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Abstract: Permanent magnet synchronous motors (PMSMs) are the main source of power in modern
machine tools and are required to generate a high torque over a wide speed range in order to improve
manufacturing efficiency. This study sets out to optimize the rotor design of a PMSM with a rated
power, rated speed, rated torque and maximum speed of 34 kW, 2250 rpm, 144.3 N·m and 11,250 rpm,
respectively. A multi-objective optimization algorithm is employed to determine the rotor design
parameters which maximize the output torque of the PMSM over three different load conditions
(no load, rated load and maximum speed load). ANSYS multi-physics simulations are conducted to
examine the electromagnetic, the structural field, temperature/flow field, demagnetization parament
analysis and map analysis of global characteristics of the optimized PMSM. In general, the results
show that the optimized PMSM provides a high torque and high-speed expansion performance, and
thus facilitates a wide range of applications from low-speed heavy cutting to high-speed cutting
without the need to replace the motor or machine tool.

Keywords: permanent magnet synchronous motor; multi-objective optimization; multi-physics analysis

1. Introduction

Permanent magnet synchronous motors (PMSM) are widely used in industrial ma-
chines, manufacturing, electric vehicles, renewable energy applications and so on [1–5].
PMSMs have many advantageous properties, including a high torque density, a high effi-
ciency, a wide speed range and good controllability [6–8]. However, as technology in the
related application fields continues to advance, many efforts have been made to improve
the performance of PMSMs yet further through the development of fractional slot concen-
trated windings [9,10] and inner permanent magnet synchronous motors (IPMSMs) [11,12],
or the application of multimodal design optimization methods [13,14] and differential
control strategies. Liang et al. [15] used a combined finite element method (FEM) and
deep learning model to optimize the structure of a PMSM and predict the torque efficiency,
respectively. The prediction accuracy of the trained model was confirmed by comparing the
FE calculation results with the model fitting results. Sun et al. [16] proposed a state feedback
control system for a PMSM based on a grey wolf optimization (GWO) algorithm. The
results showed that the proposed controller provided a faster response time and a lower
overshoot than a conventional proportional integral (PI) controller. Vidanalage et al. [17]
developed a multimodal design optimization algorithm to minimize the total active weight
and electromagnetic losses of a V-shape IPMSM subject to thermal, mechanical and mag-
netic constraints. Du et al. [18] performed FE analyses to establish the efficiency map of
an IPMSM. The map was then used in an optimization process aimed at minimizing the
amount of permanent magnet (PM) material required to construct the IPMSM. The present
study employs a multi-objective, multi-physics framework to optimize and evaluate the
performance of a V-shape PMSM. In the proposed approach, ANSYS optiSLang software is
used to optimize the rotor design parameters of the PMSM using a particle swarm opti-
mization (PSO) algorithm. The optimization process aims to maximize the PMSM torque
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over three load conditions: no load, rated load and maximum speed. Having optimized the
PMSM, multi-physics simulations are conducted to investigate the electromagnetic, struc-
tural and temperature properties of the PMSM design. Finally, ANSYS Maxwell simulations
are performed to establish the power characteristics and efficiency of the optimized design.

2. PSMS Specification

Table 1 shows the basic specification of the PMSM considered in the present study
compared to existing commercial models on the market manufactured by Siemens Ltd.
(Shanghai, China) and Ate Gmbh & Co. KG (Eichstätt, Germany). As shown, the motor has
a rated torque of 34 kW which is larger than three models from Siemens and Ate. The rated
power is assigned as 114.34 kW which is larger than 1FE1084-6WR11 from Siemens and
AC-180-220-8 from Ate, and comparable with 1FE1113-6WU11 models from Siemens. The
minimum and maximum speed are set as 2250 rpm and 11,250 rpm, respectively, which is
wider than models from Siemens and Ate. In addition, the rated current is less than 75 A
and the speed expansion ratio is 5 in order to achieve a high torque performance at low
speeds. The pole number, slot number and number of slots per pole pair are set as 6, 27
and 9, respectively. The power density is 5995.86 Kw/m3 which is larger than three models
from Siemens and Ate. It is noted that the PMSM specification is designed to support both
low-speed heavy cutting and high-speed cutting. Consequently, the motor avoids the need
to replace the machine tool under different processing conditions and therefore maximizes
the processing efficiency and machining precision.

Table 1. PSMS parameters.

Present Study Siemens
1FE1113-6WU11

Siemens
1FE1084-6WR11

Ate
AC-180-220-8

Pole number (pole) 6 6 6 8
Rated power (kW) 34 33 31 25
Rated speed (rpm) 2250 2100 2300 3000
Rated torque (N·m) 144.34 150 130 127.7
Rated current (Arms) <75 60 60 102/48
Maximum speed (rpm) 11,250 6500 9000 11,910
Speed expansion ratio 5 3.1 3.9 4
Power density (kw/m3) 5995.86 5787.45 6828.79 4465.63

The inner and outer diameters of the rotor were set as 70 mm and 119 mm, respectively,
while the inner and outer diameters of the stator were set as 120 mm and 190 mm. The stator
distribution ratio was approximately 0.63, and the air gap was fixed as 0.5 mm. Finally,
the inner and outer diameters of the central axis were 44 mm and 70 mm, respectively,
and the thickness was 200 mm. The tooth width and yoke width are Wt = 9.5 mm and
Wy = 14.3 mm, respectively, and the root height and slot opening are ds = 1.3 mm and
Ws = 1.7 mm. It is noted that a small slot opening size smooths the energy change between
the air gaps and hence reduces the cogging torque.

The magnetic circuit has a fundamental effect on the performance of the PMSM and
must therefore be carefully designed [19]. Figure 1 shows the basic arrangement of the
permanent magnets in the rotor of the PMSM considered in the present study. It is noted
that such a single-layer V-shape and d-axis permanent magnet arrangement provides
the highest-efficiency and lowest-cost route for meeting any given torque demand for
a PMSM [20]. As shown, the permanent magnets are supported by a bridge structure,
which serves to resist the centrifugal load acting on the magnets as the PMSM rotates. The
bridge distance and central bridge width (CBW) are critical design parameters since they
not only govern the structural strength of the rotor, but also determine the leakage flux.
Referring to Figure 1, the permanent magnets have a thickness of Mag_T and a width of
Mag_Wi. In addition, the poles of the magnets are separated by an angle of Pole_Ang,
while the magnets themselves have an expansion angle of V_Ang. It is noted that the pole
expansion angle mainly affects the rotor magnetism, while the V-shape expansion angle
mainly determines the d-axis magnetic field, inductance and permanent demagnetization
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risk of the rotor. The preliminary (i.e., pre-optimization) dimensions of the PMSM are
listed in Table 2. The PMSM was assumed to be equipped with a three-phase sine wave
drive with a phase difference of 120 degrees. A double-layer-distributed winding method
was employed with 10 turns and a coil pitch of 4 mm. The winding parameters were
calculated based on Hanselman techniques [21]. The phase offset, K0, was obtained as
12 ◦E and the winding factor was given as 0.95. The three-phase drive was implemented
using 27 slots with 9 sets of coils per phase. The 10 sets of coils closest to 0 ◦E were used as
the A-phase windings.
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Figure 1. Illustration of the preliminary design of PMSM.

Table 2. Magnetic design parameters of PSMS.

Parameter Values

Bridge (mm) 2.5
CBW (mm) 2.0
Mag_T (mm) 4.0
Mag_Wi (mm) 0.5
Pole_Ang (◦E) 150
V_Ang (◦M) 135

Table 3 shows the detailed electrical parameters of the PMSM. As shown, the driving
current was 66 Arms, and 10 turns per slot were used. The wire diameter was 2.728 mm
(not shown), while the effective cross-sectional area of the coil was 109.5 mm2. Each turn
consisted of 24 parallel strands, each with a diameter of 0.56 mm. The current density was
assumed to be 14 A/mm2, while the theoretical phase resistance (Rph) was 0.121 Ω. The
theoretical copper loss value was 1584 W and the slot occupancy rate was 54%. The rotor
material was chosen as 35CS210 stainless steel on account of its high mechanical strength,
favorable electromagnetic characteristics and reasonable cost. In addition, the permanent
magnets were chosen as N42SH (a rare earth type of neodymium iron boron) with a higher
magnetic energy than samarium cobalt, Al-Ni-Co or ferrite, and a temperature rating of
150 ◦C.

Table 3. Electric parameters of PSMS.

Parameter Values

Current (Arms) 66
Winding method Double-layer
Number of turns 10
Coil pitch 4
Effective cross-sectional area (mm2) 109.5
Slot occupancy rate (%) 54
Strand diameter (mm) 0.56
Number of parallel strands 24
Current density (A/mm2) 14
Phase resistance (20 ◦C) Ω 0.121
Copper loss (20 ◦C) W 1584
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3. Multi-Objective Optimization Design and Analysis

The rotor design parameters of the PMSM were optimized using the multi-objective
optimization framework shown in Figure 2. The procedure commenced by specifying
the input and output variables and their ranges. A design of experiments (DoE) method
was used to generate a series of sampling points, and the response surface method was
employed to visualize the relationship between the input and output variables. A sensitivity
analysis was then conducted to examine the sensitivity of the output parameters to changes
in the input parameters. Finally, a multi-objective optimization algorithm was employed to
determine the optimal values of the input parameters. The details of each of the steps in
the optimization framework are described in the following.
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Figure 2. Optimization process.

As shown in Table 4, the optimization process considered eight input parameters,
where the first six parameters are described previously in Table 2, and psi1 and psi2 are the
current angles of 40 ◦E and 84 ◦E, respectively. Referring to Table 5, the output parameters
comprised the torques produced by the PMSM under three different working conditions:
no load (N = 2250 rpm, Irms = 0 A), rated speed with load (N = 2250 rpm, Irms = 66 A) and
maximum speed with load (N = 11,250 rpm, Irms = 66 A). It is noted that the cogging torque
is the torque required to overcome the magnetic attraction force between the rotor and
the stator. T_2250 and T_11250 are the average torques at the rated speed and maximum
speed, respectively, and T_ripple_2250 and T_ripple_11250 are the ripple torques at the
rated speed and maximum speed, respectively.

Table 4. Input parameters.

Parameter Code Initial Values Variable Range

Bridge (mm) Bridge (mm) 2.5 1.5~3
CBW (mm) CBW (mm) 2.0 1~3
Mag_T (mm) Mag_T (mm) 4.0 3~5
Mag_Wi (mm) Mag_Wi (mm) 0.5 0.5~3
Pole_Ang (◦E) Pole_Ang (◦E) 150 130~155
V_Ang (◦M) V_Ang (◦M) 135 130~180
psi1 (e_deg) psi1 (e_deg) 40 20~50
psi2 (e_deg) psi2 (e_deg) 84 82~84

Table 5. Output parameters.

Boundary Condition Parameters Initial Values Target Values

N = 2250 rpm, Irms = 0 A Cogging_Torque (N·m) 1.75 <1% × Tavg
T_2250 rpm (N·m) 149.25 >151.52

N = 2250 rpm, Irms = 66 A T_ripple_2250 rpm (%) 7.3 <10
V_max_112.5 Hz (V) 302 <315
T_11,250 rpm (N·m) 33.09 >31.75

N = 11,250 rpm, Irms = 66 A T_ripple_11,250 rpm (%) 43 <30
V_max_562.5 Hz (V) 280 <315
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3.1. Design and Experiments Technqiue

As shown in Table 4, the optimization process considered a large number of input
variables (eight) and a wide solution space. Thus, for reasons of expediency, the advanced
Latin hypercube sampling (ALHS) method [22] was used to sample 100 points in the input
design space. It is noted that the ALHS method is described in detail in Ref. [22].

3.2. Sensitivity Analysis

The sensitivity of the input variables was calculated as STi = 1− V(Y|X∼i)/V(Y),
where STi is the sensitivity of the ith input variable, V(Y|X~i) is the variance of the input
variable to the output variable Y except for input variable Xi and V(Y) is the variance of
the output variable Y. Figure 3 presents the corresponding results. It is seen that the total
influence degree varies from 93.8% to 99.5%, where the ripple torque has the lowest total
influence and the rated torque has the highest total influence.
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3.3. Response Surface Results

Figure 4 shows the response surface results obtained for each of the seven out-
put parameters Note that for each parameter, the response surface is obtained using an
interpolation fitting method and the coefficient of prognosis (CoP) is defined as
CoP = 1− SSPrediction

E /SST = 94%, where SSPrediction
E is the sum of squares of errors in

predicting a certain output variable and SST is the total variance (equal to the total sensi-
tivity STi). Note also that for each output parameter, the response surface is plotted as a
function of the two input parameters with the highest correlation, as indicated in the sensi-
tivity analysis results in Figure 2. (Note that in computing the surface response, the other
input variables are assigned their intermediate values in each case). Figure 4a,d,e show the
response surfaces for the cogging torque and ripple torque at the rated speed and maximum
speed, respectively. In all three cases, the output variables are determined mainly by the
Pole_Ang and Bridge parameters. The Pole_Ang determines the magnetic field distribution
in the rotor, and hence the space harmonic distribution is also different. The response
surfaces of the three variables have a sine wave-like appearance [23,24]. The variable range
values of the ripple torque at the rated speed and maximum speed, respectively, are clearly
different (i.e., 2~14% and 15~60%, respectively). As the bridge distance reduces, the bridge
magnetic saturation increases and gives rise to higher harmonic components in all three
output variables. Overall, the cogging torque shows the largest variation with changes in
the Pole_Ang and Bridge parameters (±80%, Figure 4a), followed by the ripple torque at
the maximum rotor speed (±38%, Figure 4e). As shown in Figure 4b,c, the average torques
produced at the rated speed and maximum speed are governed mainly by the Mag_Wi
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and psi parameters. In general, the magnet width (Mag_Wi) directly affects the size of the
magnetic field produced by the rotor. Hence, the average torque increases with increasing
Mag_Wi. However, the torque decreases rapidly with an increasing current angle. The
sensitivity of the torque to the current psi angle is particularly apparent under the max-
imum speed condition. As shown in Figure 4f,g, the induced voltage at the rated speed
is governed mainly by the current psi and V-Ang input parameters, while the induced
voltage at the maximum speed is determined chiefly by Mag_Wi and Mag_T. At the rated
speed, the voltage is dominated by the value of psi1 since it has a wider upper and lower
limit range. The psi2 at the highest speed is not so sensitive because the voltage cannot
drop rapidly with the increase in the current angle similar to the torque.
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Figure 4. Response surfaces of: (a) cogging torque with two variables Pole_Ang (56.7%), Bridge
(23.9%), variable range 0.25~2.25 N·m (±80%); (b) average torque (2250 rpm) with two variables
Mag_Wi (36.5%), psi1 (19.7%), variable range 105~155 N-m (±19%); (c) average torque (11,250 rpm)
with two variables psi2 (61.3%), Mag_Wi (15.3%), variable range 30~44 N-m (±19%); (d) ripple
torque (2250 rpm) with two variables Pole_Ang (67.7%), Bridge (18.8%), variable range 2~14% (±6%);
(e) ripple torque (11,250 rpm) with two variables Pole_Ang (80.8%), Bridge (18.3%), variable range
15~60% (±38%); (f) induced voltage (2250 rpm) with two variables psi1 (77.7%), V_Ang (16.8%),
variable range 260~330 V (±12%); and (g) induced voltage (11,250 rpm) with two variables Mag_Wi
(39.7%), Mag_T (20.3%), variable range 300~550 V (±30%).

Figure 5 shows the surface response of the ripple torque with the lowest CoP of 94%.
Note that the color bar shows the local value of the CoP. When each input parameter is
assigned its intermediate value, the minimum local CoP (95%) occurs at the extreme value
of the other variable. The scatter points selected in the experimental design are drawn
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from an average distribution, and thus do not include the extreme values. As a result, the
scattered points are insufficient. Consequently, data errors are more likely to occur at the
extreme values of the input variables. However, in the present study, these errors have
little impact on the overall problem since the lowest CoP value is quite close to 100%.

Energies 2022, 15, 3496 8 of 17 
 

 

 

Figure 5. The surface response of rated torque ripple when CoP = 94%. 

3.4. Optimization Analysis 

In performing the optimization process, the aim was to determine the settings of the 

rotor design parameters which jointly optimized the torque provided by the PMSM under 

the three load conditions (i.e., no load, rated load and maximum speed load, respectively). 

As shown in Table 5, the optimization constraints were set as follows: cogging torque 

<1.52 N·m (5% higher than the required rated torque), ripple torque at rated speed <10%, 

ripple torque at maximum speed <30%, induced voltage at rated speed <315 V and in-

duced voltage at maximum speed <315 V. The optimization process was performed in 

ANSYS OptiSLang software using the particle swarm optimization (PSO) algorithm [21]. 

Briefly, the iterative optimization process was formulated as follows 

( 1)
1 2( ) ( )k k k k k k

i i p i i g g iv wv c r P x c r P x      , (1)

and 

( 1) ( 1)k k k
i i ix x v   , (2)

where k is the number of iteration steps,

k
iv  is the velocity vector in the current iteration 

k, 

1k
iv


 is the velocity vector in the following iteration k + 1, w is the weight of inertia, cp 

is the individual particle acceleration, Cg is the global acceleration, R1 and R2 are random 

numbers between 0 and 1, 

k
iP is the local optimal particle position,

k
gP  is the global opti-

mal particle position, 

k
ix  is the particle position in the current iteration k, and 

1k
ix


is the 

particle position in the following iteration k + 1. As described in [21], the velocity vector 

for each particle was updated at the end of each iteration by reference to both its current 

position and the global optimal particle position in such a way as to gradually approach 

the optimal solution. 

Figure 5. The surface response of rated torque ripple when CoP = 94%.

3.4. Optimization Analysis

In performing the optimization process, the aim was to determine the settings of the
rotor design parameters which jointly optimized the torque provided by the PMSM under
the three load conditions (i.e., no load, rated load and maximum speed load, respectively).
As shown in Table 5, the optimization constraints were set as follows: cogging torque
<1.52 N·m (5% higher than the required rated torque), ripple torque at rated speed <10%,
ripple torque at maximum speed <30%, induced voltage at rated speed <315 V and induced
voltage at maximum speed <315 V. The optimization process was performed in ANSYS
OptiSLang software using the particle swarm optimization (PSO) algorithm [21]. Briefly,
the iterative optimization process was formulated as follows

v(k+1)
i = wvk

i + cpr1(Pk
i − xk

i ) + cgr2(Pk
g − xk

i ), (1)

and
x(k+1)

i = xk
i + v(k+1)

i , (2)

where k is the number of iteration steps, vk
i is the velocity vector in the current iteration

k, vk+1
i is the velocity vector in the following iteration k + 1, w is the weight of inertia, cp

is the individual particle acceleration, Cg is the global acceleration, R1 and R2 are random
numbers between 0 and 1, Pk

i is the local optimal particle position, Pk
g is the global optimal

particle position, xk
i is the particle position in the current iteration k, and xk+1

i is the particle
position in the following iteration k + 1. As described in [21], the velocity vector for
each particle was updated at the end of each iteration by reference to both its current
position and the global optimal particle position in such a way as to gradually approach
the optimal solution.
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3.5. Optimization Results and Discussion

Figure 6 shows the optimization results. The x-axis shows the average torque at the
maximum speed of 11,250 rpm, while the y-axis shows the torque at the rated speed of
2250 rpm. The data points show the optimization results for each sample (1700 in total).
The total run time of the PSO algorithm was less than 10 min. It is noted that all of the
data points have a negative value since, in an optimization process, the general goal is
uniformly converted into a minimum calculation. Therefore, if both objectives are to be
maximized, the optimization software automatically converts them to negative values for
calculation purposes. The gray data points are infeasible solutions which do not meet
certain of the five constraints, while the black data points are feasible solutions which
satisfy all five constraints. Finally, the red dots show the optimal solutions (Figure 6a).
Figure 6b shows the corresponding Pareto front of the optimal solutions. Table 6 shows
the optimized values of the eight input parameters. It is noted that the optimized value
of psi2 was found to be 83.5 ◦E, but is rounded up to 84 ◦E in the table. Table 7 shows the
optimized values of the seven output parameters. It is seen that the optimal design of the
rotor auxiliary slot decreases the cogging torque by 1.01 N·m, reduces the ripple torque at
the rated speed to 5.5% and increases the ripple torque at the maximum speed to 25.2%.
However, the average torques at the rated speed and maximum are increased by +2.99 N·m
and +0.98 N·m, respectively.
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Table 6. Input parameters before and after optimization.

Parameter Before Optimization After Optimization

Bridge (mm) 2.5 2.95
CBW (mm) 2.0 1.54
Mag_T (mm) 4.0 4.76
Mag_Wi (mm) 0.5 0.56
Pole_Ang (◦E) 150 143.53
V_Ang (◦M) 135 140.55
psi1 (e_deg) 40 40
psi2 (e_deg) 84 84

Table 7. Output parameters after optimization.

Boundary Condition Parameters Initial Values Optimized Values

N = 2250 rpm, Irms = 0 A Cogging_Torque (N·m) 1.75 0.39 (−0.36 N·m)

T_2250 rpm (N·m) 149.25 152.24 (+2.99 N·m)
N = 2250 rpm, Irms = 66 A T_ripple_2250 rpm (%) 7.3 5.5

V_max_112.5 Hz (V) 302 301

T_11,250 rpm (N·m) 33.09 34.07 (+0.98 N·m)
N = 11,250 rpm, Irms = 66 A T_ripple_11,250 rpm (%) 43 25.2

V_max_562.5 Hz (V) 280 294
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Figure 7 shows the rotor design before and after the optimization process. It is seen
that the two designs are very similar. However, the electromagnetic characteristics of the
two rotors may still be very different. Accordingly, as described in the following section,
ANSYS multi-physics simulations were performed to study the feasibility of the optimized
design under the three considered working conditions (no load, rated load and maximum
speed load).
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4. Multi-Physical Analysis Results and Discussion
4.1. Optimal Design and Analysis of Electromagnetic Field

Further simulations were performed to examine the effects of the size and position
of the rotor rivet hole on the magnetic field induced in the rotor and hence the torque
performance of the motor. Note that the function of the rotor rivet hole is to fix the rotor
covers on either end of the motor in order to prevent the permanent magnets from becoming
loosened axially. The simulations commenced by fixing the center of the rivet hole at (0,50)
in the 2D coordinate system. The average torque and ripple torque were then calculated
at the rated speed (N = 2250 rpm and Irms = 66 A) for three different rivet hole diameters:
3 mm, 4 mm and 5 mm, as shown in Figure 8.
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Table 8 shows the simulation results. It is seen that the average torque and ripple
torque both reduce as the rivet hole diameter increases. For example, when the hole
diameter is increased to 5 mm, the average torque reduces by 0.8% compared to the original
design, while the ripple torque reduces by 0.5%. Thus, the optimal value of the rivet hole
diameter was specified as 3 mm.

Table 8. Optimization design results of rotor rivet hole diameter.

Boundary Condition Parameters Initial Values D = 3 mm D = 4 mm D = 5 mm

N = 2250 rpm
Irms = 66 A

T_2250 rpm (N·m) 152.24 152.03
(−0.1%)

151.69
(−0.4%)

151.01
(−0.8%)

T_ripple rpm (%) 5.5 5.4 5.2 5.0

A further series of simulations were performed to determine the optimal location of
the rivet hole. The corresponding results are presented in Table 9 for center coordinate
positions of (0,50), (0,52) and (0,54), respectively. As shown, the magnetic path weakens
when the rivet hole approaches the outer diameter of the rotor too closely (i.e., center
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coordinate position (0,54)), and the generated torque reduces accordingly. For center
coordinate positions of (0,50) and (0,52), respectively, the average torque has the same value
(152.03 N·m). Thus, the optimal center coordinate position of the rivet hole was selected
as (0,52). The basic auxiliary groove design considered in the present study consisting
of two symmetrical d-axis auxiliary grooves between each pole. The design parameters
include the expansion angle between the two grooves (θrs), the left angle of a single groove
(θl), the right angle of a single groove (θr) and the groove depth (drs). Simulations were
performed to optimize the auxiliary groove design by adjusting the design parameters in
the following ranges: θrs = 90 ◦E–160 ◦E, (θl,θr) = 10~20 ◦M and drs = 0.3 mm. Figure 9
shows the rated torque waveforms before (red line) and after (blue line) optimization,
respectively. Note that the optimal groove parameters were determined to be θrs = 127 ◦E,
θl = 16 ◦M, θr = 14 ◦M and drs = 0.3 mm. It is observed that the optimized design results
in a significant reduction in the ripple torque at the expense of only a minor loss in the
average torque

Table 9. Optimization design results of rotor rivet hole position.

Boundary Condition Parameters Initial Values O (0.50) O (0.52) O (0.54)

N = 2250 rpm
Irms = 66 A

T_2250 rpm (N·m) 152.24 152.03 152.03 151.93
T_ripple rpm (%) 5.5 5.4 5.4 5.3
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Table 10 shows the output parameters of the PMSM before and after the optimization
of the rotor auxiliary slot. It is seen that the optimal design of the rotor auxiliary slot
increases the cogging torque by round 1.01 N·m, reduces the ripple torque at the rated
speed to 4.8% and increases the ripple torque at the maximum speed to 38.5%.

Table 10. Output parameters before and after optimization of rotor auxiliary slot.

Boundary Condition Parameters Optimized Values After

N = 2250 rpm, Irms = 0 A Cogging_torque (N-m) 0.39 1.40 (+1.01 N-m)

T_2250 rpm (N·m) 152.24 151.38 (−0.56%)
N = 2250 rpm, Irms =66 A T_ripple_2250 rpm (%) 5.5 4.8

V_max_112.5 Hz (V) 301 298

T_11,250 rpm (N·m) 34.07 34.81 (+2.17%)
N = 11,250 rpm, Irms = 66 A T_ripple_11,250 rpm (%) 25.2 38.5

V_max_562.5 Hz (V) 294 301
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4.2. Structural Field Analysis

Multiphysics simulations were additionally performed to investigate the structural
integrity of the rotor under the maximum speed condition of 11,250 rpm. In performing
the simulations, the rotor body and permanent magnets were assumed to be one part;
the stacking situation, the permanent magnet adhesive force and rotor body residual
stress were ignored. In addition, the side of each permanent magnet was assumed to be
in frictionless contact with the side near the inner diameter of the rotor, while the side
near the outer diameter was assumed to be in full restraint contact. The inner diameter
of the rotor was restrained by a cylindrical support; however, radial deformation was
allowed. Finally, the yield strengths of the 35CS210 rotor and N42SH permanent magnets
were set as 425 MPa and 75 MPa, respectively. As shown in Figure 10a, the maximum
rotor deformation is 0.018 mm and occurs at the center of the d-axis of each pole. The
deformation is significantly smaller than the air gap (0.5 mm), and thus does not produce
interference between the stator and the rotor. Figure 10b,c show that the minimum safety
factor of the rotor assembly is 1.05 and is located at the inner corner of the magnet, which
serves as a stress raiser under the effects of the centrifugal force produced during rotation.
Nonetheless, the safety factor is still higher than the yield stress of the permanent magnet
itself, and hence no permanent deformation occurs. As shown in Figure 10d, the minimum
safety factor of the rotor is 1.86 and occurs at the outer magnetic barrier of the permanent
magnet. Overall, the simulation results confirm that the optimized rotor design faces no
risk of permanent deformation or structural damage.
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4.3. Temperature and Flow Field Analysis

The proposed PSMS losses are mainly contributed by the copper losses, core losses,
mechanical losses and other losses. At the ideal temperature of 20 ◦C, the copper losses are
calculated as 1584 W. The core losses consist of hysteresis losses, Eddy current losses and
excess losses and are simulated obtained as 1.93 kw where core loss at stator and rotor are
1.48 kw and 0.45 kw, respectively. The mechanical losses are caused by the friction loss of
the front and rear shaft and are obtained as 1.35 kw. Finally, the other losses are assigned as
1–5% of efficiency.

Further multi-physics simulations were performed to analyze the temperature and
flow field distributions of the optimized PMSM. When performing the simulation, the
outer diameter of the overall spindle was set as 300 mm, while the maximum length was
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given as 580 mm. The insulation breakdown temperature of the coil was set as 150 ◦C.
Finally, the Reynolds number and flow rate of the cooling water flow were given as 10,000
and 0.138 kg/s, respectively. Figure 11a,b show the simulated velocity and temperature
distributions of the water-cooling flow, respectively. It is seen that the inlet and outlet
temperatures of the cooling water-flow are around 20 ◦C and 25 ◦C, respectively. Figure 11c
shows the simulated temperature distribution of the entire spindle. It is seen that the
maximum temperature (77.46 ◦C) occurs at the end of the stator coil. This finding is
reasonable since the epoxy resin covering the coil has a low thermal conductivity, which
causes the heat to accumulate at the end of the coil before it is transferred to the water-
cooled shell.
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Figure 12 shows the simulated temperature distributions in the coil and permanent
magnet, respectively. As shown in Figure 12a, the temperature in the middle section of the
coil is dissipated by the stator fins and is hence relatively lower than that at the two ends of
the coil, which suffer the heat accumulation effect described above. Referring to Figure 12b,
the maximum temperature of the permanent magnets is around 66 ◦C. Interestingly, the
temperature distribution of the magnets is the opposite of that of the coil since the middle
section of the magnets is far removed from the water-cooled shell and thus cannot easily
dissipate heat. Overall, the simulation results show that the maximum temperature of
the coil is 77 ◦C, which is far lower than the insulation breakdown temperature of 150 ◦C.
Similarly, the maximum temperature of the permanent magnet is about 66 ◦C, which is not
easy for permanent demagnetization to occur. Thus, overall, the results confirm that the
water-cooling design is sufficient to protect the motor assembly from thermal damage.
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4.4. Demagnetization of Permanent Magnets Analysis

When performing the demagnetization of permanent magnet analysis, the full rated
current is applied on the d-axis at the rotor position of 40◦ to 80◦, the simulation results of
induced voltage waveform are shown as Figure 13a. It can be observed that the change in
the induced voltage waveform in the middle part is completely driven by the rated current
applied on the d-axis. The values of induced voltage before (left part) and after (right part)
applied rated current on the d-axis are 811 V and 807 V, respectively. Figure 13b shows
the demagnetization curve of a permanent magnet of the designed PSMS (red line) and
the standard N42SH material at 60 ◦C. It is confirmed that the permanent demagnetiza-
tion phenomenon is indeed unlikely to occur during the field weakening region at the
highest speed.
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4.5. Map Analysis of Global Characteristics of Optimized PMSM

A final series of simulations was performed to examine the power, torque and efficiency
characteristics of the optimized PMSM. The number of current, current angle and speed
sampling points was set as 6, 15 and 4, respectively. In addition, the line voltage, rated current,
phase resistance and coil inductance were set as 380 Vrms, 66 Arms, 0.095 Ω and 0.087 mH,
respectively. The efficiency map calculation took into account the iron loss and copper loss
at different frequencies and the voltage drop caused by leakage inductance, but ignored the
change in temperature of the coil and permanent magnets at different speeds. The efficiency
map was calculated using a total of 360 sampling points. Figure 11 shows the simulation
results for the power and torque characteristics of the PMSM. As shown in Figure 14a, the
rated power is around 44.5 kW, while the rated speed is approximately 2250 rpm, and the
maximum speed reaches 11,250 rpm. In other words, the performance of the PMSM is
consistent with the required specification (see Table 1). As shown in Figure 14b, the maximum
loss is equal to approximately 2975 W and occurs at the maximum speed of 11,250 rpm. It is
thought that the loss is caused mainly by the eddy current loss resulting from the operation of
the motor at a 5-time frequency expansion. As shown in Figure 14c, the optimized PMSM
achieves a maximum output power of 42.43 kW. (Note that the output power map is obtained
simply by subtracting the loss from the input power, i.e., Pout = Pin − Plost). Finally, as
shown in Figure 14d, the rated torque is 151.2 N·m, which is around 0.21% smaller than the
target specification (i.e., 151.52 N·m, see Table 5). In addition, the torque produced under the
maximum speed condition is around 34 N·m and is hence approximately 13.3% higher than
the target specification (i.e., 30 N·m, see Table 5). (Note that the output torque is obtained by
dividing the output power by the speed, i.e., Tout = Pout/ωm).
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Figure 15 shows the efficiency map obtained by dividing the output power by the
input power (Pe f f = Pout/Pin). The maximum efficiency is around 97%, while the efficiency
at the rated speed is 96%, and that at the highest speed is about 93%. The efficiency of the
proposed design thus exceeds the target specification at the global operating point. More-
over, the safety factors of the rotor and permanent magnets also exceed the requirement.
Thus, the overall feasibility of the proposed optimized PMSM design is confirmed.
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5. Conclusions

The rotor design parameters of a PMSM were optimized using a PSO multi-objective
optimization algorithm based on the ALHS technique. The aim of the optimization process
was to jointly maximize the output torque of the PMSM under rated speed (2250 rpm)
and maximum speed (11,250) conditions, respectively. The sensitivity results show that
the ripple torque has the lowest total influence of 93.8% and the rated torque has the
highest total influence of 99.5%. The validity of the optimization results was confirmed by
multi-physics simulations. The electromagnetic field analysis results have shown that the
optimized design of rivet hole diameter and position results in a significant reduction in the
ripple torque at the expense of only a minor loss in the average torque. Furthermore, the
optimal design of the rotor auxiliary slot increases the cogging torque by round 1.01 N·m,
reduces the ripple torque at the rated speed to 4.8% and increases the ripple torque at
the maximum speed to 38.5%. The structural field analysis results have shown that the
minimum safety factor of the rotor assembly is 1.05 and is located at the inner corner of the
magnet. Nonetheless, the safety factor is still higher than the yield stress of the permanent
magnet itself, and hence no permanent deformation occurs. In addition, the maximum
temperature of the coil and the permanent magnet are 77 ◦C and 66 ◦C, respectively, which
is far lower than the insulation breakdown temperature of 150 ◦C. Thus, it is confirmed that
the water-cooling design is sufficient to protect the motor assembly from thermal damage.
Notably, the demagnetization of permanent magnets analysis confirmed that the permanent
demagnetization phenomenon is unlikely to occur during the field weakening region at the
highest speed. Finally, the map analysis of global characteristics of the optimized PMSM
has shown that the optimal PMSM design reduces the cogging torque and the optimized
PMSM has an efficiency of 96% at the rated speed and 93% at the maximum speed. In the
future, the optimization process will aim to reduce the moment of the inertia of the rotor
and the PMSM driver system will also be designed.
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