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Abstract: Bearing fault is the most common failure in rotating machines, and bearing fault diagnosis
(BFD) has been investigated using vibration, current, or acoustic signals. However, there are still
challenges in some existing approaches. This study proposes a novel BFD method based on natural
observer. Based on the analysis of the effects on the load torque signal caused by bearing faults in
the permanent magnetic synchronous machine (PMSM), a modified natural observer was designed
to reconstruct the load torque signal from electrical signals, acquiring a novel indicator without the
additional sensor installed. Angular resampling was implemented to convert the non-stationary
load torque signal into a stationary one to reduce the computational complexity. For full-auto
diagnosis without human involvement, a threshold determination algorithm was also modified.
Experimental validations were carried out under speed-varying and torque-varying conditions and
were compared with phase current and q-axis current signals. The average signal-to-noise ratio
(SNR) of the estimated load torque is about 8.65 times compared with the SNR of the traditional
q-axis current. The effectiveness of the proposed method prior to the traditional PMSM bearing fault
indicators is demonstrated by the order spectrum results.

Keywords: bearing fault diagnosis (BFD); natural observer; permanent magnet synchronous machine
(PMSM); angular resample (AR)

1. Introduction

Fault diagnosis in electrical motors has become an widely researched field for life
extension and cost savings. According to the distribution of failure within the electrical
motors reported by survey papers, bearing faults are the most significant faults in the
rotating electrical machines, accounting for 40% to 90%, which are dependent on the size
and type of the machine [1]. In the Internet of Things (IoT) field, applications of electrical
motors have been extremely ‘extended’, and supervising health conditions is a key to fast
repair and precise maintenance [2–5]. Therefore, effective bearing fault diagnosis (BFD)
methods are highly desired to detect bearing faults and replace them, in a timely manner,
to prevent severe damage and disastrous consequences.

Bearing faults can be categorized into generalized roughness and single-point defects [6].
Since generalized roughness is relatively hard to be detected, researchers have focused more
on single-point defects. Vibration monitoring techniques are the most widely researched
and are proven to be effective [7–9]. On the other hand, researchers are focusing on motor
current spectrum analyses (MCSA) [10], since the current sensors are necessary for metering,
controls, protection purposes, and additional vibration sensors are not required [11].

In addition to vibration signals and MCSA, the most frequently used signal among all
the manuscripts aimed at bearing fault diagnosis, researchers also developed encoder-based
speed [12], Luenberger observer-based speed [13], and load torque [14]. Among these, load
torque is a directly-induced physical quantity that involves bearing fault. Since the load
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torque sensor is not commonly used in industrial applications due to reliability and cost,
load torque estimation based on a mathematical model is a cost-effective method for load
torque construction.

Challenging operating conditions in the industry, including a constantly changing
motor speed and load torque, require improving the unsatisfying performance of the
traditional stationary signal process method. The frequency smearing phenomenon will
obviously be observed in the power spectra of the motor current in the transient operat-
ing condition. Using the time–frequency signal processing algorithm, such as short-time
Fourier transform (STFT) [15,16], Wigner–Ville distribution (WVD) [17,18], Wavelet Trans-
form (WT) [19,20], and wavelet package decomposition (WPD) [21,22], the transient time
domain information can be revealed in the spectrogram, and the information hidden in
the frequency domain will not be buried by the frequency smearing phenomenon. For
extracting fault-related information precisely in the time–frequency spectrogram, a novel
ridge estimation method [23] is implemented in STFT spectrogram. A novel signal decom-
position method [24] can decompose multiply time-varying signals one by one using a
recursive framework embedded with an iterative algorithm.

Order tracking, besides time–frequency signal processing technology, is another effec-
tive algorithm that can be used to solve the frequency smearing phenomenon in transient
operating conditions. Order tracking resamples the time domain non-stationary signals
at a constant angle increment corresponding to the time-angle curve, calculates the new
value using linear or cubic spline interpolation, and converts the time domain signals to the
angular domain signals, which are stationary and much easier to be analyzed. As stated
above, order tracking requires the information of the rotating angle, or the time-angle curve,
for the resample implementation. Much research is devoted toward acquiring the rotating
angle with high accuracy, to be free from tachometer installation, which can significantly
reduce the cost and maintenance demand, and meet the limits of special applications. For
example, STFT is used to track the fundamental component buried in the current signal
and the phase information of the current signal will be used as an angular resampling
baseline [25]. To synchronize sampling with the rotor position, an estimation of the ro-
tor position obtained from the angle of the voltage vector is proposed, and the angle is
obtained from a phase-locked loop synchronized with generator voltages [8]. In [26], the
high frame-rate video camera is set for identification of the pre-marked rotating parts,
to calculate the rotating angle by analyzing the captured video using the object tracking
algorithm. The combination of the fast spectral kurtosis (SK) analysis together with the
STFT can clearly lead to extract the instantaneous fault characteristic frequency (IFCF)
using the spectral peak search algorithm based on the amplitude sum [27]. These simple
and effective methods for non-stationary condition diagnoses in the BFD are proven to be
effective by experiments.

In this paper, a novel BFD method for the permanent magnet synchronous machine
(PMSM) is proposed. A natural observer [28] is modified for PMSM implementation to
reconstruct the load torque signal from electrical signals. It is a universal electrical motor
fault indicator since it can be reconstructed using the basic sensors mounted on the electrical
motors and has better performance than the traditional indicators. The computational
complexity of the non-stationary estimated load torque signal can be significantly reduced
by the angular resample algorithm compared with those time–frequency representation
algorithms. When analyzing the order spectra, a full-auto spectrum threshold-generating
algorithm is proposed to get rid of the arbitrary decision made by humans. The bearing
fault can be diagnosed under severe time-varying working conditions with high accuracy;
human involvement is unnecessary.

This paper is constructed as follows. The model of the natural observer and the
discussion on the modification are presented in Section 2. Section 3 presents the implemen-
tation of the proposed torque signal angular resample process and the full-auto spectrum
threshold-generating algorithm. Section 4 validates the proposed method for the diagnosis
of bearing fault under different operating conditions. Section 5 concludes the paper.
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2. Mathematical Model of Modified Natural Observer

In this section, a modified natural observer is introduced for PMSM load torque
observation.

The natural observer proposed in [28] is identical to the actual motor system model
and has no external feedback to eliminate the influence caused by the noise of the measured
signal. Since there is no feedback term, a parameter adaptation is essential for the natural
observer to stabilize the system.

The original natural observer described in [28] was established in the orthogonal d–q
frame, and was designed for DC motors and induction motors. The d–q frame is intrinsic
in the control of DC motors, and in induction motors, the M-T frame is determined by the
direction of the flux vector that is arbitrarily chosen. In the case of PMSM, the d–q frame
should be aligned with the direction of the rotor magnet field. Therefore, if the optical
encoder is not suitable to install, the position of the frame should be provided by the speed
sensorless algorithm.

The position sensorless algorithm based on extended electromotive force (EEMF)
described in [29] is applied to construct the d–q frame for the natural observer using the
estimated angle position. The estimated speed will be used only for the speed sensorless
control. The measured values iq, Uq and id used in (1)–(10) can be obtained without the
installed encoder.

The form of the natural observer is shown as follows:

d
dt

îq =
1
Lq

(Uq − Rs îq − Ldidω̂e −Ψω̂e) (1)

d
dt

ω̂e =
npp

Js
(T̂e − T̂L) (2)

T̂e =
3npp

2
(Ψîq + (Ld − Lq)id îq) (3)

where îq and ω̂e are the estimation values of the q-axis current and electrical speed, T̂e
and T̂L are the estimation values of the electrical magnetic torque and load torque, Rs Ld
Lq Ψ Js npp are parameters of PMSM, standing for stator resistance, d-axis inductance,
q-axis inductance, rotor flux, moment of inertia, and number of pole pairs, respectively. Uq
represents the input q-axis voltage. id represents the actual value of the d-axis current.

The adaptive value T̂L will be adjusted using the active power error ε [30].

T̂L = kpε + ki

∫
εdt + kd ε̇ (4)

ε = |U′q|(iq − îq) (5)

where kp, ki, and kd are all positive parameters of the proportional integral derivative (PID)
controller [31], and |U′q| = |Uq|.

The natural observer is constructed with only the actual value of the q-axis current
iq and the actual value of the electrical speed ωe being estimated as îq and ω̂e, and id is
directly used as its measured value. The error ε in (5) for adjusting the estimated load
torque T̂L stands for the active power error, and should be calculated as

ε′ = |U′q|(iq − îq) + |U′d|(id − îd) (6)

there exists the occasions that îd and îq do not simultaneously equal their actual values id
and iq, respectively, while the error ε′ still becomes zero, e.g., the observer runs to a wrong
steady point. This problem can be solved by equalizing the id and the îd when designing
the natural observer. The natural observer can also be downgraded from the nonlinear
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observer to a linear observer when îd is replaced by its true value id, and the complexity
can be reduced.

The controllability, observability, and stability of the proposed natural observer will
be discussed using the linear state-space equation form.

p

 îq
ω̂e
T̂L

 =


− Rs

Lq
−Ψ+Ldid

Lq
0

3n2
pp [Ψ+(Ld−Lq)id ]

2Js
− kp − B

Js
−1

ki 0 0


 îq

ω̂e
T̂L

+

 Uq
kp|U′q|iq
−ki|U′q|iq

 (7)

T̂L =
[
0 0 1

] îq
ω̂e
T̂L

 (8)

The Equations (7) and (8) apply the assumptions that Ψ, id, |U′q| are constants to ensure
a time-invariant system [30].

Substitute the parameters of the electrical motor into the Equations and select the PID
coefficients, and the rank of controllability and observability matrix can then be calculated
to analyze whether the proposed observer is controllable and observable. The stability can
also be analyzed by calculating the eigenvalues of the system matrix.

The differential ε̇ in (4) is ‘derivated’ using the high-order sliding mode algorithm [32]

d
dt

ε̂ = ς + λ1sgn(ε− ε̂)|ε− ε̂|0.5 (9)

d
dt

ς = λ2sgn(ε− ε̂) (10)

the ς can be used as the estimation of ε̇ to ease the influence of noises in directly using the
discrete difference [ε(k)− ε(k− 1)]/Ts.

The differential component in the estimation of T̂L can significantly fasten the speed
of convergence when the transient condition comes (i.e., speed command or load torque
changed suddenly), while considerable noises can also be amplified in T̂L when under
steady state, in which the signal-to-noise ratio (SNR) might be increased. To balance the
two conditions described above, the following method is designed:

1. Record 30 historic values of the q-axis current command in an array.

2. When a new q-axis current command ire f
q (k) is generated by the PI controller of the speed

loop, the current commands that delay the 1-speed loop ago and delay the 30-speed
loop ago, a.k.a. ire f

q (k− 1) and ire f
q (k), should be used to calculate the absolute value of

errors ∆k,k−1 = |ire f
q (k)− ire f

q (k− 1)| and ∆k,k−30 = |ire f
q (k)− ire f

q (k− 30)|.
3. Once each error exceeds a preset threshold ∆lim, a transient flag should be set to TRUE

to indicate that the motor is operating in the transient condition. The flag will return
FALSE when both errors are under the threshold for a certain period of time.

4. The coefficient of the differential component Kd will be set to 0 when the transient flag
is FALSE, and Kd will be a tuned value if the transient flag is TRUE.

The error form of the natural observer is as follows:

p
[

ĩq
ω̃e

]
=

 − Rs
Lq

−Ψ+Ldid
Lq

3n2
pp [Ψ+(Ld−Lq)id ]

2Js
− B

Js

[ ĩq
ω̃e

]
+

[
0
T̃L
Js

]
(11)

where x̃ = x̂− x represents the estimated value, subtract the true value. From analyzing the
error form of the natural observer, the relationship between the convergence performance
and the parameters of the electrical motor, as well as the perturbation of load torque
observation error, T̃L.
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3. Bearing Fault Diagnosis under Non-Stationary Conditions

This section introduces the proposed BFD technique, which is depicted in the flowchart
Figure 1.

Figure 1. Implementation of the proposed method

3.1. Bearing Fault Characteristic Frequency and Its Extension under Non-Stationary Conditions

Small flakings located in the contacting surface between the balls and raceways of the
faulty bearing will prevent the rotor from rotating smoothly, which introduce variations
of load torque with specific periods to the electrical motor system. The periodical load
torque variation resulted in many bearing fault characteristic signals, such as vibration
signal, stator current signal, acoustic signal, speed signal, etc. These signals share the same
oscillating period, which can be defined as the bearing fault characteristic frequency (BCFC).

The BCFCs fc are determined by bearing geometrics and the rotating speed. Four types
of BFCFs are summarized based on the locations of the defects: fout, fin, fball , fcage, repre-
senting the outer-raceway, inner-raceway, ball, and cage fault characteristic frequencies,
respectively. They can be calculated as [33]

fc =



fout =
Nb
2 fm(1− Dbcosβ

Dp
)

fin = Nb
2 fm(1 +

Dbcosβ
Dp

)

fball =
Dp
Db

fm

[
1− (Dbcosβ

Dp
)2
]

fcage=
1
2 fm(1− Dbcosβ

Dp
)

(12)

where fm represents the rotating frequency of the shaft, Dp is the bearing pitch diameter,
Db is the ball diameter, Nb is the number of the balls, and β is the contact angle of the ball
on the races.
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In case the rotating frequency fm change continuously, the BFCFs will keep changing
with it according to (12), which makes the BCFC a non-stationary signal and requires
advanced signal processing methods. An alternative method involves obtaining the rotat-
ing frequency fm by either physical speed sensors or a speed observer derived from the
mathematical model. By dividing BFCFs fc with the rotating frequency fm, the value fc/ fm
becomes a constant related only to the bearing geometrics, which eases the difficulty of
using advanced signal processing methods. The constant, fo = fc/ fm, is defined as the
bearing fault characteristic order (BFCO).

3.2. Rotating Angle Estimation and Angle Compensation

To convert the time domain non-stationary BFCFs into the stationary BFCOs, the
angular resample (AR) [34] is implemented. Rotating angle θre, therefore, is key to the
implementation of the AR method. The optical incremental encoder is widely used in
the industrial applications, while the disadvantages still limit its usage, including the
additional system complexity, the extra system costs, and demanding maintenance require-
ments in harsh environments. Therefore, an extended-electromotive force (EEMF)-based
reduced-order observer [29] was constructed to estimate the rotation angle θre. The con-
ception of EEMF was proposed to overcome the salience of the interior permanent magnet
synchronous machine (IPMSM) in the mathematical model.

After estimates from the observer using the measured voltages and currents, in the
discrete system, θre may suffer from a time delay, which depends on the variation of
the rotor speed and observer parameters. A look-up table can be established by offline
experimental results for the proper compensation of θre.

3.3. The Moving Averaging Filter and Amplitude Demodulation

In the non-stationary conditions, load torque will change continuously, and the domi-
nant low-frequency torque component has a tremendous effect on the faulty component.
Meanwhile, the rapidly changing load torque may also result in amplitude modulation in
the signals. Before implementing AR with the estimated load torque signal T̂L, the direct
current (DC) offset component and the amplitude modulation in T̂L should be removed
in advance.

A moving averaging filter (MAF), designed as a finite impulse response digital filter
(FIR) with order 2L [35], is proposed to obtain the oscillation component in the torque
signal. The DC component T̂DC

L is calculated as,

T̂DC
L (t) =

2L−1

∑
i=0

1
2L

T̂DC
L (t− i) (13)

The T̂DC
L has a time domain delay by LTs after filtering. The Ts refers to the sampling

time of the signal. After time shifting, T̂DC
L should be subtracted from the original signal

T̂L, and the oscillation component T̂AC
L can be obtained.

When load torque changes relatively slowly, the MAF introduced above is able to
remove the low frequency component. When load torque changes rapidly, amplitude
demodulation should also be implemented:

T̂ApDm
L (t) =

T̂AC
L (t)

T̂DC
L (t)

(14)

The T̂ApDm
L (t) refers to the amplitude demodulated load torque signal.

Furthermore, as T̂ApDm
L is time-shifted, θre estimated in Section 3.2 should also be

aligned with T̂DC
L delayed by LTs in the time domain. Hence, the time-shifted and compen-

sated θre is denoted by θcomp.
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3.4. The Angular Resample (AR) Algorithm

Once T̂ApDm
L and θcomp are acquired, AR can be implemented by linear interpolation

in the following steps [35].

1. The subscript “t” is used to indicate the series in the time domain. The time domain
series is sampled at a constant sampling-rate with equal time intervals. They are
basically non-stationary signals, which need to be resampled into the series with
equal angular intervals. The rotor position angle series {θt(t)} and the non-stationary
load torque signal series {St(t)} are constructed using θcomp and T̂AC

L , respectively.
2. The subscript “a” is used to indicate the series in the angular domain. An angular

domain series {θa(k)} is created with equal angular intervals between each pair of
adjacent points and drawn with “N” markers in Figure 2

{θa(k)} =
2π

M
k, k = 0, 1, . . . , N·M (15)

where M denotes the sample number per revolution in the angular domain, which
analogously resembles to the sampling frequency fs in the time domain. N represents
the total number of revolutions in the angular domain, which, in the time domain,
analogously resembles the time length of the series Tall .

3. The load torque signal time domain series {St(t)} is reallocated as the angular domain
series {S′a(θt)}, which is drawn in Figure 2 with “•” markers. {S′a(θt)} should be
resampled at specific angular values listed in {θa(k)} to ensure an equal-angular-
interval series in angular domain. As drawn in the zoom-in subplot of Figure 2, point
C with “�” markers refers to an interpolation example point. Its horizontal ordinate
is in series {θa(k)}, and its vertical ordinate is calculated using linear interpolation

SC
a = SA

t +
SB

t − SA
t

θB
t − θA

t

(
θC

a − θA
t

)
(16)

Similar to point C, the Equation (16) will be implemented in sequence to all of the
angular value within series {θa(k)}, and all the interpolation points consist of the final
result, the AR series {Sa(k)} (the scatter with “�” markers in Figure 2).

After implementing angular resampling, the obtained series {Sa(k)} becomes a sta-
tionary signal. The spectrum analysis can be applied for the purpose of BFD depending on
the calculated order spectrum P(o).

Figure 2. Example of Angular Resample

3.5. Fault Threshold Determination Using Information Entropy

To decide whether the amplitudes of the BFCOs are high enough in the calculated order
spectrum P(o) to indicate an existing fault, a threshold should be automatically adjusted
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according to the spectrum itself instead of being fixed to a preset value. A threshold
generating algorithm is proposed in [36].

1. Create two sliding windows, wA and wB, whose lengths are 2LA + 1 and 2LB + 1
respectively.

2. Move the sliding window wA through the whole P(o), and calculate the average of the
values included in wA. A new order spectrum Pa(o), called “average-value spectrum”
can be obtained.

3. Slide the window wB and calculate the median of the values included in wB. A new
order spectrum Pd(o), called “median-value spectrum”, can be obtained.

4. Calculate the maximum value Pmax of Pd(o). It is defined as the threshold of the
original spectrum P(o).

5. If the amplitude of P(o) at the corresponding BFCO (or in its neighborhood) is higher
than the Pmax, it indicates that the motor is in a bearing fault condition and is in
demand of the maintenance.

This method calculates the threshold basically based on the order spectra itself, and
can effectively determine the fault threshold of the order spectra. Meanwhile, the lengths
of the sliding window, 2LA + 1 and 2LB + 1, should be preset by researchers, and the
different combinations of LA and LB will significantly influence the result of the threshold
generation process.

In this paper, a window length determination algorithm is proposed to ease the
influence introduced by the artificial parameter preset.

1. Locate the impulses that are dominant in the order spectra by the method of informa-
tion entropy Hj described in [37].

Hj = −
j

∑
i=1

pilog(pi) (17)

where pi represents the share of P(i), the sorted values of the order spectra, in the
sum of all P(i) in the order spectra.

pi =
P(i)

∑n
i=1 P(i)

(18)

To decide whether the impulses are “dominant” in the order spectra, the differential
of Hj is calculated:

Hdi f f
j = (Hj − Hj−1)/Hj (19)

If Hdi f f
j becomes relatively small enough, all the P(i) > P(j) should be regarded as

“dominant impulses”.
2. Calculate the weighted distances Dweighted

i of the picked order spectrum value P(i)
using the following expression:

Dweighted
i = ∑

j
dijlog

[
P(i)
P(j)

]
(20)

where dij indicates the distance between P(i) and P(j)

3. Among the Dweighted
i , the information entropy method is implemented again. If

Hdi f f
j−1 � Hdi f f

j and Hdi f f
j ≈ 0, Dweighted

j will be set as LA, the length of the average
window.

4. The length of the medium window, LB, should be greater than LA, and is set as
LB = 1.5LA.
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Once the lengths of the sliding windows are determined by the algorithm listed above,
the threshold of the order spectra can be calculated for bearing fault diagnosis.

4. Simulation and Experimental Results

A rolling bearing was artificially damaged and reinstalled to the electrical motor for on-
line experiment validation. Both speed varying and load torque varying experiments were
conducted two times on the faulty bearing electrical motor. All six experiments, including
the speed and load torque varying tests on the healthy bearing electrical motor, and one
simulation result, on the condition that the speed and load torque varied simultaneously
and background noises were added in the input currents and voltages, are compared with
each other; the analyses are well discussed.

4.1. Experimental Setup

A 20 kW IPMSM is used as the test motor. Its parameters are listed in Table 1.

Table 1. Parameters of the IPMSM. (Reprint with Permission [35]; 2018, Proceedings of the 2018 XIII
International Conference on Electrical Machines (ICEM)).

Parameters Notation Values

Rated Power PN 20 kW
Number of Pole Pairs npp 4

Stator Resistance Rs 0.021 Ω
d-Axis Inductance Ld 0.59 mH
q-Axis Inductance Lq 1.12 mH

Rotor Flux Ψ 0.1 Wb
Moment of Inertia Jm 0.28 kg ·m2

The motor is driven by an inverter that is controlled by a digital control board based
on a 32-bit float-point 150 MHz TMS320F28335 digital signal processor. The voltage and
current signals are recorded by a DL850E oscilloscope with voltage probes and current
sensors, respectively, at a sample rate of 10 kHz. The resolutions of analog–digital convert-
ers in the oscilloscope for currents and voltages are both 12 bits. An electrodynamic eddy
current brake was used as the load, supplied by a DC voltage source. The photographs of
the aforementioned devices are shown in Figure 3.

Figure 3. Experimental setup: (A) inverter, (B) control board, (C) oscilloscope, (D) encoder,
(E) IPMSM, (F) brake, (G) torque transducer, (H) DC voltage source.
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The test bearing is SKF 6207-N. The geometric parameters are as follows: Nb = 9,
β = 0, Dp = 53.5 mm, and Db = 11 mm. The bearing is damaged artificially by wire-
electrode cutting, as shown in Figure 4. A 5 mm-width slot is cut on the outer ring to
emulate the outer raceway defect. According to (12), the bearing fault characteristic order
of the bearing with the outer raceway defect oout is calculated as 3.57.

Figure 4. Test bearing with the outer raceway fault.

4.2. Simulation Results Using Natural Observer Under Non-Stationary Conditions

A simulation was conducted using C language. The electrical motor model ran at the
step-size of 5× 10−6 s. The step-sizes of the current loop and speed loop were 1× 10−4 s
and 5× 10−3 s, respectively. The currents and voltages were added with uniform-disturbed
noise with an amplitude of 0.02 before being imported into the observer. The outer raceway
bearing fault was simulated by adding an impulse load torque signal with a constant angle
interval, which was consist with the real BCFCs.

The non-stationary operating condition is drawn in the subplot (b) of Figure 5. As
shown in the subplot, the varying period of speed and load torque overlapped, indicating
that the motor was under rapid time-varying conditions. The order spectra of the estimated
load torque T̂L, the phase-α current iα, and q-axis current iq are listed. Compared with
the order spectra of iα and iq, the peak at the BCFO oout = 3.57 exceeded the threshold
in the order spectrum of T̂L, while the other two order spectrums failed in the diagnosis.
Further discussion that compares the simulation results with experimental results will be
conducted in the following subsection.

4.3. Experimental Results Using the Natural Observer under Non-Stationary Conditions

Speed varying and torque varying experiments were performed for the faulty motor
with the outer raceway defect bearing and the healthy motor.

The range of the speed command changed from 300 to 600 rpm. The acceleration and
deceleration rate of the motor speed was set as 50 rpm/s. The load torque was set manually
by tuning the output voltage of the DC voltage source shown in Figure 3, labeled as (H).
The graphical transients of speed and torque are also represented in the subplots together
with the order spectra of their corresponding operating conditions.
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The estimated load torque T̂L was calculated by the natural observer, compensated,
and angular resampled. The resample rate was 400 points per mechanical revolution and
40,000 points were used. As a result, the motor rotated 100 rounds in mechanical, in total,
which means the resolution rate in the order spectrum equalled 1/100.

The phase-α current iα and q-axis current iq were also resampled for comparison. The
order spectrum of electrical quantity differed from the mechanical one due to the pair of
poles npp = 4, and the order resolution was adjusted to 1/100 in each order spectrum graph.

The healthy motor experiments results are shown in Figures 6 and 7. In the case
of the bearing fault motors, experiments under both speed/torque varying conditions
were carried out two times, and all four experiment results are illustrated in Figures 8–11,
respectively.

(a) (b)

Figure 5. Simulation of the faulty motor (a) power spectrum density (b) graphical transients of speed
and torque.

(a) (b)

Figure 6. Speed varying experiment of the healthy motor (a) power spectrum density and (b) graphi-
cal transients of speed and torque.
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(a) (b)

Figure 7. Torque varying experiment of the healthy motor (a) power spectrum density and (b) graph-
ical transients of speed and torque.

(a) (b)

Figure 8. Speed varying experiments (Case1) of the bearing fault motor (a) power spectrum density
and (b) graphical transients of speed and torque.

(a) (b)

Figure 9. Speed varying experiments (Case2) of the bearing fault motor (a) power spectrum density
and (b) graphical transients of speed and torque.
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(a) (b)

Figure 10. Torque varying experiments (Case1) of the bearing fault motor (a) power spectrum density
and (b) graphical transients of speed and torque.

(a) (b)

Figure 11. Torque varying experiments (Case2) of the bearing fault motor (a) power spectrum density
and (b) graphical transients of speed and torque.

In the order spectrum, the peaks located at integer orders represent the harmonics
caused by the inevitable installation misalignment of the motor and load. In particular,
order 4 was introduced by the fundamental component of the voltage and current since
npp = 4. These non-bearing-fault-related order components can be observed both in the
healthy and faulty spectrum.

In the order spectrum of T̂L and iq, the BFCO oout = 3.57 and its double order 2oout = 7.14,
are illustrated as gray dashed lines. In the case of iα, the BFCO should be npp ∗ (1+ oout/npp) =
7.57, which is also drawn in the spectrum.

In the case of healthy motors, these peaks can hardly be observed at BFCOs in
Figures 6 and 7. Values at BFCOs are also under the threshold.

Two cases of speed time-varying condition experiments are illustrated in Figures 8 and 9.
Peaks at BFCO can be clearly observed in the order spectrum of T̂L, the values also exceed
the threshold. On the other hand, in the order spectra of iα and iq, values at BFCOs did not
exceed the threshold, but were buried in the noise.

Another two cases of torque time-varying condition experiments are illustrated in
Figures 8 and 9. In the order spectrum of T̂L, the peaks strongly indicate the existence of
bearing fault at the double of BFCO, i.e., order 7.14. Peaks at BFCO are less obvious than
order 7.14, but the threshold is also exceeded. Meanwhile, in the order spectrum of iq,
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peaks can also be observed at BFCO and the double of BFCO. At last, a small peak at BFCO
can be found in the order spectrum of the phase current iα(case1), but its value is under the
threshold, which indicates that iα is not capable for BFD under non-stationary conditions.

Compared with the simulation results, the order spectrums in the experiments differ in
the following aspects. First, the peaks at integer orders induced by the inherent eccentricity
of the motor shaft do not exist in the simulation order spectrums. Second, the amplitude of
the low order (between order 0 and order 2) is higher in the simulation order spectrums
than that of the experimental result. The reason could be the acceleration rate in the
simulation is faster than experiments, resulting in the smearing phenomenon by the low
order component.

To further demonstrate the advantages using the estimated load torque T̂L instead of
the q-axis current signal, the signal-to-noise ratio (SNR) was calculated and compared. To
calculate the SNR, order segment [0, 10] was selected from the whole order spectrum. The
peaks located at the integer order, induced by the inherent eccentricity of the motor shaft,
should not be considered in the SNR calculation. The peaks located at BFCO, 2*BFCO are
regarded as signal power. All the values in the segment [0, 10] except those peaks are
considered as “noise”. All four sets of faulty motor experiments were analyzed and SNR of
T̂L and iq are calculated in Table 2.

Table 2. The SNR of T̂L and iq in the faulty motor order spectra.

Motor Type Faulty Motor

Time-Varying Condition Speed (Case 1) Speed (Case 2) Torque (Case 1) Torque (Case 2)

signal power of T̂L 5.60× 10−1 2.65× 10−1 1.77× 10−1 1.39× 10−1

noise power of T̂L 5.72 4.31 1.60 1.69

SNR of T̂L 9.786% 6.140% 11.085% 8.226%

signal power of iq 3.36× 10−5 2.27× 10−5 2.20× 10−5 4.22× 10−5

noise power of iq 4.91× 10−3 4.60× 10−3 9.12× 10−4 1.68× 10−3

SNR of iq 0.684% 0.494% 2.412% 2.509%

According to data in the Table 2, the SNR of T̂L is about 8.65 times of the SNR of iq.
The advantages using the estimated load torque T̂L instead of the q-axis current signal is
then demonstrated.

Based on the experimental results, it is proven that the phase current and q-axis current
signals are less effective compared with the estimated load torque signal in the BFD. The
summary of the order spectra analysis results is listed in Table 3.

Table 3. Summary of the order analysis results.

Motor Type Healthy Motor Faulty Motor

Time-Varying
Condition

Speed Torque Speed
(Case 1)

Speed
(Case 2)

Torque
(Case 1)

Torque
(Case 2)

resampled T̂L × ×
√ √ √ √

resampled
phase-α
current

× × × × 4 ×

resampled
q-axis

current
× × × × 4 4

Spectrum peaks at theoretical order:
√

: clearly observed;4: not obvious; ×: not observed.
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5. Conclusions

This paper investigated the variations of load torque caused by the bearing faults in
PMSM. The major contributions of this article include the following: a novel BFD method
based on the natural observer for the PMSM is proposed. Bearing fault can be diagnosed
under severe transient state working conditions without additional sensors, instead of
steady-state working conditions, in which traditional diagnosis methods are required. The
threshold generating algorithm makes the fault determination full-auto and decreases the
occurrence of mistakes made by human-made decisions. The advantages of this estimated
load torque T̂L-based BFD were proven by experimental results, and the average T̂L SNR,
which is about 8.65 times compared with the SNR of the traditional indicator iq. The
proposed method was proven to be more effective and reliable. Therefore, this method is
applicable in the PMSM BFD under the non-stationary condition.

For future work regarding the propose method, some interesting problems still remain
unsolved. The effectiveness of observer-based BFD on motors with different sizes and
power need to be investigated for extending the application field of the proposed method.
Time-varying conditions with highly random acceleration and deceleration should be vali-
dated by experiments for verification of the proposed method. An advanced demodulation
method can be included in the framework to achieve a more precise diagnosis result.
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