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Abstract: Fractured karstic carbonate reservoirs have obvious multi-scale characteristics and severe
heterogeneity due to the development of abundant karst caves and fractures with different scales.
Darcy and non-Darcy flows coexist due to this property. Therefore, selecting the appropriate flow
equations for different regions in the numerical simulation of fluid flows, particularly two-phase and
multiphase flows, is a critical topic. This paper compares and analyses the displacement distance
differences of waterfront travel using the Darcy, Forchheimer and Barree–Conway equations, as
well as analyzes the influence of the Forchheimer constant, fluid viscosity, flow rate and absolute
permeability on inertia action based on the Buckley–Leverett theory. The results show that the
Forchheimer number/Reynolds number of water/oil two-phase flow is not a constant value and
varies with water saturation, making it difficult to determine whether the inertial action should
be considered solely based on these values; the influence of inertial action can be measured well
by comparing the difference between the displacement distances of the waterflood front, and the
quantitative standard is given for the selection of the flow equation of different regions by calculating
the allowable error of the displacement distance of the waterflood front. The magnitude of the inertial
effect is affected by the physical properties of the fluid and reservoir medium and the fluid velocity.
The smaller the difference in the viscosity of the oil/water fluid, the smaller the inertial effect is. This
technique was used a preliminary attempt to analyze the fractured karstic carbonate reservoirs at
Tarim, and the results confirmed the validity of the method described in this article.

Keywords: fractured karstic carbonate reservoir; non-Darcy flow; inertial effect; Forchheimer number;
Reynolds number; distance deviation of waterflood front

1. Introduction

Carbonate reservoirs are an important type of reservoir that contain 60% of the world’s
total oil and gas reserves [1]; however, they differ from conventional reservoirs. Their
storage space includes primary porosity, fractures, and karst caves; hence, their porosity
scale ranges from millimeter to meter levels. Therefore, two types of flow regimes are
present in fractured karst carbonate reservoirs: Darcy flow and non-Darcy flow. One
group of researchers used reduced-order models and machine learning to forecast the
production of flow by building a high-fidelity DFN model in an unconventional reservoir
with fractures [2]. Furthermore, another study proposed the Darcy/non-Darcy coupled
model for fluid flow where Darcy and non-Darcy flow coexist [3] (Yao, 2018). Thus, the
choice of flow equations according to the fluid flow regimes is an essential part of reservoir
simulations. At present, researchers depend mainly on qualitative analysis or the Reynolds
number to distinguish the flowing regimes and flow equations. For example, non-Darcy
flow usually occurs in near-wellbore regions, large-scale fractures, large karst caves and
unconsolidated areas, and at Re = 10–1000. These expressions are qualitative or vague
rather than quantitative. There is no specific definition or criteria for predicting non-Darcy
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flow in fractured karstic carbonate reservoirs; moreover, we do not know the accurate range
of the near-wellbore region for non-Darcy flow at a given production rate, or under what
conditions non-Darcy flow occurs for the given fractured karstic regions.

Researchers have set up several different fluid flow equations to describe Darcy and
non-Darcy flows, including the Darcy, Forchheimer and Barree–Conway equations. The
Darcy equations [4] (1856) are widely accepted to describe the behavior of linear fluids,
while Forchheimer [5] (1901) proposed the Forchheimer equation to describe non-Darcy
flow. Researchers [6–10] (Carman, 1974; Fand, 1987; Montillet, 2004) have found that the
Forchheimer equation is unsuitable for high-velocity flow. Barree and Conway [11,12] (2004)
proposed the Barree–Conway equation, which is a more general equation for non-linear
flow. The Barree–Conway equation has a similar expression as the Darcy equation if the
pressure gradient is expressed in terms of the apparent permeability. The Barree–Conway
equation describes the entire range of flow velocities versus pressure gradient from Darcy
to non-Darcy flow regimes. Since fluids change from Darcy flow to non-Darcy flow as the
velocity increases, these flow regimes are located in different regions of the same reservoirs.
Thus, how to distinguish these two types of flow regimes has become a significant issue.

Until now, two criteria have been widely used to identify the transition to non-
Darcy flow from Darcy flow, namely the Reynolds number and the Forchheimer number.
Chilton [13] (1931) obtained and refined the Reynolds number equation through fluid
flow experiments with packed particles based on the turbulent flow equation according
to the previous belief that non-Darcy flow was similar to turbulent flow. Owing to the
difficulty of determining the particle diameter, Green [14] (1951) used the permeability (k)
and non-Darcy coefficient (β) instead of the particle diameter. Ma [15] (1993) redefined
the Reynolds number (Re) and gave a new criterion, the Forchheimer number (Fo). Not
only are the definitions of the Reynolds number and the Forchheimer number inconsistent,
but the critical values obtained in experiments are different for non-Darcy flow in porous
media [15–19] recommended the Forchheimer number as a criterion for identifying non-
Darcy flow due to its advantages of clear definition and wide applicability; the Forchheimer
number is the ratio of the liquid–solid interaction pressure gradient to that of viscous
resistance. The Reynolds number and Forchheimer number are both used to distinguish
between Darcy flow and non-Darcy flow. However, there are still a few problems and
obstacles. Furthermore, the critical values become more complex for multiphase flow.

It follows that the Darcy and non-Darcy flows are different flow regimes; however,
they usually coexist when fluids flow in the same fractured karstic carbonate reservoir.
For multiphase flow in the same fractured karstic reservoir, the non-Darcy equations are
more complex than the Darcy equations. The Forchheimer coefficient in the Forchheimer
equation is no longer a constant and instead varies with the parameters, which are related
to the rock’s structure and the fluids’ properties, the denominator of the Barree–Conway
equation becomes very complicated because the expression of apparent permeability is
extremely complex. Thus, it not only requires considerable computation to implement
the numerical simulation only using the Forchheimer or Barree–Conway equation for the
whole reservoir, but also necessitates a greater effort to achieve stability in the numerical
simulation. Therefore, the coupled model is a good choice [3] (Yao, 2018). Furthermore,
most commercial software is developed based on the Darcy equations, and consequently
there will be deviation in some cases with Darcy and non-Darcy flow coexistence. Thus,
the following two problems arise: first, distinguishing Darcy flow and non-Darcy flow
for choosing the flow equations, and second, evaluating and correcting the deviation in
the numerical simulation using the Darcy equation to describe non-Darcy flow. Therefore,
it is necessary to establish a method for evaluating the inertial effect and choosing the
flow equations.

In this paper, the evolution of the non-Darcy flow mechanism and equations are
reviewed. Then, analytical solutions are used to analyze the flow characteristics, compare
the difference between Darcy flow and non-Darcy flow and analyze the effect of the
parameters. Finally, a method is obtained for choosing the flow equations and estimating
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the displacement distance deviation of a waterflood front using the Darcy equation to
describe non-Darcy flow.

2. Method of Comparing Darcy Flow and Non-Darcy Flows
2.1. Non-Darcy Flow Mechanism and Equations

Through physical experiments, researchers have found that after velocity increases to a
certain value, the pressure gradient is no longer proportional to the flow velocity (Figure 1).
The physical understanding of non-Darcy flow remains unclear, and there are two main
opinions on it. One is that the non-Darcy effect is owing to turbulence, and the other is that
inertial force causes the non-Darcy effect. Most researchers advocate for the second opinion,
and an equation has been proposed to describe the additional pressure drop observed in
non-Darcy flow at a high flow velocity. Bear [20] (1972) systematically gave three reasons
to exclude turbulence as the cause for the non-Darcy effect. First, the linear term in the
equation does not exist in turbulent flow; second, the transition from laminar to turbulent
flow is rather sharp; and third, the critical Reynolds number (Re) at which the transition
starts is several orders of magnitude higher than that at which the non-Darcy effect begins.
Moreover, it was concluded that the non-Darcy effect occurs because microscopic inertial
effects alter the velocity and pressure fields.
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Figure 1. Relationship between pressure gradient and velocity.

The Forchheimer equation and Barree–Conway equation are the two main equations
to describe non-Darcy flow. Although the equations are different from the Darcy equation
in form, they have something in common. To some extent, the Forchheimer equation
evolved from the Darcy equation according to the non-Darcy flow mechanism by adding
an extra term; the Barree–Conway equation has a similar expression to the Darcy equation.
The Forchheimer equation is widely accepted as follows:

−∇φ =
µv
k

+ βρv|v| (1a)

F0 =
kβρv

µ
(1b)

in which φ is the potential; µ is the viscosity; v is the superficial velocity; k is the absolute
permeability; β is the Forchheimer coefficient; ρ is the fluid density; and F0 is the Forch-
heimer number. On the right-hand side of the equation, the first term is the viscous term
and the second term is the inertial term. When the viscous flow is at high rates, the second
term becomes significant. The inertial term causes the differences in the flow behaviors and
characteristics between Darcy flow and non-Darcy flow, and the value of β is substantial
for the inertial effect. Usually, β is predicted using empirical formulas, and there are many
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different equations concerning the calculation of β. In this paper, we select one of them,
which is based on an experimental study of single-phase flow.

β =
Cβ

k5/4φ3/4 (2)

The Forchheimer equation has a limited range of applicability for high-rate flow
conditions; thus, the Barree–Conway equation [11,12] (Barree and Conway, 2004) was
presented to describe the relationship between rate and potential gradient for the flow of
the entire range of the Reynolds number:

−∇φ =
µv

kapp
(3a)

kapp = k
(

kmr +
1− kmr

(1 + Re)

)
(3b)

kmr =
kmin

k
(3c)

Re =
ρv
µτ

(3d)

where kapp is apparent permeability; Re is the Reynolds number; τ is the inverse of the
characteristic length, which is related to the mean particle size of sand; kmin is the minimum
permeability; and kmr is the ratio of minimum permeability to Darcy permeability. T and kmr
are the key parameters in the equation, and τ is related to the permeability k and the mean
size of the particles [11,12] (Barree, Conway, 2004). Usually, τ is a given value according to
the particle size (Figure 2). The Reynolds number of Barree–Conway equation depends on
the flow velocity and the inverse of the characteristic length τ. Theoretically, when kmr is
equal to 1, the Barree–Conway equation is reduced to the Darcy equation with constant
permeability k; when kmr is equal to zero, it converges to the Forchheimer equation. When
the value of kmr is set to zero, the Barree–Conway equation reduces to the form of the
Forchheimer equation and we can obtain the relationship between these two equations and
the relationship between τ and β for the single-phase.

τ =
1

kβ
(4)
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The main difference between the Forchheimer equation and the Barree-Conway equa-
tion is the different values of their parameters.

Darcy and non-Darcy flow are different but sometimes coexist underground, especially
in complex fractured karstic carbonate media. The Forchheimer or Barree-Conway equa-
tions are used in the numerical simulation regardless of the magnitude of the non-Darcy
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effect, which will take large amounts of internal storage and calculating time. Similarly,
the Darcy equation is not valid for high velocities because the inertial effect is ignored.
The criteria for distinguishing the flow regimes of multiphase flow are more complex than
those for single-phase flow. Establishing a method for evaluating the difference between
them is necessary.

2.2. Analytical Solution of Darcy and Non-Darcy Equations

In an isothermal system, the mass-balance equations are as follows:

∂

∂t
(φSαρα) = −∇·(ραvα) + qα ; α = w, o (5)

where φ is the porosity of the medium, (−); Sα is the saturation of fluid α, (−); ρα is the
density of fluid α (kg/m3); vα is the volumetric flow rate of fluid α, (m/s); qα is the mass
source/sink term for fluid α (m3/s). The Forchheimer equation and the Barree–Conway
equation can be extended for multiphase flow:

−∇Pα =
µα

kkrα
vα + βαραvα|vα|; α = w, o (6a)

βα =
Cβ

(kkrα)
5/4[φ(Sα − Sαr)]

3/4 ; α = w, o (6b)

−∇Pα =
µαvα

kkrα

[
kmr +

(1−kmr)µατ
µατ+ρα |vα |

] ; α = w, o (6c)

kmr =
kmin

k
(6d)

Two additional equations are required:

∑ Sα = 1, α = w, o, (7a)

Pw = Po − Pc (7b)

where Pc is the water-oil capillary pressure (Pa).
In an analytical solution of multiphase flow, the saturation profile can be obtained

by using the method of characteristics [21,22] (Wu 1991; Wu 2001). The Buckley–Leverett
flow conditions are assumed as follows: the multiphase fluids and porous media are
incompressible; the capillary pressure gradient and gravity are ignored; the model is
one-dimensional; and the fluid flows along the x-coordinate of a semi-infinite linear flow
system. Based on these assumptions, acceptable approximations can be obtained. For one-
dimensional flow, vα can be expressed using the Forchheimer equation and Barree–Conway
equation as follows:

vα = 1
2kβαρα

[
− µα

krα
+

√(
µα

krα

)2
− 4kβαρα

∂Pα
∂x

]
; α = w, o

vα = − 1
2µαρα

(
µ2

αSατ + kdkrαkmrρα
∂Pα
∂x

)
+

(8a)

1
2µαρα

√(
µ2

αSατ + kdkrαkmrρα
∂Pα

∂x

)2
− 4ραkdkrαkmrµ2

αSατ
∂Pα

∂x
; α = w, o (8b)

where ∂Pα
∂x is along the x-coordinate. Then, the mass balance equation can be changed

as follows:
− ∂vα

∂x
= φ

∂Sα

∂t
; α = w, o (9)
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The fractional flow function for the wetting phase may be expressed in the following form:

fw =
vw

vw + vo
(10)

fo + fw = 1 (11)

Under the condition of the same pressure gradient, the inertial effect will affect the flow
velocity of the fluid; hence, the displacement distances of waterflood fronts are different for
the same volume of water injected. For the same fractured karstic media, the displacement
distance calculated using the Darcy equation ignoring inertia is different from that using the
non-Darcy equation; thus, there will be a displacement distance deviation of the waterflood
front for non-Darcy flow when using the Darcy equation to simulate the fluid flow. In this
paper, we introduce the distance deviation of the waterflood front to evaluate the difference
between Darcy flow and non-Darcy flow:

Dev =
LD − LnD

LD
× 100% (12)

where Dev is the distance deviation of the waterflood front (%); LD is the distance of the
waterflood front based on the Darcy equation (m); and LnD is the distance of the waterflood
front based on the non-Darcy equation (m).

Assuming that the physical flow model is a one-dimensional linear porous medium,
and at first uniformly saturated with a nonwetting fluid (So = 0.8) and a wetting fluid
(Srw = 0.2), the volumetric injection rate is constant with the wetting fluid and imposed
at the inlet (x = 0) starting from t = 0. The relative permeability can be estimated using
the Brooks–Corey model [23] (Brooks and Corey, 1964). In this paper, all the fluids and
formation parameters of the physical flow model are summarized in Table 1.

Table 1. Parameters for physical flow model.

Parameters Value Unit

Porosity, φ 0.30
Absolute permeability, k 9.869 × 10−13 m2

Cross section area, A 1.0 m2

Length of model, L 5.0 m
Injection rate, qt 5.0 × 10−4 m3/s

Water viscosity, µw 1.0 × 10−3 Pa·s
Oil viscosity, µo 5.0 × 10−3 Pa·s

Residual water saturation, Swr 0.2
Residual oil saturation, Sor 0.2

Maximum relative permeability, krw,max 0.8
Maximum relative permeability, kro,max 0.8
Power index of relative permeability, nw 2
Power index of relative permeability, no 2

Density of water, ρw 1000 kg/m3

Density of oil, ρo 800 kg/m3

Forchheimer flow constant, Cβ 3.2 × 10−7 m3/2

Minimum permeability fraction, kmr 0.01
Inverse of characteristic length, τ 2.1× 103 m−1

Figure 3 shows the difference in the displacement distance of waterfront travel, water
fractional flow, and flow velocities among the Darcy, Forchheimer, and Barree–Conway
equations (τ = 2100, Figure 2) after the same injection volume of water. The solid lines rep-
resent the results of three equations and the dotted lines represent the results of modelling
the Darcy and Forchheimer equations using the Barree–Conway equation by changing the
values of kmr and τ. In the water saturation profiles (Figure 3a), the result of the Barree–
Conway equation is located between those of the Darcy and Forchheimer equations using
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the parameters in Table 1. The Barree–Conway equation will fit well with the result of the
Darcy equation when kmr is set to 1. However, when using the Barree–Conway equation to
fit the result of the Forchheimer equation, kmr is set to zero, and τ must be set to 700. In any
case, the Barree–Conway equation fits the results of the Darcy and Forchheimer equations
well in the water saturation profile. Comparing the flow velocities and the fractional flow
(Figure 3b,c), when kmr is set to 1, the results using the Barree–Conway equations coincide
with those of the Darcy equation; however, the values using the Barree–Conway equation
are inconsistent with those of Forchheimer equation when kmr is set to zero and τ is set to
700. The reason for this difference is that the parameter values are different; τ is constantly
dependent on the particle size and is equal to 700 in the Barree–Conway equation, but βα

varies with the parameters of the fluids and rock in the Forchheimer equation for two-phase
flow. The variation of the Forchheimer/Reynolds number with the water saturation is
shown in Figure 3d. Although changing the τ value of the Barree–Conway equation yields
the same result in the water saturation profile as the Forchheimer equation, the Reynolds
number differs from the Forchheimer number. The Reynolds numbers are the same when
kmr is equal to 0.01 and kmr is equal to 0.0, because τ is equal to 2100.
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equation and Reynolds number of Barree–Conway equation.

In summary, non-Darcy flow is more complex than Darcy flow for multiphase flow,
and the Forchheimer and Reynolds numbers are no longer constant and vary with the
water saturation. The results of the three equations depend on the values of the parameters.
Even if the water saturation of the Forchheimer equation and the Barree–Conway equation
are the same, the values of flow velocity, Forchheimer number, and Reynolds number are
different. The Forchheimer number has a definite physical meaning and represents the
ratio of the viscous term to the inertial term. The water saturation profile of displacement
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can describe the deviation of non-Darcy flow from Darcy flow with respect to the distance
of waterfront travel and water saturation.

3. Comparison of Darcy and Non-Darcy Equations Based on Analytical Solution
3.1. Comparison of Darcy and Forchheimer Equations

The inertial term in the Forchheimer equation contains the following parameters: flow
velocity, Forchheimer constant Cβ, porosity, absolute permeability, relative permeability
and fluid saturation. The difference between the Forchheimer equation and the Darcy equa-
tion will now be compared and analyzed under the influence of the different parameters
for two-phase flow. During the comparisons of the key parameters, the other parameters
are given the values shown in Table 1.

3.1.1. Forchheimer Constant Cβ

Here, Cβ is an important parameter for βα and is related to the structure of the rock.
Usually, the value of Cβ is obtained through a physical experiment on rock cores. According
to experimental tests, the value of Cβ varies from 10−9 to 10−7 m3/2. In this section, we
will analyze the non-Darcy effect of rocks with a different structure using several different
values of Cβ from 3.2 × 10−9 to 3.2 × 10−7 m3/2.

Figure 4 shows that the value of βw changes with Cβ and Sw for the same porous
media. The βw value changes from a very large value at the minimum water saturation
to a minimum value at the maximum water saturation; conversely, the βo value changes
from a minimum value at low water saturation to a very large value at the maximum water
saturation. Thus, the value of βα is no longer constant and varies with the water saturation
and Cβ for multiphase fluids. The inertial force effect is largest when the oil begins to
be displaced by the water and the inertial effect is especially substantial for very large or
infinite at the beginning or end of the water saturation.
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Figure 5 shows a comparison of the results of the Darcy equation and Forchheimer
equation after the same volume of water is injected. The results of water saturation
(Figure 5a) are different for the two-phase flow. The larger value of Cβ displays a better
sweeping efficiency and shorter front travel distance. When the value of Cβ decreases,
the line in the water saturation profile tends to be close to that of Darcy flow. When Cβ is
reduced to 3.2 × 10−9 m3/2, the displacement saturation distributions of the Forchheimer
equation are close to that of Darcy equation, which means the inertial force effect can be
ignored. Figure 5b) displays the values of the Forchheimer number F0 with the different
water saturation and Cβ values. Here, F0 is also no longer constant and varies with the
water saturation Sw and Cβ. When Cβ is equal to 3.2 × 10−7 m3/2, the F0 values of the
water phase are larger than the others; the maximum is up to more than 1.00, and most
values are between 0.10 and 1.10. The F0 values of the oil phase are between 0.01 and 0.11,
though they are smaller than those of the water phase. This means that the inertial force
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effect is obvious and cannot be ignored. When Cβ equals 3.2 × 10−9 m3/2, the F0 values
of the water phase are 0.013–0.006, and those of the oil phase are much smaller than 0.001.
According to Zeng’s [24] (2006) results, the fluid flow belongs to Darcy flow, and the inertial
force effect is negligible. The velocities of the fluids and the fractional flow curves all vary
with the value of Cβ (Figure 5e,d). When the value of Cβ equals 3.2 × 10−9 m3/2, the
velocities and fractional flow curves nearly coincide with those of Darcy flow. The distance
deviation of the waterflood front is also shown with a different Forchheimer constant Cβ

(Figure 5e). When the value of Cβ is less than 5.0 × 10−8, the distance deviation of the
waterflood front is less than 5.0%.
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In summary, distinguishing between Darcy and non-Darcy flows and choosing the flow
equation based on the value of the Forchheimer number is difficult, because the Forchheimer
coefficient Cβ and Forchheimer number F0 of multiphase flows are not constant and vary
with the water saturation. The βw (or βo) cannot be replaced by a constant value, because
the values of βw (or βo) are very large or infinite at the beginning (or end) of the water
saturation; however, the area scope is very small, and the inertial effect cannot be ignored.
The displacement distance deviation of the waterflood front can quantify the difference
between Darcy and non-Darcy flows well and help us evaluate the effect of non-Darcy
flows in fractured karst reservoirs, choose the appropriate model and correct errors in the
numerical simulation.

3.1.2. Fluid Viscosity

In this section, we will analyze the effect of fluid viscosity on the inertia, assuming
that the constant viscosity of oil is 0.005 Pa·s and water viscosity takes the following values:
0.0005, 0.001, 0.002, 0.003, 0.004 and 0.005 Pa·s.

Figure 6 shows the water saturation profiles of the Darcy and Forchheimer flows with
different ratios of fluid viscosity. When the viscosity difference between oil and water is
the largest—namely, the water viscosity is 0.0005 Pa·s and oil viscosity is 0.005 Pa·s—the
influence of the inertial effect is obvious in the displacement distance of waterfront travel
and sweeping efficiency regardless of the values of Cβ. As the water viscosity increases,
the displacement distance of waterfront travel decreases. When the water viscosity is equal
to that of the oil, the inertial effect tends to weaken because the displacement is similar to
piston displacement. In general, the smaller the viscosity difference between the oil and
water, the better the oil displacement efficiency.
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For the same Cβ value (Figure 7), the change in water viscosity affects the Forchheimer
number. The water Forchheimer number decreases as the water viscosity increases, whereas
the oil Forchheimer number increases. As Cβ decreases from 3.2 × 10−7 to 3.2 × 10−9, the
Forchheimer numbers of water and oil decrease as well. When Cβ is equal to 3.2 × 10−7,
most of the water Forchheimer numbers are greater than 0.1 and those of oil are greater than
0.01. The effect of inertial force cannot be ignored. According to the results in Figure 7e, the
distance deviations of the waterflood front are less than 0.05 when the water viscosity is
greater than or equal to 0.03. Therefore, the deviation is more credible for evaluating the
effect of inertial force compared to the Forchheimer number. The distance deviations of the
waterflood front with the different Cβ and water viscosities are shown in Figure 7e. When
the oil viscosity is equal to 0.005 Pa·s and the water viscosity is not greater than 0.003 Pa·s,
the distance deviation of the waterflood front is not greater than 0.05, regardless of the
value of Cβ.
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In summary, the inertial effect decreases as the oil–water viscosity ratio decreases. When
the viscosities of the fluids are equal (i.e., the water viscosity increases from 0.0005 Pa·s to
0.005 Pa·s), the non-Darcy effect is minimal and can even be ignored. Determining whether
to consider the inertial force only according to the value of the Forchheimer number is
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difficult, and the distance deviation of the waterflood front is more credible to evaluate the
inertial effect and to correct the numerical simulation error.

3.1.3. Flow Velocity

When fluids flow in the subsurface, the flow velocity cannot be constant and keeps
changing. For instance, the flow velocity is very high near the borehole; as the waterfront
advances along the radial direction in the porous media, the flow velocity will gradually
decrease. In addition, the velocity may be influenced by the porosity and connectivity. In
this section, we will analyze the effect of velocity on non-Darcy behaviors after the same
volume of fluids is injected. Here, we assume that the velocity varies from 5.0 × 10−4 m/s
to 5.0 × 10−6 m/s.

Figure 8 shows the comparison of different flow velocities when Cβ equals 3.2× 10−7 m3/2.
When the flow velocity is 5.0 × 10−4 m/s, the sweeping efficiency is the highest and the
displacement distance is the shortest. Then, as the velocity decreases, the displacement
distance gets longer and becomes close to that of Darcy flow. The values of the Forchheimer
number all decrease with a decrease in velocity. When Cβ equals 3.2 × 10−7 m3/2, most
values of the water Forchheimer number are more than 0.01 and those of oil are more than
0.001 when the velocity is larger than 5.0 × 10−5 m/s. In these cases, the distance deviation
of the waterflood front is larger than 0.03 (Figure 8c). When the velocity is no more than
5.0 × 10−5 m/s, the distance deviation of the waterflood front is less than 0.05, regardless
of the Cβ value. This means that the inertial force is very small, and the characteristic of
the Forchheimer flow is close to that of Darcy flow.
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In summary, velocity is the key parameter for the characteristics of fluid flow. When
the velocity is larger than a certain value, the non-Darcy effect cannot be ignored, and
this threshold value of the velocity is critical. It is much easier to obtain the threshold
value of velocity by comparing the distance deviation of the waterflood front than to do so
according to the values of the Forchheimer number.
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3.1.4. Absolute Permeability

Usually, most reservoirs are heterogeneous and their absolute permeability is not
constant. Absolute permeability directly influences the Forchheimer coefficient for non-
Darcy flow. In this section, a comparison of the Forchheimer equation with different
absolute permeability values will be conducted to evaluate its distance deviations of the
waterflood front from Darcy flow. Here, Cβ is equal to 1.0 × 10−7 m3/2, and the values of
absolute permeability are 9.869 × 10−12, 9.869 × 10−13 and 9.869 × 10−14 m2.

Figure 9 shows a comparison of the results of the Darcy and Forchheimer equations
with varying absolute permeabilities. According to the water saturation profile (Figure 9a),
the displacement distance of waterfront travel is shortest for the lowest absolute permeabil-
ities because of the high flow resistance for the same injection volume. Here, F0 increases as
the absolute permeability decreases (Figure 9b). This means that the lower absolute perme-
ability will enhance the non-Darcy effect and lead to better displacement efficiency. When
the absolute permeability is 9.869 × 10−12 m2, the distance deviation of the waterflood
front between the Forchheimer and Darcy equations is 10.5%. As the absolute permeability
decreases, the distance deviation of the waterflood front increases, reaching 20.1% when
the absolute permeability is 4.935 × 10−14 m2.
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In summary, more attention should be paid to the lower absolute permeability region,
because lower absolute permeability results in high flow resistance, and the inertial effect
increases. Thus, when the fluid flows from high absolute permeability to lower absolute
permeability, the flow regime may change from Darcy flow to non-Darcy flow.

3.1.5. Effect of Parameters

As previously stated, there are many factors related to fluids and rock that can affect
the inertial force, and the distance deviation of the waterflood front can describe the
magnitude of the inertial effect well. In this section, we will set the water viscosity to
0.001 mPa·s to analyze the inertial effect with different Forchheimer constants, absolute
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permeability and flow velocity. The distribution characteristic and laws of the distance
deviation of the waterflood front for waterfront travel under different conditions are shown
in Figure 10. When the flow rate is less than 5.0 × 10−5 m/s, the distance deviation of
the waterflood front is less than 6.0% and the non-Darcy effect is insignificant. When the
Forchheimer constant is less than 3.2 × 10−8 m3/2, the distance deviation of the waterflood
front is within 5.0% and the non-Darcy effect can be ignored. In the other cases, the distance
deviation of the waterflood front (Figure 10) can assist in determining whether to consider
the non-Darcy effect and choosing the suitable flow equation; it can also aid in evaluating
the numerical simulation error for a heterogeneous reservoir.
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3.2. Comparison of Darcy and Barree–Conway Equations
3.2.1. Fluid Viscosity

Here, we assume that the constant viscosity of oil is 0.005 Pa·s and water viscosity
takes the following values: 0.0005, 0.001, 0.002, 0.003, 0.004 and 0.005 Pa·s.

Figure 11 shows the water saturation profiles of the Darcy and Barree–Conway equa-
tions for different oil–water viscosity ratios. Similarly, as the oil–water viscosity decreases,
the influence of the non-Darcy effect weakens; when the water viscosity is greater than
0.002 Pa·s, the distance deviation of the waterflood front is less than 4% (Figure 11d).
When the oil–water viscosity ratio decreases, the Reynolds number of the water decreases,
whereas that of the oil increases (Figure 11c). We cannot evaluate the non-Darcy effect
only according to the Forchheimer numbers of the water and oil phases. The distance
deviations of the waterflood front with different flow rates are shown in Figure 11d. Even
when the flow rate is very high (v = 5.0 × 10−4 m/s) and the water viscosity is no less than
0.002 Pa·s, the distance deviation of the waterflood front is less than 4.0%, indicating that
the non-Darcy effect is insignificant. When the oil–water viscosity ratio is extremely high,
the non-Darcy effect increases as the flow rate increases.
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3.2.2. Flow Velocity

In this section, we will analyze the effect of velocity on the non-Darcy behavior for the
same porous media, assuming that the water viscosity is 0.001 Pa·s and the velocity varies
from 5.0 × 10−4 m/s to 5.0 × 10−5 m/s.

Figure 12 shows the comparison of different flow velocities. When the flow rate is
5.0 × 10−4 m/s, the sweeping efficiency is the highest and the displacement distance is the
shortest for the same porous media. Thereafter, as the rate decreases, the displacement
distance increases and comes close but does not overlap with that of Darcy flow; the
distance deviation of the waterflood front still is greater than 1% even when the flow rate is
0.5 × 10−4 m/s (Figure 12c), and the values of Reynolds number all decrease as the flow
rate decreases. When the flow rate is less than 2.0 × 10−4 m/s, the distance deviation of the
waterflood front is less than 4% and the Reynolds number is still within several orders of
magnitude. In summary, velocity is still the critical parameter in the Barree–Conway model.
When the velocity is less than a certain value, the distance deviation of the waterflood
front is significantly small, and the non-Darcy effect can be ignored; however, the Reynolds
number is not a constant value and will be within several orders of magnitude.
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3.2.3. Absolute Permeability

The results of the Barree–Conway model with different absolute permeabilities will be
compared in this section to evaluate the distance deviations of the waterflood front with
respect to Darcy flow. Here, the absolute permeability value ranges from 9.869 × 10−12 to
7.402 × 10−14 m2 and the value of τ is obtained using the relationship in Figure 2 (Table 2).

Table 2. Parameter of Barree–Conway model (Figure 2).

Absolute Permeability k, m2 Inverse of Characteristic Length τ, m−1

1 9.869 × 10−12 3100

2 7.402 × 10−12 3100

3 4.935 × 10−12 3150

4 2.467 × 10−12 3000

5 9.869 × 10−13 2100

6 7.402 × 10−13 1900

7 4.935 × 10−13 1500

8 2.467 × 10−13 1100

9 9.869 × 10−14 650

10 7.402 × 10−14 550

Figure 13 shows the comparison results of the Darcy and Barree–Conway models with
various absolute permeabilities when the flow velocity is 5.0 × 10−4 m/s. According to
the water saturation profile (Figure 13a), the displacement distance of waterfront travel
is shortest for the lowest absolute permeabilities with the same injection volume, and the
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distance deviation of the waterflood front decreases as the absolute permeability increases.
When the absolute permeability is greater than 2.467 × 10−12 m2, the distance deviation
of the waterflood front remains around 6% because there is little difference in the value
of another key parameter, τ (Table 2). The Reynolds number decreases as the absolute
permeability increases (Figure 13b). The distance deviation of the waterflood front decreases
as the flow rate decreases (Figure 13c). For the same flow rate, the absolute permeability
increases from 2.467 × 10−12 m2 to 9.869 × 10−12 m2, while the distance deviation of the
waterflood front is kept nearly constant because the value of τ is almost the same.
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3.2.4. Effect of Parameters

The parameters relating to fluids and rock influence the non-Darcy effect, and the
distance deviation of the waterflood front can directly describe the magnitude of the non-
Darcy effect. In this section, we will set the oil viscosity to 0.005 Pa·s and analyze the
non-Darcy effect with different water viscosities, absolute permeabilities, and flow rates
(Figure 14). When the water viscosity is greater than or equal to 0.004 Pa·s, the distance
deviation of the waterflood front is less than 3%; when the water viscosity is greater than or
equal to 0.003 Pa·s, the distance deviation of the waterflood front is less than 5% and the non-
Darcy effect still is not evident; when the water viscosity is equal to 0.002 Pa·s, the non-Darcy
effect cannot be ignored in cases with a high flow rate in the low permeability area; when
the viscosity ratio of oil–water is extremely large (µo = 0.005 Pa·s and µw = 0.0005 Pa·s),
the distance deviation of the waterflood front is evident and the inertial effect cannot be
ignored, especially for a high flow rate and low absolute permeability. The distribution of
the distance deviation of the waterflood front with the different parameters is shown in
Figure 14.
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4. Applications of Tarim Fractured Karstic Carbonate Reservoir

We used this method to analyze the distance deviation of the waterflood front at the
fractured karstic region in the Tarim reservoir. We chose one well area developing fractures
and karstic caves, which were verified from the logging curves, seismic profiles and
obtained cores (Figure 15). There were obvious signs of karstic caves and fractures in the
seismic profiles and logging curves, and it was hard to obtain a core from the target strata.
According to the geophysical method, the average porosity of underground reservoirs is
widely distributed: about 2.0% in the low porosity area and up to 50% in the dissolution
pores and karstic cave areas. The average permeability varies from 4.93 × 10−13 m2 to
9.869 × 10−11 m2. According to previous exploration and developments, the production
well is located in the fracture cave regions, the porosity is about 45% and the initial effective
permeability is 4.93 × 10−13 m2. The oil viscosity is 0.05 Pa·s and the density is 860 kg/m3.
The water viscosity is 0.0005 Pa·s, and the density is 1000.0 kg/m3. The daily production is
about 300.0–500.0 m3, which is clearly a high flow rate; thus, it is a high yield well.
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The Eclipse software based on Darcy flow was used to simulate the fluid flows. The
geological model was established according to seismic data and logging data, and the
fracture and karstic cave development area was finely carved. The karstic cave area was
set with high porosity and high permeability according to the seismic data and logging
data, and the model was discretized by a 20 m × 20 m × 20 m grid. The well’s conditions
were set according of the well performance data, then a numerical simulation using the
Eclipse software was carried out from 2013 to 2017. Usually, the next step is to modify the
geological model for historical fitting according to the production dynamics. We analyzed
the production curves of this production well (Figure 16) before modifying the geological
model. The red dotted line is the actual production curve, and the blue line is the result
of the numerical simulation using the Eclipse software. Figure 16 shows the difference
between them on the production well, especially in the green dotted area. There was
an obvious deviation of the water breakthrough time between them on the production
well, and the time of water appearance in the numerical simulation was obviously earlier
than that in the actual production. The water began to occur around the year 2015 in the
actual production curves; however, the time of water appearance was obviously earlier in
the numerical simulation using the Darcy equation. The flow velocity calculated by the
numerical simulation was greater than the actual flow velocity because the inertial force
was ignored; as a result, the water appeared earlier in the numerical simulation than in
the actual production. Usually, we do not take the inertial effect into account and directly
modify the geological model or phase permeability curve to achieve the historical fitting.
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Figure 16. Results of production and numerical simulation.

We selected a region within 500.0 m of this production well and used the method
described in this paper to analyze the distance deviation of the waterflood front. Since the
main storage space was made up of fractures, karst cracks and dissolution pores, the flow
rate was set to 5.0 × 10−5 m/s. Since there was no non-Darcy flow equation parameter
determined by the physical experiment, we used the mild values (the large parameter
value indicates that the inertial effect is strong, while the small value indicates that the
inertial effect can be ignored). We assumed that the Forchheimer constant Cβ was equal to
3.2 × 10−8 m3/2 and τ was equal to 1500 m−1 in the Barree–Conway equation (Barree and
Conway, 2004); these two values describe non-Darcy flow in which the inertial effect is not
very strong. The waterflood displacement front and water saturation distribution curves
were obtained by the three equations after injecting the same volume multiple times (as
shown in Figure 17).
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Figure 17 shows that the waterflood frontal movement of Darcy flow was fast and
the displacement distance of waterfront travel was the longest once the inertial effect was
ignored, and the results of non-Darcy flow considering inertia were obviously different
from those of Darcy flow. The distance deviation of the waterflood front was 4.69% using
the Forchheimer equation and 5.04% using the Barree–Conway equation. The inertial
effect should be one of the important factors, although there are many factors affecting
the time of water emergence. With the reservoir developing, the distance deviation of the
waterflood front between the simulation and the actual production ignoring the inertial
effect will increase, thus further affecting the modification of the geological model, historical
fitting and yield prediction. In reservoir development research, it is generally accepted that
geological parameters are modified to achieve consistency in the dynamic production curve,
then the prediction of future development dynamics is performed. Here, the geological
model and the actual reservoir were equivalent models based on different flow states. In
other words, a geological model based on Darcy flow is equivalent to an actual reservoir
based on non-Darcy flow, which will lead to further errors in subsequent oil and gas field
development and the prediction of remaining oil.

5. Conclusions

Several conclusions can be drawn from the comparison and analysis carried out in
this paper:

1. It is not very realistic that the non-Darcy flow equation is used to simulate fluid flow in
fractured karstic carbonate reservoirs. It is the inertial term in Forchheimer model and
the apparent permeability in the Barree–Conway model that make these equations
more complex than the Darcy equation. Furthermore, it will dramatically increase the
difficulty and expense of numerical simulation.

2. The Forchheimer number and Reynolds number do not quantify the magnitude of
the inertial effect. In addition, the crucial values of the Forchheimer number and
Reynolds number are not constant and vary with the parameters of the rock and fluid
properties. It is very difficult to determine whether to consider the non-Darcy effect
only according to the Forchheimer/Reynolds number.

3. The distance deviation of the waterflood front can better describe the inertial effect of
multiphase flow. In numerical simulation, we are concerned with the displacement
range and the sweeping efficiency. According to the distance deviation of the water-
flood front between the Darcy and non-Darcy equations, we will not only choose the
flow equation within the numerical error allowed, but also obtain the evaluation of
the numerical error for a complex heterogeneous reservoir.
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