
Citation: Sieradzka, M.;
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Abstract: Thermochemical conversion of biomass waste is a high potential option for increasing
usage of renewable energy sources and transferring wastes into the circular economy. This work
focuses on the evaluation of the energetic and adsorption properties of solid residue (char) of the
gasification process. Gasification experiments of biomass wastes (wheat straw, hay and pine sawdust)
were carried out in a vertical fixed bed reactor, under a CO2 atmosphere and at various temperatures
(800, 900 and 1000 ◦C). The analysis of the energy properties of the obtained chars included elemental
and thermogravimetric (TGA) analysis. TGA results indicated that the chars have properties similar
to those of coal; subjected data were used to calculate key combustion parameters. As part of the
analysis of adsorption properties, BET, SEM, FTIR and dynamic methanol vapor sorption tests were
conducted. The specific surface area has risen from 0.42–1.91 m2/g (biomass) to 419–891 m2/g (char).
FTIR spectroscopy confirmed the influence of gasification on the decomposition of characteristic
chemical compounds for biomass. Methanol sorption has revealed for the 900 ◦C chars of pine
sawdust the highest sorption capacity and its mass change was 24.15% at P/P0 = 90%. Selected chars
might be an appropriate material for volatile organic compounds sorption.

Keywords: CO2-gasification; biomass wastes; char adsorption; active carbon; BET specific surface area

1. Introduction

Modern challenges are related to the limited amount of fossil fuels, greenhouse gas
emissions directly related to the consumption of fossil fuels in various forms [1], as well as
the improvement of waste management policies towards the circular economy [2]. For this
reason, it is necessary to take quick, decisive and wise steps to use renewable energy (RE)
sources, such as biomass, to generate clean energy, as well as improve waste management
by using different types of waste, such as RE, and minimizing the waste resulting from
their production. Biomass as a renewable energy source has enormous potential. It
can be converted by thermochemical processes such as pyrolysis [3,4], hydrothermal
carbonization [5,6] or gasification [7], which allows the production of clean energy resources.
This study is focused on the gasification process, where the main product is the synthesis
gas (syngas) [8,9]. The applied process temperature depends on the material to be gasified
and the targeted gas composition. Gasification can be carried out in a temperature range of
600 to 1600 ◦C in the case of municipal solid waste (MSW) [10,11], in the case of biomass the
process temperature range is lower and its ranges vary from 400 to 1100 ◦C [12,13]. Some
of the most commonly used gasifying agents are steam, carbon dioxide and air [14]. This
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process leads to the formation of gaseous (syngas), liquid (tar) and solid (char) products
at lower/moderate gasification temperatures. However, any remaining solids from this
process are normally treated as waste [15], leading to a decrease in process efficiency and
an increase in waste production. Current studies indicate that gasification chars have a
huge potential, both energetic and adsorptive, as a precursor to the formation of activated
carbon (AC) [15,16].

AC is characterized by a high surface area, which indicates its great adsorption capacity.
Generally, the production and regeneration costs of AC are high, and because of that it is
important to find a cheaper way to produce this key solid carrier [17]. The key properties of
AC are the small ash content, the ability to maintain physiological characteristics, hardness,
and a high carbon content [18]. Figure 1 presents the main steps of AC synthesis; they
include preliminary, carbonization, and activation steps. Within the preliminary step,
removal of impurities from raw material is provided by washing, then it is dried to remove
moisture [19], to obtain similar particle sizes, the raw material is milled and sieved [20],
and in the last stage of this step it might be deashed for demineralization by acidic or
basic solutions [21]. Volatile matter is removed from raw material during the carbonization
step, leading to an increase in carbon concentration in the material produced [22]. After
the second stage, a porous structure is formed; it can be developed through physical and
chemical activation [17].
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The production of activated carbon via physical activation depends on the type of
material, the high temperature, the atmosphere with oxidizing gases such as steam, CO2 or
air, and leads to the production of expanded pores structure through the carbon-consuming
Reactions (1)–(3) [17]:

C + O2 → CO2 (1)

C + CO2 → 2CO (2)

C + H2O→ CO2 + 2H2 (3)

Activated carbon produced by chemical activation includes biomass impregnation via
a dehydrating chemical agent, like phosphoric acid, sulphuric acid or zinc chloride in an
inert atmosphere by heat treatment. This leads to the production of activated carbon with a
large pore structure, which is a desired phenomenon [20].

In a number of studies, the similarities between gasification chars and activated car-
bon are indicated: Benedetti et al. [15] have pointed out an analogy of gasification char
properties to activated carbon (AC) and reviewed its successful applications in the field
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of adsorption. They used a few chars obtained from gasification plants in the process of
conversion of wood chips and pellets after gasification under air at various temperatures
(650–900 ◦C). The main conclusion of this study was that chars are very similar to AC,
however, a detailed analysis of each sample is necessary to choose the most suitable applica-
tion. Benedetti et al. [23] have focused on the gasification char CO2 adsorption/desorption
capacity. The final results indicated that chars obtained from gasification plants offer signif-
icant potential in carbon capture storage (CCS) technology. The ability of gasification chars
to remove cationic, crystal violet, and anionic congo red chars obtained from industrial
gasification of municipal solid waste (MSW) was investigated by Jung et al. [24]. This study
indicates that these types of chars have high potential for applications of adsorption in
wastewater treatment. AC obtained from gasification chars has the ability to remove H2S
(hydrogen sulphide). This is a common pollutant in biogas produced during anaerobic
digestion and syngas obtained from gasification. This capability of gasification chars was
studied in other work [25].

The gasification process is an effective waste conversion method. It leads to the produc-
tion of valuable syngas and solid residues. Syngas analysis has been widely investigated
in other works [14,26]. In the presented study, the main focus was on the analysis of solid
residue, which is considered as a waste. The two main aims of this study were proposed.
First, the energetic properties of the chars obtained from the gasification process were
investigated. Second, as other studies conducted, each char mimics activated carbon prop-
erties, and individual analysis is required to choose the most adequate application in the
adsorption area. Therefore, in this study, the chars formed during the gasification process
of waste biomass were examined in terms of methanol adsorption. Methanol is one of the
typical volatile organic compounds (VOCs), leading to serious health issues [27]. Another
possible utilization of the produced solid residue is in a working pair with methanol in
heat-driven sorption cooling devices.

2. Materials and Methods
2.1. Materials

In this study, two types of biomass wastes were selected (agriculture: wheat straw
(ABW) and hay (ABH); wood: pine sawdust (WBP)). The materials used in the experiments
were dried first and after that independently ground by a knife mill to achieve a similar
particle size.

2.2. Test Rig and Experimental Procedure

Gasification experiments were conducted under CO2 atmosphere at three temperatures
of 800, 900, and 1000 ◦C. During the process, formed syngas was collected and analysed.
This paper is focused on solid residue and its properties, and because of that, syngas
analysis was omitted. The test rig overview scheme is presented in Figure 2. The gasifier
consists of a fixed-bed vertical quartz reactor heated by a furnace to the target temperature.
The maximum furnace power was 1.8 kW and was equipped with a (NiCr-NiAl) type
thermocouple, which allowed the process temperature to be controlled in real time. The
process atmosphere was injected from an external cylinder with a high purity of CO2, while
the flow of the gasification agent was controlled by a rotameter.

The experimental procedure included the following steps: weighing the sample,
weighing the quartz wool, placing the quartz wool and the sample in the reactor, assembling
the reactor in the oven, providing the gasification process, cooling the oven, disassembling
the reactor and weighing obtained chars. The input weight of the sample was constantly 8
g. Quartz wool was placed at the bottom of the sample to prevent the sample from falling to
the bottom of the reactor and to ensure that it was located in the centre of the oven heating
zone. Prior the gasification process, the reactor was flushed with pure CO2 at ambient
temperature, with a flow rate of 80 mL/min, for 15 min, to remove all air. Next, the sample
was heated for 15 min, and once the set temperature was achieved the gasification process
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was carried out for the next 15 min. Once the gasification process was finished, the reactor
with the formed char was cooled to ambient temperature in a CO2 atmosphere.
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2.3. Analysis of Raw Materials and Chars

To determine raw material properties, proximate and elemental analyses of all samples
were performed. Moisture (M), ash (A), and volatile matter (VM) content were established
according to the following European standards: PN-EN ISO 18134-1:2015-11, PN-EN ISO
18122:2016-01, and PN-EN ISO 18123:2016-01, respectively. The elemental composition was
investigated using a Truspec CHNS 628 Leco analyzer determining the contents of carbon
(C), hydrogen (H) and nitrogen (N). The same analyzer was used to establish the elemental
composition of the obtained chars. This apparatus has a standard deviation for carbon and
nitrogen at a level of ±0.5% and for hydrogen at a level of ±1.0%. This device uses the
Dumas method to establish the concentration of the elements mentioned above. It involves
the combustion of the sample in pure oxygen at a temperature of 950 ◦C.

To indicate more valuable data on the energetic properties of materials, the higher
heating value (HHV) in MJ/kg, was calculated based on the following equation [28]:

HHV = 5.22C2 − 319C− 1647H + 38.6C·H + 133N + 21028 (4)

2.4. Thermogravimetric Analysis

A Mettler Toledo TGA/DSC 1 Star System thermogravimetric analyzer (TGA) was
used to study the combustion process of the raw materials and the obtained chars. The
analyses took place in air atmosphere and started from the ambient temperature up to
800 ◦C with a heating rate of 10 K/min. The mass sample was around 5 mg and placed in
the platinum crucible.
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2.5. Specific Surface Analysis (BET)

The Brunauer–Emmett–Teller (BET) method was used to determine specific surface
areas in the raw biomass and the chars obtained. A nitrogen adsorption analyzer ASAP
2010 system (Micromeritics, Norcross, GA, USA) was used. Before analyses, all samples
were pretreated with degasses to eliminate faults caused by other gases during the analysis.
The studied samples were degassed for 24 h at a temperature of 200 ◦C in a case of raw
biomass and at a temperature of 250 ◦C in a case of chars.

2.6. Fourier-Transformed Infrared Spectroscopy (FTIR)

The surface functional groups of the studied samples were found by Fourier-transformed
infrared spectroscopy (FTIR). This apparatus analyzes the chemical groups of the biomass/char
based on the characteristic vibrations of the chemical functional groups. The Bruker Alpha
II system was applied in the range of collected spectra from 400 to 4000 cm−1.

2.7. Scanning Electron Microscopy (SEM)

For the investigation of raw materials and chars obtained at a gasification temperature
of 1000 ◦C, the morphology and surface topography were analyzed using a Nova NanoSEM
450 scanning electron microscopy (SEM). Analysis was carried out under high vacuum
with a secondary electron detector with a voltage of 10 kV. In these analyses, chosen chars
obtained at the highest process temperature are used to compare the modification of the
raw material subjected to gasification.

2.8. Dynamic Methanol Vapor Sorption Tests

The Dynamic Gravimetric Vapor Sorption System DVS Vacuum was used for the
investigation of the methanol adsorption properties of the studied samples. Methanol
was selected as it is a nonhazardous and very common adsorbate used in sorption cooling
devices in a working pair with activated carbon [27,29–31]. The mass of the sample
was measured with high sensitivity (0.1 µg) by the apparatus during the adsorption and
desorption processes. The stability of the temperature was equal to ±0.02 K, at 25 ◦C,
where the humidity condition, with respect to the target value, was generated in the range
of ±0.1% [32,33]. The DVS Vacuum allowed performing experiments of static and dynamic
sorption with measurements of isotherms and isobars of adsorption–desorption over a
wide range of temperatures.

In the presented study, methanol was used as an adsorbate. About 20 mg of produced
char obtained at 900 ◦C was placed in a crucible and dried at 100 ◦C for approximately
60 min to achieve sample degassing. After a 60 min stabilization stage at given process
temperature, a series of 18 experimental stages started. Each stage lasted 20 min and had
a different setting of a relative pressure P/P0, starting from 10% to 90%. Based on the
obtained results, adsorption and desorption isotherms were calculated. The methanol flow
rate was set constant and equal to 15 sccm (standard cubic centimeters per minute). The
experiment was carried out at adsorption temperature of 30 ◦C, and assumed desorption
temperature of 60 ◦C [33].

3. Results and Discussion
3.1. Char as a Material with Energy Potential
3.1.1. Characterization of Raw Biomass and Chars

The main results of the elemental and proximate analysis of raw biomasses are pre-
sented in Table 1. The carbon content of the studied biomasses obtained the lowest value
for ABH (39.6%) and the highest value for wood biomass WBP (48.6%). Its concentration
after the gasification process increased significantly. The greatest change was observed
for the ABH sample, which reached 92.1% for the char obtained at temperature 1000 ◦C.
For other char samples, an increase in the process temperature results in a decrease in
the C content from 76.8% to 71.7% for ABW and from 60.7% to 53.1% for WBP. Nitrogen
content did not exceed 2%. In the case of hydrogen, a decrease in its content was noted
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when comparing raw material with chars; this is related to the release of hydrocarbons
that form syngas during gasification. When analyzing the results for the chars, the highest
decrease occurred at a temperature of 1000 ◦C and it was 0.9% for ABW_1000 and 0.8% for
ABH_1000 and WBP_1000.

Table 1. Raw biomass characterization.

Raw Biomass

ABW ABH WBP

Proximate Analysis (%)

VM 74.06 59.94 79.89
A 3.86 21.83 0.19
M 4.99 7.71 6.76
FC 17.08 10.52 13.16

Elemental Analysis (%) *

C 44.65 39.59 48.56
H 6.47 5.76 6.57
N 0.68 1.16 0.07

O ** 39.35 23.95 37.86
* moisture and ash-free. ** calculated by difference.

The results of the elemental analysis were used to calculate the hydrogen (H/C ratio)
and oxygen (O/C ratio) indexes in the studied samples (Figure 3). Biomass is characterized
by a high content of oxygen compared to coal, which influences its heating value. It is
related to the fact that the strength of carbon–hydrogen and carbon–oxygen bonds is lower
than that of carbon-carbon bonds [34]. The ratio of H/C and O/C in raw biomass was
averaged at 1.7 and 0.7, respectively, indicating that the raw material has a low aromaticity
and a high aliphatic content [35]. The results for the hydrogen and oxygen indexes of the
chars decreased significantly, which indicates that it is more similar to the coal, where the
H/C of the coal is in the range of 0.4–1 and the O/C is up to 0.2 [35]. Based on the results
presented in Figure 3, it can be observed that the H/C and O/C values for the chars did
not exceed the value of 0.2.
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The influence of gasification temperature on char HHV and raw biomass HHV, as
a reference, is presented in Table 2. Raw materials obtained HHV at a level of 17.8, 16
and 19.4 MJ/kg for ABW, ABH and WBP, respectively. For comparison, this value in
other studies was 16.6 MJ/kg for mixed sawdust reported in [36], 19.9 MJ/kg for pine
sawdust and 19.1 MJ/kg for chestnut sawdust reported in [37]. The HHV of millet husk
char obtained from gasification was 22.9 MJ/kg [38]. In this study, a significant increase in
HHV was observed for chars, especially for ABW and ABH samples. With an increase in
the process temperature, there was a slight decrease in the HHV as a result of the higher
release of carbon content towards syngas production. Additionally, the value of HHV for
other carbonized materials and various types of carbon reported in [39] was 31.8 MJ/kg for
anthracite coal, 18.5 MJ/kg for briquette, 35 MJ/kg for coal, 31.3 MJ/kg for lignite char and
34.4 MJ/kg for charcoal. When the results presented in other studies and the data obtained
are analyzed, it can be concluded that chars have values similar to coal. The best results
were obtained for the chars produced at a temperature of 800 ◦C.

Table 2. Higher heating value of studied samples.

Sample HHV, MJ/kg

ABW 17.78
ABW_900 27.77
ABW_1000 26.25

ABH 16.05
ABH_800 38.12
ABH_900 37.46

ABH_1000 37.47

WBP 19.35
WBP_800 21.52
WBP_900 19.80
WBP_1000 19.33

Table 3 presents the yield of the char formation during gasification. An increase in
process temperature leads to a decrease in the amount of solid residue. The highest values
were obtained for the ABH sample, which contains the highest ash content (21.8%), where
the WBP yield was the lowest, which corresponds to the lowest ash content (0.2%). In the
case of ABH, the char yield decreased from 25.7% for 800 ◦C to 21.8% for 1000 ◦C. For WBP
samples, for the same parameters, the char yields decreased from 15.3% to 13.1%. This
phenomenon is related to an increase in char consumption during the Boudouard reaction
due to the shift of the chemical equilibrium toward CO at higher temperatures [40].

Table 3. The yield of char formation during gasification.

Sample Char Yield, %

ABW_800 21.0
ABW_900 17.4
ABW_1000 14.9

ABH_800 25.7
ABH_900 22.6

ABH_1000 21.8

WBP_800 15.3
WBP_900 13.2
WBP_1000 13.1

3.1.2. Thermogravimetric Analysis of Combustion Properties of Raw Biomasses and Chars

The comparison of the mass loss (TG curves) and the differential mass loss (DTG
curves) of raw biomass and its chars during the combustion process is presented in Figure 4.
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During the analysis, the combustion reaction occurred in different temperature zones for
raw biomass samples than for chars obtained from it. There can be distinguished two stages
of combustion in the case of raw biomass [41]: the first stage is related to the combustion of
volatile matter and appeared in temperature zones of 160–330 ◦C for ABW, 135–330 ◦C for
ABH and 160–360 ◦C for WBP, which can be observed based on DTG curves. The second
stage appeared in temperature ranges 330–457 ◦C, 330–484 ◦C, 260–490 ◦C for ABW, ABH
and WBP, respectively. The fact that the combustion process of the chars is missing the
first stage is related to the fact that volatile matter was released during gasification. Its
second stage appeared in approximate temperature ranges of 244–494 ◦C, 255–486 ◦C and
340–620 ◦C for ABW, ABH and WBP, correspondingly. When comparing the second stages
of combustion of raw materials and chars, we can see a higher intensity at DTG peaks in
this area for chars than for raw biomass. It is related to the fact that char contains a higher
content of carbon, resulting in high-intensity combustion of carbon compounds at this stage.
During combustion of raw material, volatiles start to evolve at a lower temperature and
then burn in an area of higher temperature by reaching ignition temperature. Generated
heat during volatile combustion influences the start of the combustion process of fixed
carbon [42,43]. As the volatile matter was removed from the chars, it can be observed that
only one peak is detected at the DTG curve, where the mass loss at the TG curve is moved
to higher temperature areas.

On the basis of the TG and DTG results, the characteristic parameters like ignition
temperature (Ti, ◦C), burnout temperature (Tb, ◦C), maximum mass loss rate ((dW/dT)max,
wt. %/min), average mass loss rate ((dW/dT)av, wt. %/min) the temperature of the highest
peak of DTG (TDTG, ◦C), time corresponding to the parameters mentioned above, such as
the ignition time (ti, min), burnout time (tb, min), time range = 0.5 (∆t1/2, min) and the
maximum peak time (tp, min) were obtained and used in the calculation of key combustion
parameters for all studied samples [44,45].

As described earlier, based on the characteristic parameters of the TG and DTG
curves, the parameters were obtained based on the ‘Intersection method’ described in
refs. [46,47]. The data was used to determine the key combustion parameters according to
the following equations:

Di =
(dW/dT)max

tp·ti
(5)

Df =
(dW/dT)max

∆t1/2·tp·tb
(6)

S =
(dW/dT)max·(dW/dT)av

T2
i ·Tb

(7)

Hf = TDTG ln (
∆t1/2

(dW/dT)av
) (8)

The group of key parameters includes the following indexes: ignition (Di), burnout
(Df), comprehensive combustion characteristic (S), rate and intensity of combustion pro-
cesses (Hf), which are described by the corresponding Equations (5)–(8) and its calculated
values are presented in Table 4.

The ignition index Di describes the ability to release volatile compounds from fuel,
which also determines the stability of combustion [44,48]. With an increase in its value, this
ability increases with increasing stability of combustion. Burnout performance, combustion
intensity and reactivity are described by comprehensive combustion index S, where greater
values characterise better combustion behaviour [48]. The rate and intensity of combustion
is described by the Hf index, which additionally reflects the stability of the flame after
ignition. A decrease in its value indicates a better combustion characteristic [49].
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Table 4. Key combustion parameters.

Sample Tig,
◦C

Tb,
◦C

Di,
wt. %/min3

Df,
wt. %/min4

S,
min−2 ◦C−3

Hf,
◦C

ABW 233.1 398.2 5.82 × 10−3 1.55 × 10−4 3.27 × 10−7 966
ABH 222.6 417.7 4.84 × 10−3 9.00 × 10−5 2.48 × 10−7 959
WBP 262.4 452.3 8.03 × 10−3 1.33 × 10−4 3.94 × 10−7 1126

ABW_800 354.1 415.7 3.40 × 10−3 6.29 × 10−5 1.38 × 10−7 1657
ABW_900 345.6 411.8 2.87 × 10−3 5.37 × 10−5 1.17 × 10−7 1640

ABW_1000 339.8 397.1 3.20 × 10−3 6.17 × 10−5 1.24 × 10−7 1606

ABH_800 335.7 397.7 2.23 × 10−3 4.35 × 10−5 0.79 × 10−7 1644
ABH_900 338.6 378.5 3.03 × 10−3 6.09 × 10−5 1.10 × 10−7 1559

ABH_1000 352.5 385.5 3.78 × 10−3 7.48 × 10−5 1.14 × 10−7 1652

WBP_800 420.9 498.4 3.59 × 10−3 5.57 × 10−5 1.32 × 10−7 2001
WBP_900 450.6 525.0 3.46 × 10−3 5.13 × 10−5 1.18 × 10−7 2135

WBP_1000 486.9 529.1 3.01 × 10−3 4.65 × 10−5 0.93 × 10−7 2161

The ignition process is reflected in the Ti parameter and the Di index. This stage of
combustion is boosted by the large amount of volatile matter in the sample, and results in a
tendency to burn quickly [50]. As the VM are removed from the chars after gasification, it
is expected that the ignition temperature increases for carbonized samples in comparison
to the raw biomass. The range of Ti for raw biomass is 222–262 ◦C, while for chars it
is 335–486 ◦C [51]. This trend indicates that char samples have lower reactivity, which
is characteristic for coal [52]. The relationship between VM concentration and ignition
performance is noticeable through results of Di, where the value of this index is the highest
for WBP (8.03 × 10−3), which consists of almost 80% VM in raw form. Another factor
affecting ignition temperature is the ash content, which decreases its values with increasing
content. The concentration of ABH ash is 21.8%, where its Ti is the lowest of all the samples
analysed (222.6 ◦C).

The burnout process is characterized by the Df index, which is influenced not only
by the temperature of Tb but also by the temperature of Ti. The lower the Tb temperature,
the faster the burnout process is as the reduction of unburnt compounds is completed. A
higher burnout temperature indicates that the process must be extended, which requires a
higher temperature and a longer residence time [52]. This phenomenon is apparent when
we analyse the Tb and Df values for raw biomass and chars. In case of samples ABW and
WBP, burnout temperature for its chars increased because of the difficulties in burning
the carbonized samples, and the parallel burnout index value also increased. We observe
an inverse relationship for the ABH sample, which contains the highest concentration of
ash among all studied samples, which shortens the combustion process due to the lower
content of combustible parts in the material. The better combustion process was determined
by the S index; the increase in the value indicates rapid combustion with the release of a
large amount of heat in a short range of time, which is characteristic for biomass. In the
case of coal, this parameter is lower. The highest decrease in the S index is reported for the
WBP sample where in raw form S is equal to 3.94 × 10−7 min−2 ◦C−3, where in the case
of WBP_1000 it is 0.93 × 10−7 min−2 ◦C−3. Lastly, the Hf index shows an upward trend
for chars. The range of the Hf index of raw biomass is 959–1126 ◦C, where for chars it is
1559–2161 ◦C. Mureddu et al. [52] have evaluated the combustion performance of different
kinds of coals and biomasses. On the basis of these results, we can conclude that after the
gasification process, the samples of chars are close to the combustible properties of coal.

3.2. Adsorption Properties of Chars
3.2.1. Surface Area (BET)

The surface area of the chars compared to the raw biomass samples measured by
N2 adsorption is shown in Table 5. Additionally, Table 5 indicates a literature review
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of BET surface area (SBET) of activated chars of different biomass samples via physical
activation under different atmospheres and two commercial activated carbons. In the case
of the studied raw biomass, SBET has been reported as small values, where chars have
exhibited a significant increase. The surface area varies from 469.6 to 891.5 m2/g, from
256 to 419 m2/g and from 520.9 to 764.8 m2/g for chars obtained from ABW, ABH and
WBP, respectively. These data indicate that ABH chars showed the lowest SBET due to
the highest mineral matter content (21.8%) [15]. The largest surface area was obtained
for ABW chars. The increase of process temperature from 800 ◦C to 900 ◦C results in a
higher surface area. This phenomenon is determined by the release of volatile matter
contained in raw biomass. In the case of results for temperatures of 900 and 1000 ◦C, a
decrease of SBET for agriculture biomass was observed; for wood biomass the increase was
not significant. Extensive heating of the samples provided for breaking and cracking of
the pore structure [20] resulting in a reduction of the SBET value from 891 to 624 m2/g for
ABW and from 419 to 296 m2/g for ABH, in the case where the WBP value increases only
16 m2/g. For comparison, the value of the surface area of the BET of biomass solid residue
in the literature ranges from 167 to 1355 m2/g, whereas the activated carbon BET ranges
from 984 to 1002 m2/g.

Table 5. BET analysis of raw biomass and chars.

Experiment Literature Review

Sample Name SBET Surface
Area, m2/g

Raw Sample
Name

Gasification
Conditions

BET
Surface Area,

m2/g
Ref.

ABW 1.91 Chars

ABH 1.25 Corn straw 99.9% CO2,
800 ◦C

444 [53]

WBP 0.42 Poplar 90% CO2,
1150 ◦C 586 [54]

ABW_800 469.6 Corn stover 50% CO2,
1150 ◦C

333 [54]

ABW_900 891.5 Walnut shells 99.9% CO2,
900 ◦C 765 [55]

ABW_1000 623.5 Pelletized pine
sawdust

O2/steam,
800 ◦C 235–268 [56]

ABH_800 256.0 Pinewood Steam, 800, 850
and 900 ◦C

364–889 [57]

ABH_900 419.1
Olive stone 99.9% CO2,

800 ◦C 1355 [58]ABH_1000 269.2
WBP_800 520.9 Activated carbon
WBP_900 748.9 Activated carbon 984 [23]
WBP_1000 764.8 Activated carbon 1002 [23]

3.2.2. Morphology of Raw Biomass and Chars

The surface morphology and structure of the studied samples is presented in Figure 5.
In this analysis, the raw samples were chosen as a reference and the chars obtained at a
temperature of 1000 ◦C were selected, due to the fact that the chars obtained at this temperature
represent various surface areas according to the BET analysis. In the case of raw agricultural
biomasses, the sample structure is more homogenous and fibrous, closed without noticeable
pores. After physical activation by CO2-gasification, the surface revealed an expanded and
heterogeneous structure reached with a combination of micropores and mesopores. The
ABW_1000 sample consists of sponge construction with irregular shapes and sizes, the surface
area for these samples was 623 m2/g, which indicates that it is still a high value. In case of
ABH_1000, SBET obtained the lowest value (269 m2/g), its morphology is characterized by
small holes as well as irregular shapes. Sample WBP_1000 enriched its structure in ordered
and regular pores shape and sizes. The surface area of this sample obtained the highest value
under 1000 ◦C. All char samples indicated similarities with the shapes to the parent materials.
The release of volatile matter during gasification did not involve damage to the structure of
the char particles due to the natural porosity of the biomass [59]. On the other hand, rapid
release of volatile compounds at high temperature leads to the softening of the solid matrix or
a coverage of the pores by fractional melt formation [60], which then causes clogging of the
pores. High-temperature releases additional volatiles, which cannot be exhausted because of
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closed pores. Overpressure is generated in the samples, resulting in the formation of bubbles,
cracks and finally fragmentation [61]. Kamble et al. reported similar behavior of biomass char
structure in [62].
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3.2.3. Surface Functional Groups

The FTIR spectra for raw biomass and chars obtained at 900 ◦C are presented in
Figure 6. The results indicate a difference in the FTIR spectrum, where the main peaks
appearing in the raw sample after the gasification process did not occur in the char analysis.
This phenomenon is related to the decomposition of chemical compounds caused by
gasification, and it can be seen by flattening out in the transmittance bands. The first main
peak in raw material occurred between 3200 and 3600 cm−1, which corresponded to the
hydrogen-bonded O-H stretch, where spectra from approximately 2920 and 2850 cm−1

indicated the symmetric/asymmetric stretch of methylene CH. The alkenyl stretch C=C
was recognized with a wavenumber of approximately 1640 cm−1 [24]. Cellulose bonds
C=O appeared at 1030 cm−1; in the case of char ABH_900, we can see that this bond was not
completely decomposed. According to the study by Sun et al. [63], samples with functional
groups counting oxygen indicated high reactivity for graphene oxide adsorption. The
thermal degradation of the chars and the reduction of the peaks compared to the raw
materials indicate that an aromatic structure was formed during gasification [64,65].
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3.2.4. Dynamic Methanol Vapor Sorption Tests

Methanol adsorption was analyzed to define potential utilization of produced solid
residue as VOCs adsorbent or adsorbent in working pair in methanol in sorption cool-
ing devices. The methanol intake was tested in an adsorption temperature 30 ◦C, and
desorption temperature 60 ◦C, and the sorption isotherms are visualized in Figures 7–9.

The solid residues of ABW_900 in Figure 7 and WBP_900 in Figure 9 were characterized
by an adsorption isotherm of type II, and a very small hysteresis of adsorption was observed,
which confirms the microporous structure of the analyzed materials. However, a slight
H4 type hysteresis might suggest the presence of split pores in the samples. Non-uniform
tendency and weakest sorption capacity were observed for sample ABH_900 in Figure 8,
which was also characterized by the lowest specific surface area equal to 419.1 m2/g. However,
most probably the results for this sample were not associated with the biomass type, but they
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were disturbed by high soil contamination of the sample, as its ash content is 21.83%. Whereas,
the ash content in hay reported in the literature is in the range of 6–8% [66,67].

Chars produced from wheat straw and wood (ABW and WBP) have exhibited a
moderate methanol adsorption capacity, which was similar in both analyzed temperatures.
Despite of the quite noticeable BET specific surface area of samples after gasification at
900 ◦C, the produced chars have shown average sorption properties. The highest weight
gain was observed for the process temperature of 60 ◦C for the WBP_900 sample. For the
value of P/P0 of 90% the mass change was equal to 24.15%. Similar methanol uptakes
were noted for commercial activated carbons (e.g., Norit GL 50) of BET not higher than
600 m2/g. Other commercial, wood- and coal-based activated carbons of specific surface
area equal to 1200 m2/g present the maximal methanol sorption at the level not higher than
40% [68,69]. Unfortunately, the presented sorption properties do not present produced
solid residue derived from biomass waste as most suitable candidates for a sorption chiller
adsorbent. However, due to noticeable methanol sorption capacity and the origin of the
studied material, produced solid residue might be a proper material for VOCs sorption [27]
and subscribe in a circular economy concept.
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4. Conclusions

The main conclusions of this study in agreement with the literature are as follows:

• The gasification process leads to an increase in the content of C in the char, with a
parallel decrease in the concentration of H and O. This change affected the hydrogen
(H/C ratio) and oxygen (O/C ratio) indexes, which both decreased significantly for
the char samples. The above shift indicates that chars become more alike to coal. A
similar trend was observed by analyzing the HHV value of the chars compared to the
raw biomass;

• The TGA results for the combustion process of raw biomass and chars showed that
the char samples lack peaks related to the burning of volatile matter. Additionally, key
combustion parameters indicated that the chars have properties comparable to those
of coal;

• The provided analysis of the chars obtained from waste biomass has proved similarities
of these materials with coals, which confirms the possibility of using them energetically;

• The conducted gasification process leads to the formation of pores and cracks in the
morphological structure of the chars, which results in the formation of the heteroge-
neous structure. Organic compounds were decomposed during the process, which is
reflected by flattening out of the FTIR spectra;

• Chars significantly increased their specific surface area in comparison to raw ma-
terials. The highest increase is observed for the WBP sample, where the surface
area of the raw sample is equal to 0.42 m2/g, while a value of 764.8 m2/g for
WBP_1000 is determined, indicating that these materials are potential candidates
for AC production; and

• Unfortunately, the studied samples are not the most applicable materials for the
production of activated carbon (AC) used in working pairs with methanol in sorption
chillers. On the other hand, the results indicated that the produced chars can be good
candidates for VOCs sorption.
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