorithm under thermal storage condition.

3.2. Layered Slice Algorithm

The above traditional 3D simulation algorithm needs to simultaneously solve the
discrete equations in the whole 3D space, making convergence difficult and time-consuming.
According to the structural and heat transfer characteristics of the simplified physical model,
this paper proposes a layered slice algorithm, which transforms the 3D solution process
into the solutions of 2D heat transfer on different horizontal slices.

The in-tube calculation process is the same for the traditional 3D simulation algorithm
and the layered slice algorithm. The essential difference between these two algorithms lies
in the energy equation’s discretization and solution for the generalized heat-storage body.

3.2.1. Discretization of the Computation Domain

The discrete Equation (22) used in the traditional 3D simulation algorithm is split into
the horizontal and vertical directions and is written as:(

ρc
Vp0

∆τ
+

4

∑
j=1

apj +
6

∑
j=5

apj

)
Tp0 =

4

∑
j=1

apj Tpj +
6

∑
j=5

apj Tpj + bP0 (26)

Considering the characteristic of a high heat-transfer rate in the horizontal direction
while low in the vertical direction, we adopt the known temperatures to calculate the
heat transfer in the vertical direction. Thus, the above equation can be cast into the
following form:(

ρc
Vp0

∆τ
+

4

∑
j=1

apj

)
Tp0 =

4

∑
j=1

(
apj Tpj

)
+

6

∑
j=5

[
apj

(
T0

pj
− T0

p0

)]
+ bP0 (27)

The latter two terms on the right side of Equation (27) can be unified into a new source
term:

BP0 =
6

∑
j=5

[
apj

(
T0

pj
− T0

p0

)]
+ bP0 (28)
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Finally, we can obtain the discrete energy equation involved in the layered slice
algorithm. The result is:

ap0 Tp0 =
4

∑
j=1

apj Tpj + BP0 (29)

where

apj = λ
dj ·Aj∣∣dj
∣∣2 j = 1 ∼ 4 (30)

ap0 = ρc
Vp0

∆τ
+

4

∑
j=1

apj (31)

There are just horizontal-direction unknown temperatures in Equation (29), so the 3D
solution process is successfully transformed into 2D heat transfer solutions on different
horizontal slices.

3.2.2. Solution Procedure of Layered Slice Algorithm

To better understand the layered slice algorithm, we will introduce its detailed solution
procedure in the following:

Step 1: Build the simplified physical model for the soil heat-storage system (see
Figure 2), which has the same structures for different horizontal slices;

Step 2: Establish the energy Equations (1) and (2) for the in-tube fluid and the general-
ized heat-storage body, respectively;

Step 3: Set the thermophysical properties, the boundary conditions, and the initial
temperatures;

Step 4: Generate the 1D and 3D grid systems (see Figures 4 and 6) for the in-tube
fluid and the generalized heat-storage body, respectively. The 3D grid system adopts the
same 2D unstructured grids on different horizontal slices for implementing the layered
slice algorithm;

Step 5: Derive the discrete energy Equations (14) and (29) for the in-tube fluid and the
generalized heat-storage body, respectively.

Step 6: Solve the discrete energy Equation (14) according to the known temperatures
at the current time step and then obtain the next time step’s fluid temperature. Note that
the calculated fluid temperature can be used to update the boundary condition for the
generalized heat-storage body;

Step 7: Calculate the coefficients and source term in the discrete energy Equation (29)
according to the known temperatures. Then, solve the equation slice by slice to obtain the
temperature distribution within the generalized heat-storage body at the next time step;
Note that the solving processes for different horizontal slices are entirely independent. We
can calculate one slice and then another.

Step 8: Regard the calculated temperature as the known, then return to Step 6 for the
next time step.

Repeat Steps 6~8 until the time reaches the preset value.

4. Numerical Comparisons and Analyses

The temperature distribution during soil heat storage may be affected by the ther-
mophysical properties of soil, tube wall, and in-tube fluid. However, they have little
influence on the solving performance of the proposed layered slice algorithm. Therefore,
we adopt the specific thermophysical properties (see Table 1) to study and analyze the
proposed algorithm through some different cases. It should be noted that the programming
language used for both algorithms is Fortran90, and the computer used in the test has
eight computing cores and 16 threads. In Sections 4.1 and 4.2, only single-thread serial
computation is used in the test example, while in Section 4.3, 1~16 threads are used for
parallel computation with OpenMP fortran application program interface.
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4.1. Accuracy Verification of Layered Slice Algorithm

The inlet temperatures of the double U-tube heat exchanger are mainly divided
into two types: fixed and periodic. Based on these two types of temperature conditions,
we verify the accuracy of the proposed layered slice algorithm by comparing with the
traditional 3D simulation algorithm.

4.1.1. Fixed Inlet Temperature

Table 3 lists the related parameters used in the initial and boundary conditions. As we
know, the soil temperature is affected by the depth and tends to be stable after reaching a
certain depth. According to the reference [40], its initial temperature is given as a function
of soil depth.

T(z) = 12.9e−0.3|z| cos(0.3|z| − 4.13) + 287 (32)

Table 3. The parameters used in the initial and boundary conditions.

Parameter Value

Initial temperature of the soil T(z) = 12.9e−0.3|z| cos(0.3|z| − 4.13) + 287
Initial temperature of the in-tube fluid 323 K

Fixed inlet temperature 323 K
Periodic inlet temperature Tin = 323.0 + 5.0 sin

(
2π

3600 τ
)

Inlet velocity 0.5 m/s
Air temperature 303 K

Besides, the double U-tube heat exchanger’s inlet temperature and velocity are set to
323 K and 0.5 m/s, respectively. The simulation is implemented under the conditions of
the grid number with 600,000, the time step with 10 s, and the heat storage time with 4 h. It
should be noted that the grid-independent result can be obtained when the grid number is
greater than or equal to 600,000.

Because the soil has a large thermal inertness, the temperature change in the area away
from the heat exchanger is relatively slow. For better validating the proposed layered slice
method, three different points near the U-tube are selected for analysis. These three points
are located at different depths and different horizontal positions, which are points A (0, 0,
−1.5), B (0.03, 0.03, −54.0) and C (0.075, 0.075, −101.5). Figure 8 illustrates the temperature
change at these three points for the case of fixed inlet temperature.

As shown in this figure, the temperature-time change curves calculated by the pro-
posed algorithm are almost completely consistent with the results of the traditional 3D
simulation algorithm. In order to quantitatively analyze the accuracy of the proposed
algorithm, Table 4 lists the maximum temperature errors at the three points in the whole
heat storage process. As listed in the table, the temperature errors are very small at point B
near the middle of the U-tube, while the errors increase a little at points A and C near either
end of the U-tube. The reason is that the heat transfer in the vertical direction at points A
and C is larger than that at point B. When we adopt the known temperatures to calculate
the heat transfer in the vertical direction, points A and C will produce a larger error. In
general, compared with the traditional 3D simulation algorithm, the absolute temperature
errors for the proposed layered slice algorithm are all less than 0.017 K, and the relative
errors are all less than 0.18%.

In order to further analyze the accuracy of the proposed layered slice algorithm, we
compare the instantaneous temperature fields computed by the two different algorithms,
as shown in Figures 9 and 10. Their calculation results agree very well with each other in
both vertical and horizontal sections, further proving that the layered slice algorithm has a
high precision for the case of fixed inlet temperature.
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temperature.

Table 4. Temperature errors of the layered slice algorithm at points A, B, and Cunder the condition of
fixed inlet temperature.

Error Point A Point B Point C

Absolute error [K] 0.017 3.0 × 10−6 0.0019
Relative error [%] 0.18 0.000011 0.017
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4.1.2. Periodic Inlet Temperature

When the inlet temperature changes periodically, the soil temperature field will fluctu-
ate accordingly. In order to verify the accuracy of the proposed layered slice algorithm for
the case of periodic inlet temperature, the inlet temperature is set as a sine function of time.

Tin = 323.0 + 5.0 sin
(

2π

3600
τ

)
(33)

Besides, other conditions are the same as the case of fixed inlet temperature.
In this case, we also compare the temperature changes with time at points A, B, and C,

as shown in Figure 11. The three points’ temperatures show an upward trend in fluctuation,
and the temperature change curves calculated by the two different algorithms are almost
identical. Table 5 lists the corresponding temperature errors of the layered slice algorithm.
For points A and C, the temperature errors are basically the same as those under the fixed
inlet temperature. For point B, the errors are still very small, but they have a little increase
compared with the fixed inlet temperature. The reason is that the temperature fluctuations
will cause the rise of the heat transfer in the vertical direction, leading to an increase in the
layered slice algorithm’s calculation errors. On the whole, compared with the traditional
3D simulation algorithm, the absolute temperature errors for the proposed layered slice
algorithm are all less than 0.017 K, and the relative errors are all less than 0.19%.

We have also compared the instantaneous temperature fields calculated by the two
different algorithms, as shown in Figures 12 and 13. Their calculation results are in good
agreement in both horizontal and vertical directions, which indicates that the proposed
layered slice algorithm has a high accuracy for the case of periodic inlet temperature.
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Figure 11. Temperature change at three different points near the U-tube for the case of periodic inlet
temperature.

Table 5. Temperature errors of the layered slice algorithm at points A, B, and Cunder the condition of
periodic inlet temperature.

Error Point A Point B Point C

Absolute error [K] 0.017 8.8 × 10−4 0.0021
Relative error [%] 0.19 0.0031 0.019
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With the arguments above, we can conclude that the proposed layered slice algorithm
can maintain a high numerical accuracy. In the following, we will analyze the solution
speed of the proposed layered slice algorithm in detail.

4.2. Solution Speed Analysis of Layered Slice Algorithm

Unlike the traditional 3D simulation algorithm, the layered slice algorithm transforms
the 3D solution process into 2D heat transfer solutions on different horizontal slices. Due
to the reduction of dimensionality, the proposed algorithm has an evident accelerating
effect. In the following, based on the case of periodic inlet temperature, we will investi-
gate the influences of grid number and time step on the proposed algorithm’s solution
speed, respectively.

4.2.1. The Influence of Grid Number

In order to analyze the effect of the grid number on the solution speed of the proposed
layered slice algorithm, three different grid numbers of 600,000, 900,000, and 1,200,000 are
considered to simulate the case of periodic inlet temperature. Table 6 lists the speedup ratios
of the proposed layered slice algorithm over the traditional 3D simulation algorithm and the
corresponding computation times. For the grid numbers of 600,000, 900,000, and 1,200,000,
the speedup ratios are 2.34, 2.36, and 2.38, respectively. The proposed algorithm has good
acceleration effects under different grid systems. At the same time, the acceleration effect is
slightly improved with the increase in the grid number. In other words, compared with the
traditional 3D simulation algorithm, the layered slice algorithm can obtain fast-converging
solutions on different grids.
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Table 6. Comparison of solving speed between the layered slice algorithm and the traditional 3D
simulation algorithm for three different grid numbers.

Algorithm Grid Number Computation Time/s Speedup Ratio

Traditional 3D
simulation algorithm

600,000 1180 —
900,000 1813 —

1,200,000 2494 —

Layered slice
algorithm

600,000 505 2.34
900,000 768 2.36

1,200,000 1048 2.38

4.2.2. The Influence of Time Step

Three different time steps of 1 s, 10 s, and 100 s are adopted to research the influence
of time step on the solution speed of the proposed layered slice algorithm. Table 7 shows
the computation times of these two different algorithms and the speedup ratios of the
proposed layered slice algorithm over the traditional 3D simulation algorithm.

Table 7. Comparison of solving speed between the layered slice algorithm and the traditional 3D
simulation algorithm for three different time steps.

Algorithm Time Step/s Computation Time/s Speedup Ratio

Traditional 3D
simulation algorithm

1 6128 —
10 1180 —

100 261 —

Layered slice
algorithm

1 2788 2.20
10 505 2.34

100 102 2.56

For the time steps of 1 s, 10 s, and 100 s, the proposed algorithm’s speedup ratios
are 2.20, 2.34, and 2.56, respectively. On the one hand, these data show that the proposed
algorithm can obtain fast convergent solutions at different time steps; on the other hand, its
acceleration effect is improved continuously with the increase in time step. It is noteworthy
that the computation time decreases with the rise of the time step. So, a larger time step
should be selected as far as possible on the premise of ensuring the calculation accuracy,
which can achieve our proposed algorithm’s best performance.

Based on the above analysis, it can be concluded that compared with the traditional
algorithm, the proposed layered slice algorithm can improve the calculation speed by
2.2~2.56 times under different grid numbers and time steps. In addition to the above
advantages, the proposed algorithm also has an excellent parallel performance. In the
following, we will analyze its parallel performance in detail.

4.3. Parallel Characteristic Analysis of Layered Slice Algorithm
4.3.1. Parallel Computing Principle

In general, parallel computing can be used to speed up the solution of soil heat
storage. Figure 14 shows the parallel computing process of the traditional 3D simulation
algorithm. In this process, the data exchanges between different threads are required
during the iteration solution at each time step. With the increase in the parallel threads, the
amount of data communication is raised substantially, leading to the reduction of parallel
computing efficiency.



Energies 2022, 15, 3743 18 of 23

Energies 2022, 15, x FOR PEER REVIEW 19 of 25 
 

 

For the time steps of 1 s, 10 s, and 100 s, the proposed algorithm’s speedup ratios are 

2.20, 2.34, and 2.56, respectively. On the one hand, these data show that the proposed 

algorithm can obtain fast convergent solutions at different time steps; on the other hand, 

its acceleration effect is improved continuously with the increase in time step. It is note-

worthy that the computation time decreases with the rise of the time step. So, a larger time 

step should be selected as far as possible on the premise of ensuring the calculation accu-

racy, which can achieve our proposed algorithm’s best performance. 

Based on the above analysis, it can be concluded that compared with the traditional 

algorithm, the proposed layered slice algorithm can improve the calculation speed by 

2.2~2.56 times under different grid numbers and time steps. In addition to the above ad-

vantages, the proposed algorithm also has an excellent parallel performance. In the fol-

lowing, we will analyze its parallel performance in detail. 

4.3. Parallel Characteristic Analysis of Layered Slice Algorithm 

4.3.1. Parallel Computing Principle 

In general, parallel computing can be used to speed up the solution of soil heat stor-

age. Figure 14 shows the parallel computing process of the traditional 3D simulation al-

gorithm. In this process, the data exchanges between different threads are required during 

the iteration solution at each time step. With the increase in the parallel threads, the 

amount of data communication is raised substantially, leading to the reduction of parallel 

computing efficiency. 

 

Figure 14. Parallel computing process of the traditional 3D simulation algorithm. 

Unlike the traditional 3D simulation algorithm, the layered slice algorithm adopts 

the known temperatures to calculate the heat transfer in the vertical direction. Thus, the 

original 3D solution process is transformed into 2D heat transfer solutions on different 

horizontal slices. Based on this solving characteristic, several horizontal slices can be de-

fined as a block and assigned to a thread for parallel computing, as shown in Figure 15. 

In this way, there is no need for data exchange between different threads, except at the 

end of each time step. Due to the substantial reduction of the data exchange among dif-

ferent threads, the parallel computing efficiency of the layered slice algorithm can be sig-

nificantly improved. In this paper, OpenMP is introduced into the proposed layered slic-

ing algorithm to realize parallel computing. OpenMP is a set of APIs based on shared 

Figure 14. Parallel computing process of the traditional 3D simulation algorithm.

Unlike the traditional 3D simulation algorithm, the layered slice algorithm adopts the
known temperatures to calculate the heat transfer in the vertical direction. Thus, the original
3D solution process is transformed into 2D heat transfer solutions on different horizontal
slices. Based on this solving characteristic, several horizontal slices can be defined as a
block and assigned to a thread for parallel computing, as shown in Figure 15. In this way,
there is no need for data exchange between different threads, except at the end of each time
step. Due to the substantial reduction of the data exchange among different threads, the
parallel computing efficiency of the layered slice algorithm can be significantly improved.
In this paper, OpenMP is introduced into the proposed layered slicing algorithm to realize
parallel computing. OpenMP is a set of APIs based on shared storage architecture [42]. For
this parallel technique, the parallel program can be easily realized by adding the directives
to the original serial program.
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4.3.2. Parallel Performance Analysis

(1) Qualitative analysis

Parallel computing time and parallel speedup ratio can effectively reflect the parallel
performance of the algorithm. Parallel computing time mainly consists of three parts: the
first is the time consumption τ1 of the necessary serial computing part; the second is the
time consumption τ2/n of the parallel computing part with n threads, and; the third is
the time consumption τ3 of the data exchange among different threads. Thus, the parallel
speedup ratio is written as:

Sp(n) =
τ1 + τ2

τ1 +
τ2
n + τ3

(34)

where (τ1 + τ2) refers to the computation time of serial computing, and (τ1 +
τ2
n + τ3)

denotes the computation time of parallel computing with n threads.
Because τ3 is positively related to the number of threads n, it can be expressed as:

τ3 = αn (35)

The value of α is determined by the amount of data exchange among different threads.
According to Equations (34) and (35), we can obtain the derivative of Sp with respect

to n:
∂Sp

∂n
= −(τ1 + τ2)

α− τ2
n2(

τ1 +
τ2
n + αn

)2 (36)

It can be seen from Equation (36) that:
n <

√
τ2
α →

∂Sp
∂n > 0→ Sp increases with the increase of n.

n =
√

τ2
α →

∂Sp
∂n = 0 → Sp gets the maximum value.

n >
√

τ2
α →

∂Sp
∂n > 0→ Sp decreases with the increase of n.

(37)

Compared with the traditional 3D simulation algorithm, the layered slice algorithm’s
data exchange is drastically reduced. So, we can obtain:

αL < αT → (nL,opt =

√
τ2

αL
) > (nT,opt =

√
τ2

αT
) (38)

where nT,opt and nL,opt refer to the optimal thread number of the traditional algorithm and
the layered slice algorithm, respectively. It can be found that the value of nL,opt is greater
than that of nT,opt.

Substituting the optimal thread number nopt into Equation (34), we obtain the maxi-
mum parallel speedup ratio:

Sp,max(n) =
τ1 + τ2

τ1 +
2τ2
nopt

(39)

According to Equations (38) and (39), we can derive:

SpL,max > SpT,max (40)

It means the parallel acceleration effect of the layered slice algorithm is better than
that of the traditional algorithm.

(2) Quantitative comparison

The case of periodic inlet temperature with a grid number of 600,000 is used to analyze
the layered slice algorithm’s parallel performance quantitatively. Figure 16 shows the
parallel speedup ratios of the traditional algorithm and the layered slice algorithm with the
threads from 1~16.
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It can be seen from Figure 16 that the parallel speedup ratio of both algorithms
increases first, and then decreases as the number of threads increases. When the same
thread numbers are used for calculation, the parallel speedup ratio of the layered slice
algorithm is always greater than that of the traditional algorithm. The maximum parallel
speedup ratio of the layered slice algorithm is 4.17 with 14 threads, while the traditional
algorithm is only 1.75 with 6 threads. The quantitative results are entirely consistent with
the above qualitative analysis.

Based on the above qualitative and quantitative analysis, we may conclude that the
layered slice algorithm could gain a much higher parallel speedup than the traditional
algorithm under the same conditions.

5. Conclusions

According to the structural and heat transfer characteristics of soil heat storage, a
novel layered slice algorithm is proposed to efficiently and accurately calculate the soil
heat storage process. Finally, through systematic and comprehensive comparison with the
traditional 3D simulation algorithms, the following conclusions can be drawn:

(1) The layered slice algorithm has a high simulation precision. For both cases of the
fixed and periodic inlet temperatures, the maximum relative errors are only 0.18%
and 0.19%, respectively;

(2) The layered slice algorithm can simplify and speed up the solution process. The
layered slice algorithm transforms the 3D solution process into 2D heat transfer
solutions on different horizontal slices. Due to the reduction of dimensionality, the
proposed algorithm has an evident accelerating effect. Compared with the traditional
3D algorithm, its calculation speed improves by 2.2~2.56 times under different grid
numbers and time steps;

(3) The layered slice algorithm has an excellent parallel characteristic. The parallel
acceleration effect of the layered slice algorithm is better than that of the traditional
3D algorithm. The maximum parallel speedup ratio of the layered slice algorithm is
4.17, while the traditional 3D algorithm is only 1.75.

Due to the superior solving performance, the proposed layered slice algorithm can
help the optimization design of the buried-tube heat exchangers.
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Nomenclature

Aj area vector of control-volume face j, m2

c specific heat, J/(kg·K)
Dn

j normal diffusion fluxes, W
Dc

j cross diffusion fluxes, W
h convective heat transfer coefficient, W/(m2·K)
n thread number
r tube radius, m
Sp parallel speedup ratio
T temperature, K
VP0 , ∆V volume of the control volume, m3

wp0 , wpj interpolation factors
z soil depth, m
λ thermal conductivity coefficient, W/(m·K)
ρ density, kg/m3

τ1 time consumption of necessary serial computing part, s
τ2 time consumption of parallel computing part, s
τ3 time consumption of data exchange among different threads, s
Subscript
D downstream grid point of control volume
d downstream face of control volume
e interface between soil and tube
f fluid in the tube
L layered slice algorithm
opt optimal thread number
P grid point of control volume
s soil
T traditional 3D simulation algorithm
t tube
ts inner surface of the tube
U upstream grid point of control volume
u upstream face of control volume
Superscript
0 current time step
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