
Citation: Uno, M.; Xu, Q.; Sato, Y.

Multi-Stacked Superbuck

Converter-Based Single-Switch

Charger Integrating Cell Voltage

Equalizer for Series-Connected

Energy Storage Cells. Energies 2022,

15, 3619. https://doi.org/10.3390/

en15103619

Academic Editor: Sérgio Cruz

Received: 25 April 2022

Accepted: 13 May 2022

Published: 15 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Multi-Stacked Superbuck Converter-Based Single-Switch
Charger Integrating Cell Voltage Equalizer for
Series-Connected Energy Storage Cells
Masatoshi Uno * , Qi Xu and Yusuke Sato

College of Engineering, Ibaraki University, Hitachi 316-8511, Japan; xuqi931218@yahoo.co.jp (Q.X.);
sato.yusuke004@jp.panasonic.com (Y.S.)
* Correspondence: masatoshi.uno.ee@vc.ibaraki.ac.jp

Abstract: Voltages of series-connected energy storage cells, such as electric double-layer capacitors
(EDLCs) and lithium-ion batteries, need to be equalized to ensure years of safe operation. However,
to this end, a voltage equalizer is necessary in addition to a charger, increasing the system complexity
and cost. This paper proposes a family of transformerless single-switch integrated chargers that
merge a charger and equalizer into a single unit, achieving a simplified system and circuit. Proposed
integrated chargers are derived by stacking multiple conventional pulse width modulation (PWM)
converters, such as a superbuck converter, that contain two inductors and one energy transfer
capacitor. Detailed operation analyses, including an investigation on the impact of component
tolerance on voltage equalization performance, are also performed. Experimental charging tests
using a 12-W prototype were performed for four EDLC cells. All cells were charged with eliminating
voltage imbalance and demonstrating the charging and equalization performance of the proposed
integrated charger.

Keywords: charger; electric double-layer capacitor (EDLC); superbuck converter; voltage equalizer

1. Introduction

Energy storage cells, such as electric double-layer capacitors (EDLCs) and lithium-ion
battery cells, are connected in series to form a string to meet the voltage requirements of
loads and systems. Individual cell characteristics are not uniform in practical use due to
manufacturing tolerance, uneven aging, and ambient temperature conditions. As all cells
in a string are charged in series, some cells with higher voltages might be over-charged
during a charging process, potentially triggering a hazardous consequence. Even a minor
characteristic mismatch eventually results in premature deterioration and reduced capacity,
as reported in [1,2]. Thus, cell voltage equalization is mandatory to ensure years of safe
operations and to maximize the chargeable/dischargeable energies of cells.

Extensive research and development efforts on cell equalizers have been underway
since the advent of EDLCs and lithium-ion batteries. Various types of equalizers, also
called balancers, have been proposed and developed. Conventional equalizers based on
bidirectional converters, such as pulse width modulation (PWM) converters [3–5] and
switched capacitor converters [6–9], transfer energies between neighboring cells or two
arbitrary cells to achieve equalization. However, these equalizers are prone to complexity
as the switch count necessary is proportional to the number of cells connected in series.
With single-input–multi-output converter-based equalizers [10–16], the switch count can
be drastically reduced, contributing to the simplified system. Cell equalizers using selec-
tion switches, which have been intensively developed for lithium-ion batteries in electric
vehicles, can dramatically reduce the passive component count [17–23]. However, these
equalizers require numerous bidirectional switches in proportion to the cell count, resulting
in increased circuit complexity and cost.
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The common drawback of these equalizers is that, in addition to the equalizer, an
external converter is necessary for battery regulation. Figure 1a, for example, illustrates an
energy storage system based on so-called unregulated bus architecture where the battery
is directly connected to a load. This system boasts its simplicity as the battery directly
discharges to the load, though the load voltage varies with the battery. Obviously, two
separate converters are necessary to perform the two functions of battery charging and cell
equalization, thus increasing the system complexity.
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Figure 1. Energy storage systems based on (a) charger with equalizer, (b) individual chargers, and
(c) integrated charger.

An alternative solution is the use of individual cell chargers, as shown in Figure 1b.
All cells can be individually charged to a uniform voltage level by individual chargers.
Although cell equalizers are no longer necessary, the charging system apparently tends to
be complex as n individual chargers are necessary for n cells connected in series. A multi-
output charger based on a multi-winding flyback converter has been proposed [24,25], but
the design difficulty of the multi-winding transformer is cited as a top concern—parameters
of multiple secondary windings, such as leakage inductance, resistance, and turns ratio,
must be strictly matched to achieve an adequate equalization performance.

In previous works [26–28], converters integrating voltage equalizers have been pro-
posed, as shown in Figure 1c. Since a converter (or a charger) and equalizer are integrated
through the sharing of some circuit elements, both the system and circuit can be simplified
to a greater extent than ordinary systems. Integrated converters would be an appealing
topology for low-cost, low-power energy storage systems. However, a transformer is
necessary to integrate a converter and equalizer regardless of isolation requirements, in-
creasing the circuit volume and cost. Furthermore, the conventional integrated converters
suffer from poor extendibility (or modularity) because redesigning transformers is manda-
tory in cases where the cell count changes—transformers’ turn ratios need to be properly
determined based on the number of series-connected cells.

This paper proposes a family of transformerless single-switch integrated chargers that
merge a charger and equalizer into a single unit. The proposed integrated chargers can be
derived by stacking multiple conventional PWM converters, each having two inductors
and one energy transfer capacitor. In addition to the integration, the switch count can be
reduced to one, achieving a simplified system, design, and circuit.

This paper is organized as follows. Section 2 presents the circuit derivation, features,
and comparison among four integrated charger topologies. Among these is the superbuck
converter that is considered best suited for energy storage applications. Detailed operation
analyses, including an investigation on the impact of component tolerance on voltage equal-
ization performance, are performed on a superbuck converter-based integrated charger
in Section 3. A circuit design for the 12-W prototype is exemplified in Section 4. A dc
equivalent circuit of the proposed integrated charger is derived and verified by simulation
analysis in Section 5. Finally, Section 6 presents experimental results of the designed 12-W
prototype and equalization charging of four EDLCs connected in series.
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2. Proposed Integrated Chargers
2.1. PWM Converters

The proposed integrated chargers are derived from PWM converters as a foundation.
PWM converters with two inductors and one energy transfer capacitor, as shown in Figure 2,
can be a foundation circuit. A superbuck converter is a step-down converter with low
current ripples at both its input and output ports. A single-ended primary inductor
converter (SEPIC) and Zeta converters are non-inverting buck-boost converters and are
often used as battery chargers for low-power applications. A Ćuk converter is an inverting
buck-boost converter.
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All topologies in Figure 2 contain an energy transfer capacitor followed by an inductor
and a diode, as highlighted with dashed lines. Switching nodes (designated as A) produce
a square-wave voltage and therefore, the energy transfer capacitors in these topologies
behave as an ac-coupling capacitor.

2.2. Single-Switch Integrated Chargers

By stacking capacitor−inductor−diode (CLD) circuits on the switching node in respec-
tive PWM converters, single-switch integrated chargers can be derived. Derived chargers
for four cells connected in series are shown in Figure 3. Smoothing capacitors Co1–Co4 are
connected in parallel with energy storage cells B1–B4. The string voltage, Vst, is regulated
by a constant-voltage (CV) charging scheme, whereas voltages of Co1–Co4, V1–V4, are
automatically equalized even without feedback control, which is detailed in Section 3.
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2.3. Benefits and Drawbacks

As mentioned in Section 1, the charger and voltage equalizer are integrated into a
single unit with a reduction in circuit components, hence realizing a simplified system
and circuit. In general, a switch count is a metric of circuit complexity, as each switch
requires not only a gate driver circuit but also an auxiliary power supply. Regardless of
the cell count, all of the derived integrated chargers contain only one switch, achieving the
simplified circuit.

From the viewpoint of power conversion efficiency, the proposed integrated chargers
are not a good solution. The integrated chargers contain n diodes (where n is the cell count)
and their output voltages are as low as cell voltages. Diode forward voltage drops take
significant portions of output voltages, unavoidably lowering power conversion efficiencies.
Hence, the proposed integrated chargers would be suitable for low-power applications
where circuit simplification and cost reduction are prioritized over efficiency maximization.

The number of cells can be arbitrarily extended by stacking CLD circuits, offering good
extendibility. However, voltage conversion ratios depend on topologies and the number of
cells (see Section 2.4 for details) and hence, a proper topology needs to be selected when
considering applications and requirements.

A charging current for series-connected cells must be properly limited to avoid dam-
age. A constant-current (CC) charging scheme is a straightforward approach to limit a
charging current, but obtaining current measurement using a current sensor is necessary.
By operating the proposed integrated charger in discontinuous conduction mode (DCM), a
charging current can be limited within the desired value even without feedback control,
allowing a simplified circuit and reduced cost.

The integrated chargers inherit the advantages and drawbacks of respective founda-
tion circuits listed in Figure 2. In the following subsection, four topologies are compared
from various viewpoints.

2.4. Comparison

Four integrated chargers are compared from the viewpoint of the DCM boundary
condition, current ripple, voltage stress of switches and diodes, and capacitor voltage
stress, as shown in Table 1. Vin is the input voltage, d is the duty cycle, Ve is the equalized
cell voltage (V1 = V2 = . . . = Ve), and n is the number of cells in series; equations for the
superbuck-based topology will be mathematically derived in Section 3.
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Table 1. Component values used for prototype.

Topology DCM Boundary
Current Ripple

Voltage Stress of Q and D Capacitor Voltage VCk
(k = 1 . . . n)Input Output

Superbuck d
1+d(n−1) Low Low Vin − (n− 1)Ve Vin −

n−1
∑

k=1
Vk

SEPIC d
1−d Low High Vin + Ve Vin −

n−1
∑

k=1
Vk

Zeta d
1−d High Low Vin + Ve

n
∑

k=1
Vk

Ćuk d
1−d Low Low Vin + Ve Vin +

n
∑

k=1
Vk

DCM boundaries are shown and compared in Figure 4. Boundary conditions of
the buck-boost converter topologies (i.e., SEPIC, Zeta, and Ćuk converters) are identical,
whereas characteristics of the superbuck topology are dependent on n. This figure suggests
that integrated chargers are prone to operate in continuous conduction mode (CCM) as
Ve/Vin decreases. The DCM region of the superbuck topology is larger than that of the
buck-boost topologies, though its operational region is nVe/Vin ≤ 1.0. Since the proposed
integrated chargers are supposed to operate in DCM, the superbuck topology would be
advantageous as long as nVe/Vin ≤ 1.0 is satisfied.
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The superbuck-based topology is also superior to other buck-boost topologies in
terms of current ripple and voltage stresses. Thus, the following sections focus on the
superbuck-based integrated charger.

3. Operation Analysis
3.1. Voltage Equalization Mechanism

All the energy transfer capacitors, C1–C4, are connected to the switching node gener-
ating an ac voltage and hence, the stacked CLD circuits are ac-coupled. Thus, respective
CLD circuits, as well as smoothing capacitors and energy storage cells, can be equivalently
separated and grounded, as shown in Figure 5. All the CLD circuits and energy storage
cells are connected in parallel and are driven by the square-wave voltage generator. This
equivalent circuit suggests that a current from the square-wave voltage generator preferen-
tially flows toward the least charged cell(s) with the lowest voltage in the string, and all the
cell voltages eventually become uniform as the charging progresses.
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3.2. Operation under Voltage-Imbalanced Condition

This subsection deals with the voltage-imbalanced condition where the voltage of B1,
V1, is the lowest in the string. All circuit elements are assumed ideal. Theoretical operation
waveforms and current flow directions in DCM are shown in Figures 6 and 7.
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Mode 1 (0 ≤ t < T1) (Figure 7a): The switch Q is turned on. All inductors are charged,
and their currents increase linearly. The voltage applied to Lin and Li (i = 1 . . . 4), vLin and
vLi, in Mode 1 are given by

vLin = Vin −Vst (1)

vLi = VCi −
4

∑
k=i

Vk (2)

where Vk is the voltage of Bk and VCi is the voltage of Ci that is expressed as

VCi = Vin −
i−1

∑
k=1

Vk (3)

This equation can be obtained by assuming average inductor voltages are zero under
steady-state conditions. The substitution of (3) into (2) produced

vLi = Vin −Vst (4)

Thus, from (1) and (4), vLin and vLi are identical.
Currents of Lin and Li, iLin and iLi, are

iLin =
Vin −Vst

Lin
t + ILin.DCM (5)

iLi =
Vin −Vst

Li
t + ILi.DCM (6)

where ILin.DCM and ILi.DCM are the initial values of iLin and iLi in Mode 3, as designated in
Figure 6. iLin and iLi peak at the end of this mode as

ILin.peak =
Vin −Vst

Lin
dTs + ILin.DCM (7)

ILi.peak =
Vin −Vst

Li
dTs + ILi.DCM (8)

The current of Q, iDS, is the sum of all the inductor currents of iLin and iLi, and it can
be yielded from (5) and (6). The sum of ILin.DCM and ILi.DCM is zero [see (19)] and therefore,

iDS = (Vin −Vst)

(
1

Lin
+

4

∑
k=1

1
Lk

)
t (9)

The peak value of iDS, IDS.peak, is

IDS.peak = ILin.peak +
4

∑
k=1

ILk.peak = (Vin −Vst)

(
1

Lin
+

4

∑
k=1

1
Lk

)
dTs (10)

Mode 2 (T1 ≤ t < T2) (Figure 7b): Q is turned off and D1 starts to conduct. All inductors
start discharging. vLin in Mode 2 is

vLin = Vin −VC1 −V1 −Vf = −
(

V1 + Vf

)
(11)
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where Vf is the diode forward voltage drop. Meanwhile, vLi in this mode is expressed as
vL1 = −

(
V1 + Vf

)
vL2 = −VC1 + VC2 −Vf

vL3 = V2 −VC1 + VC3 −Vf
vL4 = V2 + V3 −VC1 + VC4 −Vf

(12)

Substituting (3) into (12) yields

vLi = −
(

V1 + Vf

)
(13)

Similar to Mode 1, vLin and vLi are identical in this mode.
iLin and iLi in Mode 2 are expressed as

iLin = −
V1 + Vf

Lin
(t− T1) + ILin.peak (14)

iLi = −
V1 + Vf

Li
(t− T1) + ILi.peak (15)

The current of D1, iD1, is the sum of all the inductor currents, as can be seen from
Figure 7b. From (10), (14) and (15),

iD1 = iLin +
4

∑
k=1

iLk = ID.peak −
(

V1 + Vf

)( 1
Lin

+
4

∑
k=1

1
Lk

)
(t− T1) (16)

where ID.peak is the peak of the diode current and

ID.peak = ILin.peak +
4

∑
k=1

ILk.peak = IDS.peak (17)

This operation mode ends as iD1 declines to zero. Hence, from (10) and (17), the mode
length can be yielded as

daTs =
Vin −Vst

V1 + Vf
dTs (18)

where da is the duty cycle of Mode 2.
Mode 3 (T2 ≤ t < Ts) (Figure 7c): Both vLin and vLi are zero and therefore, iLin and iLi

are constant. Kirchhoff’s current law at node A yields

0 = ILin.DCM +
4

∑
k=1

ILk.DCM (19)

The voltage conversion ratio under the voltage-imbalanced condition can be yielded
from the volt-sec balance of Lin from (1) and (11) or L1 of (4) and (13), as

V1 =
d(Vin −Vst)

da
−Vf (20)

In summary, the diode D1, which is connected to the least charged cell B1, conducts,
whereas the others are off for the entire period. An average current of D1, ID1.ave, flows
toward B1 as an equalization current is equal to an average current of iL1, IL1, because an
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average current of C1 must be zero under steady-state conditions. ID1.ave and IL1 are yielded
from (10), (17) and (20), as

ID1.ave = IL1 =
1
2

da ID.peak =
d2Ts(Vin −Vst)

2

2LX

(
V1 + Vf

) (21)

where LX is the combined inductance given by

1
LX

=
1

Lin
+

4

∑
k=1

1
Lk

(22)

Meanwhile, an average current of iLin, ILin, must be equal to an average switch current,
IQ.ave, because average currents of C1–C4 connected to the switching node A are zero under
steady-state conditions. ILin or IQ.ave flowing toward the string is expressed as

ILin = IQ.ave =
1
2

dIDS.peak =
d2Ts(Vin −Vst)

2LX
(23)

Thus, cells are charged with IQ.ave and ID1.ave under the voltage-imbalanced condition
where B1 is the least charged cell. Both ILin and IL1 are dependent on d2Ts and Lx. Hence,
a string charging current (ILin) and equalization current (IL1) can be limited within the
desired level by properly determining these parameters.

3.3. Operation under Voltage-Balanced Condition

Theoretical waveforms and operation modes under the voltage-balanced condition are
shown in Figures 8 and 9, respectively. All the inductor currents iLi and the diode current
iDi are assumed to be uniform.
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Mode 1 (0 ≤ t < T1) (Figure 9a): Current flow directions under the voltage-balanced
condition are identical to those in the voltage-imbalanced condition (see Figure 7a), and
therefore, voltages and currents of Lin, Li, and Di are expressed identically to those shown
in Section 3.2.

Mode 2 (T1 ≤ t < T2) (Figure 9b): iLin is equally distributed to C1–C4 and flows through
D1–D4. vLin and vLi are

vLin = vLi = −
(

Vi + Vf

)
(24)

iLin and iLi are

iLin = −
Vi + Vf

Lin
(t− T1) + ILin.peak (25)

iLi = −
Vi + Vf

Li
(t− T1) + ILi.peak (26)

A current of Di is the sum of iLi and iLin/4 and therefore,

iDi =
iLin
4

+ iLk = IDi.peak −
(

Vi + Vf

)( 1
4Lin

+
1
Li

)
(t− T1) (27)

where IDi.peak is the peak of the diode current, calculated as

IDi.peak =
ILin.peak

4
+ ILi.peak =

IDS.peak

4
(28)

This equation reveals that iDi in the voltage-balanced condition is one-fourth of (17).
As iDi reaches zero, the operation shifts to the next mode.

Mode 3 (T2 ≤ t < Ts) (Figure 9c): Similar to the voltage-imbalanced condition, inductor
voltages are zero and inductor currents are constant.

The volt-sec balance of inductors based on (1) or (4) and (24) produces the voltage
conversion ratio under the voltage-balanced condition as

Vi =
dVin − daVf

4d + da
(29)

Substituting Vst = 4Vi into (20) leads to (29), indicating that the voltage conversion
ratios under the voltage-imbalanced and -balanced conditions are seamless and consistent.
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In summary, all diodes conduct in Mode 2 under the voltage-balanced condition. An
average current of Di, IDi.ave, that is equal to an average of iLi, ILi, is expressed as

IDi.ave = ILi =
1
2

da IDi.peak =
d2Ts(Vin −Vst)

2

8LX

(
Vi + Vf

) (30)

Thus, IDi.ave or ILi under the voltage-balanced condition is a quarter of (21). The
comparison between (21) and (30) suggests that the sum of ID1–ID4 or IL1–IL4 is independent
of whether the cell voltages are balanced. ILin or IQ.ave are also independent of voltage
imbalance as (23) does not contain individual cell voltages, Vi.

3.4. DCM Boundary

In order for the proposed integrated charger to operate in DCM, Mode 3 must exist.
In other words, the sum of the lengths of Modes 1 and 2 must be shorter than a switching
period, yielding d + da < 1. The DCM boundary can be obtained from (18) with the
relationship of d + da < 1, expressed as

d <
Vi + Vf

Vin −Vst + Vi + Vf
(31)

3.5. Impact of Component Tolerance on Voltage Equalization Performance

The proposed integrated charger is a single-switch topology and its equalization
performance relies on passive components, including capacitors, inductors, and diodes.
Hence, component tolerance might impair the voltage equalization performance and its
impact should be investigated.

A detailed circuit modeling based on a state−space equation was obtained for the
circuit using two cells connected in series (see Figure 10):{ dx

dt = Ax + Bu
y = Cx

(32)

where x is the state variable vector, u is the input vector, and y is the output vector;

x =
[

iLin iL1 iL2 vC1 vC2 v1 v2
]T (33)

u =
[

Vin VD1 VD2 I1 I2
]T (34)

y =
[

v1 v2
]T (35)
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⎥⎥⎥
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⎥⎥⎥
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Figure 10. Integrated charger for state−space modeling.
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Coefficient matrices A and B are expressed as

A =



(RLin+dRon)(RC1+RC2)+(1−d)RC1 RC2
Lin

dRon
Lin

dRon
Lin

RC2(1−d)
Lin(RC1+RC2)

RC1(1−d)
Lin(RC1+RC2)

1
Lin

RC1+dRC2
Lin(RC1+RC2)

dRon
L1

dRon+dRC1+RL1
L1

dRon
L1

− d
L1

0 1
L1

d
L1

dRon
L2

dRon
L2

dRon+dRC2+RL2
L2

0 − d
L2

0 1
L2

−RC2(1−d)
C1(RC1+RC2)

d
C1

0 1−d
C1(RC1+RC2)

−(1−d)
C1(RC1+RC2)

0 −(1−d)
C1(RC1+RC2)

−RC1(1−d)
C2(RC1+RC2)

0 d
C2

−(1−d)
C2(RC1+RC2)

1−d
C2(RC1+RC2)

0 1−d
C2(RC1+RC2)

− 1
Co1

− 1
Co1

0 0 0 0 0

− RC1+dRC2
Co2(RC1+RC2)

− d
Co2

− 1
Co2

−(1−d)
Co2(RC1+RC2)

1−d
Co2(RC1+RC2)

0 1−d
Co2(RC1+RC2)


(36)

B =



−1
Lin

RC2(1−d)
Lin(RC1+RC2)

RC1(1−d)
Lin(RC1+RC2)

0 0

0 1−d
L1

0 0 0
0 0 1−d

L2
0 0

0 1−d
C1(RC1+RC2)

−(1−d)
C1(RC1+RC2)

0 0

0 −(1−d)
C2(RC1+RC2)

1−d
C2(RC1+RC2)

0 0
0 0 0 1

Co1
0

0 −(1−d)
Co2(RC1+RC2)

1−d
Co2(RC1+RC2)

0 1
Co2


(37)

Based on the derived state−space equation, the sensitivity analysis for the voltage
error of (v1 − v2)/v1 was performed. The percentage impacts of±10% component tolerance
were investigated based on both the state−space equation and the simulation analysis.
Results are shown in the form of a tornado diagram in Figure 11 and typical values and
analysis conditions are listed in the inset. The theoretical and simulation results were in
good agreement, verifying the derived state−space equation. The results indicated the
diode forward voltage drops of Vf1 and Vf2 were the largest source of the voltage error. If
Vf1 increased by 10%, for example, the voltage error would be −1.8%. The impact of the
component tolerance of inductances and capacitances was minor because cell voltages are
theoretically independent of these parameters, as indicated by (20) and (29). In summary,
component tolerances showed a minor impact on the voltage error, suggesting that cell
voltages can be equalized well by the proposed integrated charger even without carefully
screening circuit components.
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4. Design Example

The proposed integrated charger for four EDLCs and low-power ac adaptors with
Vin = 19.5 V is exemplified in this section. The design target is Pin = 12 W (i.e., ILin < 0.62 A),
Vst > 6 V, Vi = 1.2–2.5 V, and fs = 50 kHz (Ts = 20 µs).
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To ensure DCM operations, (31) must be satisfied, yielding

1.2V + 0.3V
19.5V− 6V + 1.2V + 0.3V

> d = 0.1 (38)

The combined inductance Lx can be determined from (23), as

ILx =
0.12 × 20µs× (19.5V− 6V)

2× 0.62A
≈ 2.2µH (39)

Given Lin = Li for the sake of design simplicity, (22) yields

Lin = Li = 5× 2.2µH = 11µH→ 10µH (40)

Ci needs to be sufficiently large to ensure that the resonance between Li and Ci does
not occur. To this end, Ci is determined such that the resonant frequency is lower than
one-fifth of fs.

fs

5
=

1
2π
√

LiCi
→ Ci = 36µF (41)

5. DC Equivalent Circuit and Its Simulation Results
5.1. Derivation of DC Equivalent Circuit

The operation analysis in Sections 3.2 and 3.3 derived the average inductor currents
and revealed that the sum of IL1–IL4 is independent of whether the cell voltages are balanced
or imbalanced. A dc equivalent circuit of the superbuck-based integrated charger can be
derived by expressing inductors as a constant current source, as shown in Figure 12. Current
sources of ILin and IL1–IL4 obey (23) and (30), respectively. To generate a seamless transition
between (21) and (30), IL1–IL4 are connected in parallel through an ideal multi-winding
transformer. Under voltage-balanced conditions, IL1–IL4 flow toward B1–B4 through their
respective diodes. On the other hand, under voltage-imbalanced conditions, all of IL1–IL4
go to the least charged cell via the multi-winding transformer.
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5.2. Simulation-Based Equalization

A simulation-based equalization test using the derived dc equivalent circuit was
performed for four cells connected in series. 400-F capacitors were used as cells. ILin and
IL1–IL4 were programmed to obey (23) and (30), respectively, and component values for
an experimental prototype (see Table 2) at a switching frequency of 50 kHz with d = 0.1
were used for the simulation. The series-connected cells were charged to be a CV of 10.0 V
(2.5 V/cell).
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Table 2. Component values used for prototype.

Component Value, Part Number

Q N-Ch MOSFET, ZXMN4A06GTA, Ron = 75 mΩ
Lin, L1–L4 10 µH, 33 mΩ

Cin Aluminum Electrolytic Capacitor, 330 µF
C1–C4 Ceramic Capacitor, 36 µF
D1–D4 Schottky Barrier Diode, SL44, Vf = 0.35 V

Co1–Co4 Ceramic Capacitor, 300 µF
Gate Driver L6741

The charging profiles are shown in Figure 13. The input current Iin steadily decreased
as Vst increased [see (23)]. Equalization currents, or IL1–IL4, flowed toward cells, but their
magnitudes were dependent on cell voltages. At the beginning of the charging, B4 received
the largest equalization current in the form of IL4, and V4 increased faster than others. The
voltage imbalance was gradually eliminated as the charging progressed, and all the cells
were uniformly charged to 2.5 V after Vst reached the CV charging level of 10.0 V.
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6. Experimental Results
6.1. Prototype and Its Characteristics

A 12-W prototype for four cells connected in series was built, as shown in Figure 14.
Circuit elements used for the prototype are listed in Table 2. The prototype was driven at
fs = 50 kHz with Vin = 19.5 V and fixed at d = 0.2 to ensure the DCM operations.
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6.2. Characteristics of Integrated Charger Alone

Output characteristics of the prototype were measured using the experimental setup
shown in Figure 15. Instead of using actual EDLC cells, two voltage loads were used to
emulate voltage-imbalanced conditions. The upper load was a CV load, while the lower
one was a variable voltage (VV) load to emulate low-voltage cells. For example, Tap 1
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emulates the imbalanced case where V1 is the lowest—Tap 1 emulates the operation modes
in Figure 7. The CV load is set at 7.5 V (2.5 V/cell), and the VV load is swept in the range
of 1.2–2.5 V. Tap 2, on the other hand, emulates the case in which both V1 and V2 are the
lowest. The CV load voltage is fixed at 5.0 V (2.5 V/cell) while sweeping the VV load in
the range of 2.4–5.0 V (1.2–2.5 V/cell). The operation modes under the voltage-balanced
condition (see Figure 9) can be emulated by selecting Tap 4, through which the CV load is
short-circuited, and the entire string is connected to the VV load.
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Figure 15. Experimental setup for characteristic measurement.

The measured key operation waveforms when V1 = 1.2 V are shown in Figure 16,
where vGS is the gate-source voltage. Oscillations in vDS were due to the parasitic ca-
pacitance of the MOSFET. When Tap 1 was selected (Figure 16a), the average of iL1 was
substantial, whereas those of iL2–iL4 were uniform and zero. These measured waveforms
agreed well with the theoretical ones shown in Figure 6. In the cases where Taps 2 and 3
were selected (see Figure 16b,c), iL1 and iL2 were uniform and their averages were greater
than zero, whereas the averages of the other inductor currents were zero. When Tap 4 was
selected to emulate the voltage-balanced condition, iL1–iL4 were uniform.
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Figure 16. Measured waveforms with (a) tap 1, (b) tap 2, (c) tap 3, and (d) tap 4.

Measured power conversion efficiencies as a function of V1 are shown in Figure 17—V1
corresponds to the least charged voltage in practical use. Measured efficiencies monotoni-
cally increased with V1 as the portion of the output voltage taken by the diode voltage drops
decreased. Since the output voltage was low (<2.6 V), diode forward voltage drops took a
significant portion of the output voltage V1, resulting in poor power conversion efficiencies
of <90%. The efficiencies varied depending on the selected tap, probably because the num-
ber of conducting diodes differed depending on whether cell voltages were balanced—only
one diode conducts in the case of tap 1 (see Figure 7b), whereas all diodes conduct in the
case of tap 4 (Figure 9b). These results suggest that the proposed integrated charger is not
suited for high-power applications where efficiency maximization is prioritized over the
circuit simplification, as mentioned in Section 2.3.
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Figure 17. Experimental setup for fundamental characteristic measurement.

6.3. Charging Test for EDLCs

Four EDLCs, each with a capacitance of 400 F at a rated charging voltage of 2.5 V, were
charged using the prototype with d = 0.1. Initial cell voltages were imbalanced between 1.2
and 1.8 V. The CV charging voltage level was set to be 10.0 V (2.5 V/cell).

The resultant charging profiles are shown in Figure 18a. The voltage imbalance was
gradually eliminated as the charging progressed, and all the cell voltages were satisfactorily
equalized in the CV charging period. The standard deviation (SD) of cell voltages decreased
to values as low as 11 mV at the end of the charging test, demonstrating the equalization
performance of the proposed integrated charger.
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Figure 18. Resultant charging profiles of EDLCs with (a) uniform circuit elements and (b) mismatched
circuit elements.

Only the diode D1 was replaced with the one with Vf = 0.4 V in order to investigate
the impact of component tolerance on the voltage equalization performance—The Vf of
other diodes was 0.35 V, as shown in Table 2. The results of the charging test are shown
in Figure 18b. Even with the mismatched Vf of D1, the voltage imbalance adequately
disappeared, and all the cells were uniformly charged to 2.5 V in the CV charging period.
The SD at the end of the CV charging was 25 mV, which was slightly larger than the case
shown in Figure 18a. Although slightly increased, the results demonstrated the minor
impact of the component tolerance on the equalization performance.

The experimental results agreed very well with the simulation results shown in
Figure 13, verifying the derived dc equivalent circuit (see Figure 12).
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7. Conclusions

A family of single-switch transformerless integrated chargers have been proposed in
this paper. The proposed chargers can be derived from stacking multiple PWM converters
that contain two inductors and one energy transfer capacitor. The superbuck converter-
based topology, which is considered best suited for energy storage applications, was
analyzed under voltage-balanced and -imbalanced conditions.

The impact of component tolerance on voltage equalization performance of the in-
tegrated charger for two cells was analyzed based on the state−space modeling. The
analytical results revealed that the mismatch in diode forward voltage drop was the most
influential factor, but ±10% tolerance results in merely 1.8% voltage error, suggesting no
significant impact due to component tolerance on the voltage equalization performance.

The 12-W prototype for four cells connected in series was designed and built for
the experimental verification tests. Series-connected EDLCs were charged in voltage-
imbalanced conditions. All the cells were charged to uniform voltage levels while eliminat-
ing voltage imbalance, demonstrating the voltage equalization performance of the proposed
integrated charger.
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