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Abstract: This article presents an evaluation of Prony method and its implementation considerations
for motor current signal analysis diagnostics in rotor cage induction motors. The broken rotor
bar fault signature in current signals is evaluated using Prony method, where its advantages in
comparison with fast Fourier transform are presented. The broken rotor bar fault signature could
occur during the life cycle operation of induction motors, so that is why an effective early detection
estimation technique of this fault could prevent an insulation failure or heavy damage, leaving the
motor out of service. First, an overview of cage winding defects in rotor cage induction motors is
presented. Next, Prony method and its considerations for the implementation in current signature
analysis are described. Then, the performance of Prony method using numerical simulations is
evaluated. Lastly, an assessment of Prony method as a tool for current signal analysis diagnostics
is performed using a laboratory test system where real signals of an induction motor with broken
rotor bar operated with/without a variable frequency drive are analyzed. The summary results of
the estimation (amplitudes and frequencies) are presented in the results and discussion section.

Keywords: Prony method; broken rotor bar; fast Fourier transform; current signal analysis

1. Introduction

Electric motors, particularly rotor cage induction motors (RCIM) are considered for
most of industry applications, because of its operation performance and low maintenance
cost. According to statistical studies performed by IEEE and Electric Power Research
Institute, a percentage of 8–9% of the total RCIM faults occur in the rotor [1], where broken
rotor bars (BRB) or cracked/broken end rings (CBER) are the most common issues in
RCIM operation. It is well-known that the cage of RCIM is made typically of aluminum
and in some cases of copper [2]. BRB or CBER will have a high probability of appearing
when, for example a RCIM is operated considering several direct-on-line (DOL) starts
in a short period of time or RCIM with high inertial loads, these conditions will put the
RCIM through an excessive centrifugal, thermal, and mechanical stress. It is important
to mention that a BRB or CBER cause a reduction in RCIM operation performance, for
example, having problems to move its load mainly due to an unbalanced flux in the rotor
causing a reduction in the output torque [3] and heavy damage to the RCIM. So, to prevent
a heavy damage situation, BRB or CBER must be detected early in a noninvasive way,
where as a part of condition monitoring of RCIM, motor current signature analysis (MCSA)
is used to determine problems such as BRB, CBER, or abnormal air gap eccentricity (AAGE)
at the rotor cage when the motor is under normal operation.

It is important that BRB or CBER are accurately detected using MCSA. However,
in some cases there exist “false positives”, which means an unnecessary shut down and
transportation to a qualified repair facility, and if the RCIM is a large machine there will
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be higher costs from loss in production and maintenance expenses than the cost of a new
motor [4]. On the other hand, if there is a “false negative” the motor will be kept in operation
and a catastrophic failure will occur if the broken rotor bar reaches the stator winding.

Recently, in the last three years, research has been going on to detect RCIM and BRB
faults in a noninvasive way and several methods and techniques have been presented in
the literature. For example in [5], an analysis using a new algorithm based on the Park’s
transformation, where the direct and quadrature current components were analyzed for
BRB fault detection and identification; in [6], finite element software is proposed to be used
to detect motor broken bar mechanical fault by detecting magnetic flux density fluctuations;
in [7], a novel methodology based on motor current signal analysis and contrast estimation
is introduced for BRB detection, where a textural feature “Contrast” commonly used for
image classification in combination with fuzzy logic classifier is proposed for BRB detection;
in [8], an intelligent multi-agentsystem (MAS) is proposed to make decisions on the fault
conditioning of a three-phase squirrel cage induction motor where also artificial intelligent
methods are used; in [9], a two-stage approach for three-phase induction motors diagnosis
based on mutual information measures of the current signals, principal component analysis,
and intelligent systems is proposed; in [10], an approach based on the analysis of the startup
transient current signal through the current signal homogeneity and the fourth central
moment (kurtosis) analysis is presented, where these features are used for training a feed-
forward, backpropagation artificial neural network used as a classifier; in [11] a scheme to
detect broken bar faults and discriminate the severity of faults under starting conditions is
presented, where a successive variable mode decomposition (SVMD) is applied to analyze
the stator starting current to extract the fault component, and the signal reconstruction is
proposed to maximize the energy of the fault component, and so the signature frequency
could be detected; in [12], an end-ring wear detection through a multicomponent approach
is researched; in [13], an estimate of the fundamental frequency component from an
optimization point of view is proposed; in [14], magnetic flux condition monitoring is
reviewed in detail, and it is focused on the diagnosis of different types of faults in the
most common rotating electric machines used in industry; in [15–19], several methods
focus on RCIM using variable frequency drives where the proposed methods have in
common start up transient analysis, and others considers bar breakage harmonics evolution
for BRB diagnostics; finally, in [20], a zero-setting protection element, which uses the
current signature method is proposed to detect broken rotor bars, where the research
has been applied in commercial protection relay equipment, and considers the use of
an alpha current signal to obtain the frequency spectrum of the signal to detect the BRB
fault signature. Nevertheless, MCSA as condition monitoring has been popular to help
diagnose RCIM problems since the 1970s and it is commonly used in online test equipment
because it only needs voltage and current probes. In online test equipment for RCIM,
the tester records voltage and current signals with a defined resolution and observation
window which is selected prior to perform a test. Data acquisition is enabled so that the
tester software can record the signals and spectral analysis using fast Fourier transform
(FFT) [21] can be performed. It should be mentioned that FFT is the widely used digital
signal processing technique for this application, where fault signature frequencies can be
detected, and a diagnostic can be issued [22]. However, FFT has some limitations that
could lead to misdiagnosis of BRB: If the tester user performs the measurement without
knowing in detail the different conditions or situations in which a misdiagnosis of BRB
can occur, for these scenarios if a load variation during the acquisition of signals occur,
if the machine is under low load conditions, or if a short sampling time or length of the
recorded signal is not adequate (too short) the spectral analysis of the measured signal will
estimate frequencies that are not really there, or simply the BRB fault signature frequencies
will not be detected [23]. This is why it is important to mention that knowing how the
data acquisition and recording is performed in order to find the limitations is highly
recommended, for the main purpose of being able to have an accurate diagnosis, whether
there is a BRB fault or not. The reader should know that rotor cage faults such as BRB or
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CBER produce a magnetic asymmetry in the air gap, and the asymmetry will be adding
specific frequencies which are close to the fundamental frequency that will be appearing at
motor line current measurement.

Different techniques for BRB detection have been studied in the last 10 years, for
example [5–19,23–28], where some of these techniques require fixed observation windows
and others considers recursive algorithms, artificially intelligent methods, startup transient
analysis, and new developed transforms such as the dragon transform, these techniques that
were studied and proposed for BRB fault signature detection have one point in common,
which is the complexity of the practical implementation due to its considerations and
calculations, nevertheless, none of these techniques are used nowadays in commercial
online test diagnostics (OTD) equipment, the estimation technique used is a FFT-based tool
which has its estimation limitations. To overcome the limitations of the FFT-based tool, in
this work, the parametric estimation technique Prony method has been proposed as a BRB
detection technique to increase the accuracy of the detection of rotor cage fault signature
frequencies, particularly BRB sideband frequencies. In the recent years, only five articles
have considered the Prony method for BRB fault detection [29–33]. For example, [29]
considered using the Prony method to estimate frequency and amplitudes of a signal under
analysis using different windows length of recorded data samples. [30] proposed the use
of Prony method with other technique, such as Hilbert transform and discrete wavelet
transform. In [31], the Prony method was used to evaluate different load conditions at a
defined sampling frequency. [32] proposed the use of Prony method in combination with
singular value decomposition (SVD) filtering technique and Multiple Signal Classification
(MUSIC). [33] proposed the use of a modified Prony method in combination with MUSIC
algorithm. In [29,31], the Prony method is used for BRB diagnosis and an analysis of
different lengths of data at different load conditions is presented, however, no analysis
and validation considering VFD is reported which is a common industry application.
In this work, in order to fulfill the application considerations and validation that where
not considered in the mentioned references, relevant and application details described in
Sections 3 and 4 are presented, where also VFD operation at different speeds for full load
condition is evaluated to guarantee an accurate detection of BRB and a diagnosis of the
cage of the rotor can be accurately determined.

In this investigation, numerical simulated signal and a laboratory test system with a
faulted RCIM being operated and controlled by a VFD under different speed conditions is
considered for the validation of the method for its practical application for detection of cage
rotor faults, and a comparison with FFT analysis is also considered to show the limitations
of using FFT for this particular application. In this approach, the considerations required
for the application of Prony method for an accurate detection of cage rotor fault signature
frequencies and its magnitudes are described. First, a fixed window of data samples
is defined. Then, the signal under analysis is digitally processed and downsampled.
Moreover, a low pass and DC filter is applied to the downsampled signal, where the
processed output signal is the input signal for Prony method estimation algorithm. The
purpose of subsampling is to reduce the computational calculation of the algorithm, because
commercial equipment for OTD considers a defined high sampling frequency, which is not
needed to estimate the low frequencies related with the rotor fault; also a low pass and
DC filter stage is needed to eliminate undesired frequencies in the signal, and to reduce
the noise of the signal to the minimum, so an accurate estimate of the amplitudes and
frequencies of the BRB signature components can be achieved.

The paper is organized as follows. First, an overview of diagnostics on cage winding
defects is described in Section 2. The Prony method and its application considerations are
discussed in Section 3. Then, a study case considering numerical simulated signals and a
laboratory test system for MCSA where numerical and experimental results comparison
between FFT analysis and Prony method estimation are presented in Section 4. Finally, a
summary of the results achieved is presented in Section 5, where the performance of Prony
method for this application is also discussed.
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The main contribution of this article is that Prony method can be considered as
a diagnostic tool in BRB OTD, where its application could be feasible, and with lesser
recorded data signal values, in comparison with FFT analysis, a good estimate of sideband
frequencies and its amplitudes can be obtained, the method can be used as a new tool to
improve the accuracy and sensitivity of OTD in RCIM, and it could be implemented in
the existing or new software in online test equipment’s for electric motors with no need of
hardware updates. The methodology was validated by using simulation signals and real
data signals, and its effectiveness is presented.

2. Overview of Diagnostics on Cage Winding Defects

In this section, fundamental aspects of broken rotor bar side band frequencies (BRBsbf)
required for the detection of these components during the estimation of a current signal
under analysis are presented. When a RCIM has a fracture or break in its cage (BRB or
CBER), see Figure 1, the effects within the motor result in voltages at specific frequencies as
presented in Equation (1), mainly due to the alteration of the magnetic field at the cage of
the rotor.
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BRB and CBER in a RCIM are mainly caused due to a maloperation, such as, too many
sequential direct on-line starts where time delay between starts is not adequate according
to manufacturer specification, which causes high starting currents, also, an incorrect match
of torque-speed curve of RCIM and torque-speed curve of the load. These operation
conditions add excessive centrifugal, mechanical, and thermal stress at the slip ring which
can result in a BRB or CBER fault. Due to a BRB or CBER, an unbalanced rotor flux occurs
and an effect in motor operation performance appears, for example, line currents oscillation,
torque pulsation, decreased average torque, and excessive vibration [3,4]. If the BRB or
CBER fault are not detected, an insulation failure or heavy damage could occur, and a
replacement of the RCIM will be required.

The BRBsbf in a RCIM considers the supply fundamental frequency ( f0), the slip of
the motor (s), and its harmonic value (h), which represent the number of broken rotor
bars that could appear in the RCIM [3,4]. The equation for BRBsbf in a RCIM is presented
in Equation (1):

BRBsb f = f0(1 ± 2 ∗ h ∗ s) (1)

The BRBsbf affects the RCIM operation if the energy of the frequencies is within the
fault indication value of a break in the cage rotor circuit; typical failure signature values
considered are presented in Table 1.

Some physical conditions affect the magnitude of BRBsbf, which can affect the resulting
diagnostic during a MCSA. Some of these conditions are, change in load and slip with a
fixed rotor cage defect, faulty bar to end ring joints creating an asymmetrical cage, porosity
and consequential arcing in aluminum die-cast cage rotors, partially broken rotor bars,
actual broken bars still making contact with an end ring and bars which are cracked from
the top of the bar, but just a percentage of the total depth of the bar [4]. It is important to
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mention that it is not possible to predict exact severity of cage defects/number of BRB or
CBER from the magnitudes in dB of the BRBsbf with respect to f0, only an estimate of the
condition of the cage winding can be defined as presented in Table 1.

Table 1. Rotor condition sideband frequency failure signature.

Energy, dB Rotor Condition

>60 Excellent

54–60 Good

48–54 Moderate

42–48 High resistance connection or cracked bars

36–42 Broken rotor bars will show in vibration analysis

30–36 Multiple cracked
broken bars, possible ring problems

<30 Severe rotor faults

The accuracy of the estimation of magnitudes in dB of BRBsbf of a motor current signal
under analysis depends on the digital signal processing (DSP) technique, see Figure 2.
Nowadays, modern on-line test equipment use the fast Fourier transform (FFT) spectral
analysis to detect harmonics and other frequencies such as BRBsbf; this is a commonly used
technique but it has its limitations, for example, (a) the motor current signals measurements
should be performed during steady state operation of the motor, so the estimation of
frequencies and its magnitudes detected could be accurate, (b) the recorded current signal
should have between 10 and 120 s of acquire data without any load variations during
acquisition, in terms of signals cycles for a 60 Hz or 50 Hz, a minimum of 600 or 500 cycles
of recorded signal should be required at least to be able to detect BRBsbf, because these
frequencies are too close to the fundamental frequency. In the case of motor operation
with VFD, the number of signal cycles will be proportional to the operation frequency
considering the same length between 10 and 120 s of acquired data. It should be mentioned
that in case of a motor under low load or no-load operation, the cage winding circulating
currents will be minimum or null, so at this condition the BRBsbf cannot be detected with
the estimation technique being used.
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3. Prony Method Estimation for Motor Current Signal Analysis

Prony method is a signal processing technique based on signal estimation, which
extracts desired information from an equally spaced sampled signal and builds a series
of damped complex exponentials to approximate the sampled signal by solving a set of
linear equations. The Prony algorithm and its practical implementation are presented
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in [34,35], and have been used for power quality analysis [36–38], stability studies applied
to power system and nuclear power plants [39,40], and also have been evaluated and
patented for real time application in power system protection mainly in distance relay
algorithms [41,42]. It should be mentioned that the Prony method is also evaluated for
the detection of BRB in other works as itself or used with other technique [29–33], but
not enough details are presented for its implementation, and validation analysis of the
method for this application is not fulfilled. To overcome this, Prony method is proposed as
an additional diagnostic algorithm to estimate the parameters of the current waveforms
recorded during an OTD for RCIM, where a reduced window of data being recorded
(instead of typical values of 10 to 120 s of data) can be used to detect BRBsbf, and an
estimation of current signal parameters could be obtained, hence with the estimated
parameters of the current waveform, the detection of BRBsbf could be more accurate. Prony
method literature defines the parameters of a signal model y(t) in (2), and they can be
obtained by sampling the signal and obtaining the data samples [y(1) y(2) . . . y(n)] using a
sampling frequency fs.

y(t) =
N

∑
n=1

Aneσnt cos(2π fnt + θn) (2)

The Prony model signal approximates the sampled data in (2) using the following
linear combination of p complex exponentials:

yM =
p

∑
n=1

BnλM
n (3)

Bn =
An

2
ejθn

λn = e(σn+j2π fn)T

The signal y(t) in (2) has four elements: magnitude An, damping factor σn, frequency fn,
and the phase angle θn. Each exponential term in (3) is a unique signal mode of the original
signal y(t). So, using the Euler theorem and total time t = MT, where M is the length of the
signal and T is the time between samples, Equation (2) can be rewritten as (3).

So, for the Prony method to be implemented in OTD for RCIM, the following steps
should be considered:

(1) Know the sampling frequency (fs), sampling time (Ts), length of the current signal
under analysis (L) with a minimum of 25 cycles of data and the order (p) of the linear
prediction model (LPM), where an initial value of p for a data window of current
signal measurement for analysis must be selected.

(2) A Toeplitz matrix “Y” with the data of the current signal “y(t)” must be defined as (4).

Y =


y[p] y[p− 1] · · · y[1]

y[p + 1] y[p] · · · y[2]
...

...
. . .

...
y[2p− 1] y[2p− 2] · · · y[p]

 (4)

(3) A vector “a” (coefficients of characteristic Equation (3)) using (4) is calculated in (5).
a[1]
a[2]

...
a[p]

 =


y[p] y[p− 1] · · · y[1]

y[p + 1] y[p] · · · y[2]
...

...
. . .

...
y[2p− 1] y[2p− 2] · · · y[p]


−1

·

−


y[p + 1]
y[p + 2]

...
y[2p]


 (5)
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(4) Calculate the roots from vector “a” and the resulting roots vector “z” will be used in
(6) and (7) to calculate damping

σ =
ln|z|

Ts
(6)

and frequency

f =
1

2πTs
tan−1

(
Im(z)
Re(z)

)
(7)

(5) Obtain Vandermonde matrix “Z” of vector “z” using (8).

Z =


z0

1 z0
2 · · · z0

p
z1

1 z1
2 · · · z1

p
...

...
. . .

...
zp−1

1 zp−1
2 · · · zp−1

p

 (8)

(6) Obtain vector “h” in (9) using vandermonde matrix “Z” and vector “y” from (8).
h1
h2
...

hp

 =


z0

1 z0
2 · · · z0

p
z1

1 z1
2 · · · z1

p
...

...
. . .

...
zp−1

1 zp−1
2 · · · zp−1

p


−1

·


y[1]
y[2]

...
y[p]

 (9)

(7) The resulting vector “h” obtained in (9) will be used in (10) and (11) to calculate
amplitude and phase angle.

A = |h| (10)

θ = tan−1
(

Im(h)
Re(h)

)
(11)

(8) The order for good estimation results is obtained evaluating the mean square error
(MSE) of the full signal data p = 1, 2, . . . , Ns, where Ns is the total data samples of
the selected data signal for analysis. The MSE for each value of p in (12) needs to be
calculated, where MSE is obtained by using the reconstructed signal with the estimated
parameters “ŷj” and the real signal “yj”, so the MSE of lesser magnitude is selected for
the corresponding p value is the optimum estimate of the model signal parameters.

MSEp = xp =
1

Ns

Ns

∑
j=1

(
ŷj − yj

)2 (12)

Some important considerations in Prony estimation has to be taken to implement
this parametric estimation method in OTD for BRBsbf detection: (1) The sampled current
signal must be analyzed, (2) the sampling rate must be known; (3) if noise in the signal
or other harmonics of no interest exist, the signal must be filtered; (4) an increase in
computational burden will occur if a higher number of samples of digitized current signals
are considered. It should be mentioned that the accuracy of Prony estimation depends on
the level of signal distortion, the observation data window, and the number of samples used
in the estimation process, as well as the order of the model [11]. Prony method is a good
alternative for increasing the sensitivity and accuracy of the OTD for RCIM diagnostics for
BRBsbf detection.

4. Study Case for Motor Current Signal Analysis Using Prony Method Estimation

In this section, an assessment of Prony method estimation using a simulated and real
current signal with BRB harmonic components is presented. The simulated current signal
for analysis includes two BRBsbf, and for the real current signal analysis, a laboratory test
system with a data acquisition system, a RCIM with broken rotor bars and VFD are used,
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where the motor current signals are recorded at full load condition at nominal speed (60 Hz)
and at different operating speeds. This will allow to perform a complete evaluation and
validation of the method for OTD of RCIM diagnostics application.

4.1. Assessment of Numerical Simulation of Broken Rotor Bar Current Signal

For this analysis, the simulated current signal considering two side band frequencies
is used to estimate its signal parameters using Prony method, as presented in (6), (7), (10),
and (11). In Figure 3, 2 s simulated signal is used for the analysis, where the full signal
considers two sideband frequencies and its individual frequency components are shown
for a fundamental frequency of 60 Hz and a slip value of 0.0089 describing the behavior of
a loaded motor, where (1) is used to obtain the two sideband frequencies in the signal, so
the signal in Figure 3a can be used for the Prony analysis. In Table 2, the harmonic order,
frequency, amplitude of fundamental frequency, and the calculated BRBsbf of the signal in
Figure 3 that will be used for the analysis are presented.
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Figure 3. Simulated signal example. (a) Distorted signal. (b) Broken rotor bar harmonic components.

Table 2. Simulated example signal with broken rotor bar harmonic components.

Harmonic Order Frequency, (Hz) Amplitude

1 60 516

1.0178 61.06 (+sb1) 15

0.9822 58.93 (−sb1) 14

1.0356 62.13 (+sb2) 12

0.9644 57.86 (−sb2) 11

Prony Estimation Results

The signal in Figure 3a is used for analysis with a sampling frequency of 64 samples
per cycle and a window of data of 8 cycles. The sampling frequency of 64 samples/cycle
and 8 cycles of window data length are considered because with a fixed data window with
lesser data a good and accurate estimation could be achieved. It is important to mention
that with more data considered for the estimation process (more than 8 cycles for simulated
signal in Figure 3a), an increase in computational burden will occur and more time will
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be required to obtain accurate estimated frequencies and amplitudes. In Figure 4a, the
Prony estimated and original signal are compared, and it can be observed that there is no
considerable error between them, and the estimated spectrum in Figure 4b of signal in
Figure 4a is obtained from the Prony estimation results calculated from (7) and (10), the
estimation results are presented in Table 3.
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Figure 4. Simulated example signal validation. (a) Estimated and original signal comparison.
(b) Estimated Prony spectrum.

Table 3. Simulated example, Prony estimated signal parameters.

Estimated Signal Parameters Frequency, (Hz) Amplitude

Example signal

60 516.00

61.06 15.00

58.93 14.00

62.13 11.99

57.86 10.99

The Prony estimation results in Table 3 are obtained using a defined window of data of
the simulated example signal in Figure 3a; 8 cycles and a sampling frequency of 64 samples
per cycle are considered. Only the estimated signal amplitude and frequency are presented
in Table 3, because these parameters are the ones that can be used to detect BRBsbf of the
signal under analysis. It should be mentioned that the damping results and phase angle of
the signal parameter estimation correspond to the model of the Prony signal presented in
Equation (2) and are required only to form the estimated Prony signal and then the MSE is
calculated so the optimum parameter estimates could be obtained. Good estimation results
can be achieved considering a window data length of 8 cycles and a sampling frequency of
64 samples per cycle for the detection of two sideband frequencies for broken rotor bars.

4.2. Assessment of Real Broken Rotor Bar Current Signal from a Laboratory Test System

For this analysis, a laboratory test system considering a 1
2 HP RCIM with a crack

in one ring of the rotor, a data acquisition system, and a VFD are used for the current
signal analysis using the Prony method; it should be mentioned that different operation
conditions are considered for the analysis. Moreover, a comparison of FFT results and
Prony estimation results are presented so that the advantages of using Prony method can
be highlighted for OTD application.

4.2.1. Laboratory Test System

In Figure 5, the laboratory test system used for the data acquisition of current signals
of the RCIM under analysis is presented. For the analysis, the current signals are required,
so the signals are measured at the motor terminals; in Figure 5a, a VFD is used to control
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the speed of the RCIM which will be operating at full load condition. The nameplate data
of the RCIM are as follows 208 V, 1.98 A, 60 Hz, 1730 rpm and are presented in Appendix A
in Table A1. In Figure 5b, the load is set at 2.05 N-m, which is the condition for full
load operation for the RCIM. In Figure 5c, the data acquisition system used is a National
Instruments cRIO-9045 with LabVIEW software and Tektronix current sensors A622 with
the setting of 100 mv/A. Figure 6 shows the RCIM rotor of RCIM in Figure 5b which has a
cracked ring and a broken rotor bar.
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Figure 6. RCIM cracked ring rotor and broken rotor bar for analysis.

Figure 7 presents the current signal measurement of motor line current of phase A,
only 1 s of the recorded signal of the 5 s total length is presented for visualization purposes,
current signal in Figure 7 was obtained at 60 Hz operation of the motor (full speed), and full
load condition without the operation of the VFD. It should be mentioned that the sideband
frequencies considered for the detection of the cracked ring or broken rotor bar were
calculated with (1) considering a full load slip of 0.0388, 2 sideband frequency components
were calculated for 60 Hz as fundamental component: 64.66 Hz, 55.33 Hz, 69.33 Hz, and
50.66 Hz. Hence, the signal in Figure 7 will be used for the Prony analysis and FFT analysis
for 60 Hz. In the following sections, current signal measurements at different VFD speed
operation conditions (50 Hz, 40 Hz, 30 Hz, 20 Hz, and 10 Hz) are analyzed to validate the



Energies 2022, 15, 3513 11 of 24

proposed Prony method for OTD application in RCIM, and FFT will also be analyzed to
compare and highlight the advantages of using Prony method for OTD in RCIM.
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Figure 7. Current signal measurement of motor line current of phase A with a sampling frequency of
64 samples per cycle at 60 Hz with no VFD operation.

4.2.2. Fast Fourier Transform Estimation Results

In this section a FFT analysis of the measured current signals from the test system in
Figure 5 is performed using the VFD. For the purpose of analysis, only motor line current of
Phase A is considered and the length of the recorded signal is 5 s. The sampling frequency
of the signal is 64 samples per cycle, and the FFT estimation results are presented for
different speed operations at full load of the RCIM; the output frequencies for the VFD,
which are related to rotor speeds, are 60 Hz, 50 Hz, 40 Hz, 30 Hz, 20 Hz, and 10 Hz.

It could be observed that for a signal record of 5 s, for every speed variation 60 Hz,
50 Hz, 40 Hz, 30 Hz, 20 Hz, and 10 Hz in Figures 8–13, the sideband frequencies considered
for each speed operation condition are not detected. It should be mentioned that at least
10 s of the signal must be recorded to determine if a problem with the rotor is present, as
described in Section 2. Table 4 presents two sideband frequencies of the RCIM calculated
from (1) for each speed operation condition frequency. BRBsbf will be used to compare the
results obtained from the FFT estimations and also the information defined in Table 1.
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Figure 10. FFT analysis of current signal measurement of motor line current of phase A, frequency
spectrum, and periodogram at 40 Hz speed operation.

As shown in FFT spectrum and periodogram from Figures 8–13 and Table 5, frequen-
cies presented in Table 4 are not detected for each VFD speed operation condition, only
the fundamental frequency is detected. This occurs mainly due to the closeness of the
frequencies to the fundamental frequency, where more signal data are required (at least 10 s)
so the FFT could detect the sideband frequencies. The periodogram is included because
it is used to highlight the sideband frequencies in dB, which is the unit where a severity
of a faulted rotor of RCIM can be measured, as it is presented in Table 1. Hence, one of
the disadvantages of the FFT analysis for OTD for RCIM, is that it is not possible for the
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detection of the BRBsbf with less than 10 s of recorded current signal, where it is evident in
the results from Figures 8–13 and Table 5 that the sideband frequencies are not detected, so
larger data windows and no variations in load of the motor under analysis are required for
FFT analysis to detect BRBsbf.
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Figure 11. FFT analysis of current signal measurement of motor line current of phase A, frequency
spectrum, and periodogram at 30 Hz speed operation.
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Figure 12. FFT analysis of current signal measurement of motor line current of phase A, frequency
spectrum, and periodogram at 20 Hz speed operation.
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Figure 13. FFT analysis of current signal measurement of motor line current of phase A, frequency
spectrum, and periodogram at 10 Hz speed operation.

Table 4. BRBsbf for each speed operation condition at VFD.

Full Load Slip, (s) Sideband
Frequencies Frequency, (Hz)

0.0388

Speed operation
Condition,

Fundamental frequency
60 50 40 30 20 10

Sb1+ 64.66 53.88 43.11 32.33 21.55 10.77

Sb1− 55.33 46.11 36.88 27.66 18.44 9.22

Sb2+ 69.33 57.77 46.22 34.66 23.11 11.55

Sb2− 50.66 42.22 33.77 25.33 16.88 8.44

4.2.3. Prony Estimation Results

In this section, the proposed Prony method estimation for OTD application for RCIM
diagnostics is evaluated for different speed operation conditions of a RCIM at full load
using the test system in Figure 5. The recorded signals used for the analysis are the current
signals from Figures 8–13 for each speed operation condition, where the difference between
the analysis from FFT and Prony, is that the estimation of signal frequency and amplitude
parameters will be obtained only by considering 25 cycles of each signal instead of 5 s.
The sampling frequency of the signals is the same for each one of the 64 samples per
cycle. The following steps should be followed to obtain the optimum signal parameters of
frequency and amplitude, so we can search the BRBsbf presented in Table 4 in the Prony
estimation results. First, a downsampling of the signal under analysis is required. Then, the
downsampled signal needs to be filtered (low pass filter and a DC filter), so that Prony can
estimate the frequencies with a minimum error, because the method is sensitive to noise.
Next, the downsampled and filtered signal is used for the Prony estimation calculation as
presented in Section 3.
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Table 5. FFT results for each speed operation condition at VFD.

Estimated Signal Parameters True Frequency Values
(Hz)

FFT Estimation Results

Frequency
(Hz)

Amplitude
(A)

Power
(dB)

Full Load
Slip s = 0.0388

(1 + 2 s) f [Sb1−] 55.33 59.77 0.285 −12.20

Fundamental (f) 60.00 60.00 1.161 0

(1 − 2 s) f [Sb1+] 64.66 60.35 0.277 −12.42

(1 + 2 s) f [Sb1−] 46.11 49.8 0.232 −13.16

Fundamental (f) 50.00 50.1 1.055 0

(1 − 2 s) f [Sb1+] 53.88 50.39 0.192 −14.76

(1 + 2 s) f [Sb1−] 36.88 39.06 0.104 −23.9

Fundamental (f) 40.00 40.00 1.641 0

(1 − 2 s) f [Sb1+] 43.11 40.47 0.196 −18.44

(1 + 2 s) f [Sb1−] 27.66 29.65 0.285 −12.58

Fundamental (f) 30.00 29.88 1.216 0

(1 − 2 s) f [Sb1+] 32.33 30.23 0.241 −14.03

(1 + 2 s) f [Sb1−] 18.44 18.91 0.096 −24.41

Fundamental (f) 20.00 20.00 1.61 0

(1 − 2 s) f [Sb1+] 21.55 20.63 0.151 −20.52

(1 + 2 s) f [Sb1−] 9.22 9.21 0.108 −23.1

Fundamental (f) 10.00 10.00 1.543 0

(1 − 2 s) f [Sb1+] 10.77 11.41 0.071 −26.68

Downsampling

The recorded current signal is considered at 64 samples per cycle; nevertheless, a
downsampling to 16 samples per cycle, as shown in Figure 14, is recommended to reduce
the computational effort during the estimation process with Prony method (if a real time
application is considered), and it is justified that due to the low frequencies (BRBsbf) that are
required to estimate there is no need for a high resolution recorded signal. This condition
could be modified according to the needs of specific frequency detection for diagnostics
application in MCSA.
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Low Pass and DC Filter

As mentioned in Section 3, if the recorded signal under analysis includes noise or other
harmonics of no interest, the signal must be filtered to eliminate unwanted frequencies, so
that the Prony estimation could be accurate. This step is carried out prior to using the signal
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as input signal for the estimation of signal parameters. For this particular application, a
low pass filter of order 4 with a cut off frequency of harmonic order of 5 (300 Hz for 60 Hz)
is used, see Figure 15; it is important to consider that the cutoff frequency will change if
a VFD with a specific speed frequency operation (change in fundamental frequency) is
considered. Moreover, a DC filter should be considered after the low pass filter, mainly
because in a recorded signal, a DC offset will appear due to the measurement equipment
(current sensors), see Figure 16, some equipment have zero adjustment to prevent a DC
offset to appear in a recorded signal. If low pass filter and DC filter are not considered in
signal processing prior to using the signal for Prony estimation it can cause a significant
error in the estimated signal parameters, or other non-real frequencies will appear in the
estimation results which can lead to a misinterpretation or a misdiagnosis.
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Signal Parameter Estimation

In order to obtain a good estimate of signal parameters using Prony method for OTD
in RCIM, the considerations mentioned in Section 3 and Sections Downsampling and Low
Pass and DC Filter must be applied, then the current signal under analysis, see Figure 17,
will be used as the input signal to obtain the parameter estimation. It should be mentioned
that a sliding window of data is used in this section to obtain the estimates, in the first
analysis are considered only 5 sliding data windows for 60 Hz operation speed, where at
each window of data a set of estimated parameters will be obtained with the main purpose
to validate Prony method estimation application to detect BRBsbf. Then, an analysis of one
data window for each speed frequency operation with VFD (50 Hz, 40 Hz, 30 Hz, 20 Hz,
and 10 Hz) is considered, and the BRBsbf to be detected will be the ones indicated in Table 4.
Hence, it is important to mention that the window length of data to be analyzed will be of
25 cycles for each speed operation condition.

Once the input signal to the Prony method has been digitally processed under the
considerations mentioned in Sections Down Sampling and Low Pass and DC Filter, it
now can be used in Prony method to determine an accurate estimate of signal parameters
and BRBsbf. Table 6 shows the estimation results using the methodology described in
Section 3, where in order to validate the Prony estimation results five sliding data window
are considered, so five calculations of Prony method are made, so the reader can observe
that the estimated frequencies and its amplitudes correspond to the BRBsbf defined in
Table 4; also, it could be observed that a third pair of sideband frequencies also is detected.
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Table 6. Measured current signal estimated parameters.

Estimated
Signal

Parameters

Data Window 1 Data Window 2 Data Window 3 Data Window 4 Data Window 5

Frequency
(Hz) Amplitude Frequency

(Hz) Amplitude Frequency
(Hz) Amplitude Frequency

(Hz) Amplitude Frequency
(Hz) Amplitude

Sb3− 44.03 0.0536 44.03 0.0540 43.97 0.0551 43.90 0.0566 43.91 0.0552

Sb2− 51.28 0.0207 51.28 0.0208 51.30 0.0206 51.26 0.0149 51.25 0.0162

Sb1− 55.44 0.0426 55.44 0.0427 55.46 0.0423 55.42 0.0385 55.44 0.0391

Fundamental 60.02 2.1440 60.02 2.1441 60.02 2.1444 60.02 2.1418 60.02 2.1425

Sb1+ 64.71 0.0279 64.71 0.0278 64.69 0.0273 64.68 0.0291 64.66 0.0284

Sb2+ 69.66 0.0197 69.68 0.0195 69.72 0.0182 69.55 0.0204 69.58 0.0182

Sb3+ 75.96 0.0248 75.97 0.0248 75.97 0.0248 75.97 0.0251 75.98 0.0250

To determine the severity condition of the rotor, the energy in dB needs to be obtained
from a periodogram spectrum and to be compared with rotor fault signature in Table 1.
First, the frequency spectrum of the results obtained for each sliding data window in Table 6
is presented in Figure 18, then, with the information obtained in Table 6, energy is plotted
in a periodogram as shown in Figure 19. It could be observed that with frequency spectrum
low magnitudes are observed, this is the main reason of the periodogram importance to
plot these magnitudes in energy values in dB, so the BRBsbf of the RCIM under analysis
could be more evident.

As observed in Figure 19, the energy levels are between 31.56 and 41.42 dB of the
BRBsbf for the sliding data windows evaluated, the energy estimated values correspond
to multiple cracked or broken bars or in its case a ring problem as described in Table 1. In
Figure 6, a cracked ring rotor and broken rotor bar is used in the test system to perform the
current signal analysis, so it is evident that an accurate diagnostic could be achieved with
Prony method parameter estimation.

To complete the most common operative scenarios of RCIM for the experimental
validation of Prony method, as described in Section 4.2, current signals are measured at
motor line terminal phase A in the laboratory test system from Figure 5 using a VFD at
different speed operation conditions defined in Table 4, at full load condition, where also
its BRBsbf are determined so a diagnostic of the RCIM can be obtained from the Prony
estimation results.

In Figure 20, the digitally processed current signals (original) for each frequency
speed operation are compared with the Prony estimated signal obtained from (2) using
the estimated parameter results in Table 7, it can be observed in Figure 20 that for each
VFD operation frequency the difference between the signals is null, this can be quantified
by calculating MSE curve fitting in (12), the MSE curve fitting results has a value of
1.7889 × 10−4 for 50 Hz, 5.2202 × 10−4 for 40 Hz, 6.4835 × 10−4 for 30 Hz, 4.6944 × 10−4

for 20 Hz, and 2.4833 × 10−4 for 10 Hz; these results confirm that an accurate estimate of
the BRBsbf and diagnostic is achieved.
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In Table 7, the Prony estimation results of signal parameters are presented, where it can
be observed that for each VFD speed operation, its sideband frequencies (True frequency
values), amplitudes, and energy in dB are accurately estimated, where the obtained energy
in dB corresponds to the real damage severity condition presented in Table 1 of the rotor of
the RCIM under analysis. First, the frequency spectrum of the results obtained for each
VFD speed operation frequency in Table 7 is presented in Figure 21, then, for visualization
purpose of the results 7, the Periodogram for each Prony estimated signal parameters from
Figure 20 is presented in Figure 22, where its fundamental frequency is normalized to 0 dB.
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Figure 20. Data window selected for analysis of 25 cycles of current signal measurement of motor
line current of phase A at VFD operation frequencies of 50 Hz, 40 Hz, 30 Hz, 20 Hz, and 10 Hz (Prony
estimated and original signal).

Table 7. Measured current signal estimated parameters (VFD, motor at full load).

Estimated
Signal

Parameters

Measured Signal
(Current Phase A)

True Frequency Values
(Hz)

Prony Method Estimation Results

Frequency
(Hz)

Amplitude
(A) Power (dB) MSE Curve

Fitting

Full Load Slip
s = 0.0388

(1 + 2 s) f [Sb1−] 46.11 46.89 0.0222 −39.76

1.7889 × 10−4Fundamental (f) 50.00 50.07 2.1599 0

(1 − 2 s) f [Sb1+] 53.88 54.16 0.0192 −41.02

(1 + 2 s) f [Sb1−] 36.88 36.50 0.0327 −36.41

5.2202 × 10−4Fundamental (f) 40.00 39.96 2.1628 0

(1 − 2 s) f [Sb1+] 43.11 43.64 0.0140 −43.78

(1 + 2 s) f [Sb1−] 27.66 26.78 0.0231 −39.37

6.4835 × 10−4Fundamental (f) 30.00 29.92 2.1475 0

(1 − 2 s) f [Sb1+] 32.33 33.23 0.0424 −34.09

(1 + 2 s) f [Sb1−] 18.44 18.01 0.0400 −34.41

4.6944 × 10−4Fundamental (f) 20.00 19.95 2.1011 0

(1 − 2 s) f [Sb1+] 21.55 21.59 0.0277 −37.60

(1 + 2 s) f [Sb1−] 9.22 9.68 0.0305 −36.39

2.4833 × 10−4Fundamental (f) 10.00 10.05 2.0117 0

(1 − 2 s) f [Sb1+] 10.77 10.60 0.0420 −33.61
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5. Results and Discussion

A results comparison is performed between FFT analysis (using a 5 s recorded current
signal) and Prony method (using a 25 cycles of recorded current signal) in this work. It
is important to mention that 25 cycles have been selected because that is the minimum
data window length with good and accurate results, other tests from 1–24 cycles were
performed but no good estimation is achieved, so the best possible application option for
online test diagnostics equipment with the minimum possible estimation time is 25 cycles.
Moreover, a very important detail to mention is that the computational estimation time
increase exponentially for each increase in the sampling frequency, so this is the main reason
why a subsampling to 16 samples per cycle is considered. In Sections 4.2.2 and 4.2.3, the
estimation results at different VFD speed operation conditions are presented, and Table 8
shows a summary of the results for both methods. Note from Table 8 that for each VFD
speed operation condition, the FFT results are not accurate and BRBsbf cannot be detected
having a 5 s recorded signal, but if Prony estimation results are observed and compared
with the True frequency values, then use Table 1 to determine the severity condition of
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the cage of the rotor, it can be validated that the estimated energy in dB corresponds to a
cracked ring and/or BRB, which is the real condition of the rotor shown in Figure 6.

Table 8. Summary of current signal estimated parameters using FFT and Prony method (VFD, motor
at full load).

Estimated
Signal

Parameters

Measured Signal
(Current Phase A)

True Frequency Values
(Hz)

FFT Estimation Results Prony Method Estimation Results

Frequency
(Hz)

Amplitude
(A)

Power
(dB)

Frequency
(Hz)

Amplitude
(A)

Power
(dB)

MSE Curve
Fitting

Full Load
Slip

s = 0.0388

(1 + 2 s) f [Sb1−] 55.33 59.77 0.285 −12.20 55.44 0.0426 −34.04

6.4593 × 10−4Fundamental (f) 60.00 60.00 1.161 0 60.02 2.1440 0

(1 − 2 s) f [Sb1+] 64.66 60.35 0.277 −12.42 64.71 0.0279 −37.71

(1 + 2 s) f [Sb1−] 46.11 49.8 0.232 −13.16 46.89 0.0222 −39.76

1.7889 × 10−4Fundamental (f) 50.00 50.1 1.055 0 50.07 2.1599 0

(1 − 2 s) f [Sb1+] 53.88 50.39 0.192 −14.76 54.16 0.0192 −41.02

(1 + 2 s) f [Sb1−] 36.88 39.06 0.104 −23.9 36.50 0.0327 −36.41

5.2202 × 10−4Fundamental (f) 40.00 40.00 1.641 0 39.96 2.1628 0

(1 − s) f [Sb1+] 43.11 40.47 0.196 −18.44 43.64 0.0140 −43.78

(1 + 2 s) f [Sb1−] 27.66 29.65 0.285 −12.58 26.78 0.0231 −39.37

6.4835 × 10−4Fundamental (f) 30.00 29.88 1.216 0 29.92 2.1475 0

(1 − 2 s) f [Sb1+] 32.33 30.23 0.241 −14.03 33.23 0.0424 −34.09

(1 + 2 s) f [Sb1−] 18.44 18.91 0.096 −24.41 18.01 0.0400 −34.41

4.6944 × 10−4Fundamental (f) 20.00 20.00 1.61 0 19.95 2.1011 0

(1 − 2 s) f [Sb1+] 21.55 20.63 0.151 −20.52 21.59 0.0277 −37.60

(1 + 2 s) f [Sb1−] 9.22 9.21 0.108 −23.1 9.68 0.0305 −36.39

2.4833 × 10−4Fundamental (f) 10.00 10.00 1.543 0 10.05 2.0117 0

(1 − 2 s) f [Sb1+] 10.77 11.41 0.071 −26.68 10.60 0.0420 −33.61

6. Conclusions

It is important to mention that a RCIM should be operating at full load in order to
detect BRBsbf, because at full load condition, induced currents circulate at the cage of the
rotor and when a measurement of the motor line current is performed, these frequencies
will appear; the main difficulty is to extract or detect these BRBsbf because they are frequency
components that are too close to the fundamental frequency and some considerations have
to be made so that a digital signal processing technique can be used to estimate these
frequencies accurately and a diagnostic of the cage of the rotor can be defined. As it
is commonly known, FFT analysis is used for RCIM OTD, where this signal processing
technique has been used widely in most of online test equipment for RCIM OTD but one
of the main disadvantages of the technique for this application is that it requires at least
10 s of recorded signal to give a good estimate of the BRBsbf. Hence, Prony method is
proposed to be used as a BRBsbf detection technique to be applied in OTD equipment
for RCIM, where at least 25 cycles of a current signal are needed to obtain an accurate
estimate of the BRBsbf; with the reduction of a recorded signal with a typical length (10 s),
the memory requirement is less in the OTD equipment and the condition of the cage rotor
is more accurate. It is important to apply the considerations for Prony method application
for RCIM OTD presented in Sections 3 and 4, so an accurate estimate and diagnostic can
be achieved.

For future work and recommendations, it is suggested to consider its application and
analysis for DC motor current signature. The scope of this work was to present and validate
the application details and advantages to use Prony method to determine the condition of
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the cage of a RCIM using MCSA. Moreover, it should be mentioned that in comparison
with conventional OTD equipment FFT analysis of current signal, Prony method requires
at least 25 cycles of recorded data, which means that it leads to a great reduction in memory
hardware requirement for the recorded current signal, so an integration of the Prony
method in OTD equipment is recommended to increase the accuracy in the condition
diagnostic of a cage rotor of a RCIM.
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Abbreviations

RCIM Rotor Cage Induction Motor
BRB Broken Rotor Bar
BRBsbf Broken Rotor Bar sideband frequencies
Sbf+ Upper sideband frequency
Sbf− Lower sideband frequency
CBER Cracked/Broken End Ring
DOL Direct-On-Line
MCSA Motor Current Signature Analysis
AAGE Abnormal Air Gap Eccentricity
OTD Online Test Diagnostics
MSE Mean Square Error
VFD Variable Frequency Drive
FFT Fast Fourier Transform
DSP Digital Signal Processing

Appendix A

Table A1. RCIM nameplate data.

Motor Data

Rated Current 1.98 A
Rated Voltage 208 V
Rated Power 0.5 HP

Temperature insulation class F 155 ◦C
Rated Frequency 60 Hz

Service factor 1.15
Efficiency 72 %

Connection YY
Rotor cage material Aluminum

Rated Speed 1730 RPM
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