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Abstract: Slum/informal settlements are an integral part of a city, with a population projected
to reach 3 billion by 2030. It is also expected that the rate of waste generation will more than
triple by 2050 in the cities of low-income countries of sub-Saharan Africa. At this rate, the risk to
the environment and health of inhabitants are enormous, because the current waste management
practices are not guided by legislation on proper use and disposal. This paper proposes the conversion
of waste to energy as a solution to this problem. The aim of this study is to apply the PROMETHEE
technique with a combination weighting method to obtain the most appropriate waste-to-energy
technology for the slum/informal settlements of the Greater Karu Urban area in Nigeria. The findings
reveal that the gasification technology outperformed the other technologies, and the affordability
of electricity supply from this technology was determined by a general survey conducted on the
slum/informal settlements.
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1. Introduction

The major challenge of this era is rapid urbanization and, by the year 2050, 66% of
global population will reside in cities and urban areas [1]. In the periphery and inner parts
of the cities, slum/informal settlements exist that emerge from the influx of people who
travel to these cities to benefit from their growth and development. These settlements are
generally characterized by low-income households, with zero compliance with planning
regulations and poor access to electricity infrastructure on a daily basis [2–4].

According to the United Nations descriptive report on sustainable indicators, the
number of people living in slum/informal settlements reached about 1 billion in 2018 [1].
When cities grow and develop from the consumption of materials, energy, and natural
resources, more waste is generated, which has adverse effects on the environment [5].

The global waste generation rate is recorded as 2.0 billion tonnes of municipal solid
waste (MSW) every year and, at the rate of 0.267 tonnes per capita, it can be deduced that
267 million tonnes of solid waste is obtained from informal settlements [1,6]. By 2050,
the informal settlement population is projected to become 3 billion, which also implies
that 801 million tonnes of municipal waste will be generated; this equates to 26.7% of the
total waste projected to be generated globally (3.40 billion tonnes) [6]. In Nigeria, the total
waste generated is 25 million tonnes per year, with an average per capita generation rate of
0.55 kg per day [7].

Sub-Saharan Africa, and the eastern and southern parts of Asia, are the fastest-growing
regions for waste generation and informal settlement growth, where most of the waste
management practices are below international standards in comparison to countries in
the Organization for Economic Cooperation and Development (OECD) [8]. The problem
of waste management in the developing regions will only worsen as urbanization rates
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increase; therefore, adequate waste handling measures must be put in place to abate the
degradation of the environment. The waste collection rate in these regions is about 26% in
the cities and even less in the informal settlements. The majority of the collected waste is
either burnt in the air or disposed of in open dumpsites without following proper regulatory
standards [9–11].

In slum/informal settlements of low- and middle-wage countries, the waste is usually
collected by street sweepers, scavengers, and local waste pickers who transport and trade
waste with public and private sector municipal waste services. This is beneficial to the
overall waste collection for the area; however, general disputes can arise between the
informal waste collectors and the public/private sector when competition over waste
collection occurs, thereby leading to the loss of livelihood, which impacts negatively on the
overall waste collection rate [12]. It is for this reason that proper integration of informal
waste pickers and formal sector waste collection services should be the top priority for
municipalities, city planners, and energy policy makers.

The slum/informal settlements are often characterized by low access to electricity, so
fossil fuel energy sources such as coal, firewood, and kerosene are often used to meet the
energy demand from domestic activities, e.g., cooking and lighting in major households.
The use of fossil fuels as an energy source contributes to global warming from the release
of CO2 gas into the atmosphere, making it necessary to seek cleaner fuel options [13].

Renewable energy sources such as urban solid waste, wind, solar, and hydropower
have been identified as a means of providing sustainable energy sources for informal settlers.
The problem of intermittency associated with the use of wind, solar, and hydropower to
provide energy gives MSW an added advantage, since it is not affected by changes in
weather conditions.

MSW refers to materials generally disposed of in urban areas, which include waste
from houses, businesses, streets, and commercial and recreational centers. Generally, MSW
consists of decomposable and non-decomposable portions [14–16]. The amount of energy
that can be obtained from MSW is related to the quantity that is available and the efficiency
of the conversion pathway. Other factors such as the population size and income level
of a region or municipality are also important [17–19]. The factors that determine the
amount of energy recovered from MSW are easily controllable, hence giving it a stable and
predictable attribute as a renewable energy source to tackle waste issues, mitigate against
global warming, and produce electricity that can be assessed by informal settlers.

In this study, the authors propose a sustainable solution for managing waste in
slums/informal settlement by applying the Multi-criteria Decision Making Method (MCDM)
to select the most appropriate waste-to-energy technology.

Generally, waste-to-energy technologies utilize biochemical and thermochemical path-
ways to obtain energy from MSW in order to produce heat and electricity. These technolo-
gies include landfill gas recovery, anaerobic digestion, incineration, and gasification. These
technologies perform differently when subjected to technical, economic, environmental,
and social criteria. The evaluation of their performance under multi-criteria optimizes the
selection of the technology that best meets the requirements of the region or municipality
under analysis.

1.1. Literature Survey Connected to the Application of MCDM

The popularity of MCDM methods has seen its vast application in different categories
such as energy, business, commerce, and political sectors of the economy. In the energy
industry, several MCDM methods have been used to select the most suitable waste-to-
energy technologies. Some examples include Analytic Hierarchy Process (AHP), Analytic
Network Process (ANP), Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS), VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), Preference
Ranking Organization Method for Enrichment Evaluation (PROMETHEE), Elimination
Et Choix Traduisant la Realite, Combined Compromise Solution (ELECTREE), Decision-
Making Trial and Evaluation Labor (DEMATEL), and Grey Relational Analysis (GRA).
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The general principle applied by these MCDM methods is to evaluate and determine the
importance of the criteria by assigning different weights, which is the basis for the ranking
of the alternatives [14,20–23]. Shahnazari et al. [24] applied the TOPSIS method to select
thermochemical waste-to-energy recovery technologies that utilize municipal solid waste.
The study revealed that plasma gasification technology performed the best, followed by
the incinerator technology. Rahman et al. [25] applied the AHP method to select the ideal
waste-to-energy conversion technology for residential homes in Bangladesh, by considering
biochemical and thermochemical conversion technology options. The findings from this
study also revealed that plasma gasification technology performed the best when the
selection process was subjected to technological, economical, and environmental criteria.
The AHP method has previously been used to evaluate, appraise, and rank waste-to-energy
technologies in Moscow, Oman, and Indonesia [26–28]. Other studies focus on integrating
two or more MCDM methods to make up for the shortcoming of the other(s). Generally,
MCDM methods require the decision makers to rank criteria weights based on importance,
and in doing so the process is associated with some level of uncertainty and bias from
the decision maker. Therefore, the inclusion of fuzzy logic in the decision-making process
helps in eliminating inconsistencies associated with the judgement. Several studies have
integrated two or more MCDM methods with fuzzy logic to carry out an optimal selection
of waste-to-energy technology. Belhadi et al. [29] highlighted the importance of integrating
internal fuzzy values with AHP, VIKOR, life cycle assessment, and life cycle cost to carry
out the selection of sustainable waste technologies in Africa. The findings revealed that the
combination of incineration, chemical disinfection methodology, and ultraviolet irradiation
is the best approach for handling infectious solid and water waste. Shah et al. [30] integrated
the DEMATEL, ANP, and VIKOR methods with fuzzy set theory to select the ideal waste-to-
energy technology in Pakistan, and a decision-making framework based on the principles
and ideology of energy trilemma was proposed. Gasification was selected as the ideal
waste-to-energy technology, whereas torrefaction was the least favorable. Wang et al. [31]
proposed an evaluating system for ranking four alternative waste-to-energy technologies
in China by combining the interval value fuzzy GRA method and DEMATEL. Of the
four scenarios, anaerobic digestion was adjudged to be the best, followed by gasification,
incineration, and landfill, in order of decline. Ebadi et al. [32] applied the combination of
ELECTREE, VIKOR, and the fuzzy approach to select the ideal waste-to-energy technology
in Iran, where plasma technology was given the first rank from different scenarios of
criteria weight.

In the review of literature on the search for municipal solid waste management and
integrated MCDM techniques, nine studies highlighted the use of PROMETHEE MCDM.
Of the nine studies, six focused on the selection of waste-to-energy technologies [33–38].
Arikan et al. [34] applied the combination of PROMETHEE, TOPSIS, and Fuzzy TOPSIS to
select waste disposal methods in Turkey. In the study conducted by Herva and Roca [35],
four alternative waste-to-energy technologies were ranked firstly with the use of ecological
footprint and with MCDM. The MCDM combined AHP and PROMETHEE, alongside the
Geometrical Analysis for Interactive Aid (GAIA) [39]. The findings from the study revealed
that thermal plasma gasification was the best technology. Coban et al. [33] applied the
combination of TOPSIS and PROMETHEE I and II techniques for managing sold waste in
Turkey, and the findings revealed the importance of landfill technology. The remaining
studies applied the PROMETHEE technique for the selection of sites for the development
of MSW facilities [40–42].

The advantage of the PROMETHEE method is in its ability to carry out the partial and
complete ranking of alternatives. It also allows for the integration of subjective and objective
criteria when evaluating alternatives [43,44]. In this study, the subjective and objective
criteria were integrated into the PROMETHEE technique by applying the combination
weight method.

The MCDM methods used previously for selecting waste-to-energy technology in
Nigeria include the work of Alao et al. [14], which focused on the use of TOPSIS [23].
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Another study applied the TOPSIS technique to solve the issue of site location for landfill
gas in Nigeria [45]. Mohammed et al. [46] analyzed the multi-criteria evaluation method
for landfill sites in Nigeria. Previous work on the selection of waste-to-energy technology
in Nigeria is scarce, with TOPSIS being the most frequently used technique.

1.2. Purpose, Scope, and Contribution of the Article

This study aimed to select the most appropriate waste-to-energy for the slum/informal
settlements of the Greater Karu Urban Area (GKUA) of Nasarawa State in Nigeria.

This work’s general contribution is the implementation of MCDM in informal sec-
tor waste management practices and the development of a sustainable electricity system
for informal and slum settlers. Over the years, several studies have been carried out on
the Greater Karu Urban Area because of the significance of its rapid population growth
rate. However, the majority of these studies focus on the problem of inadequate hous-
ing and infrastructure for the inhabitants, paying no attention to energy recovery from
waste [10,11,47–51], thus prompting the need to conduct this study. To the best of the au-
thors’ knowledge, this is the first study to apply MCDM to the selection of waste-to-energy
technologies for slum/informal settlements, both in Nigeria and more widely.

The remainder of this paper is structured as follows: Section 2 presents the study
area, which includes the description of the typologies of slum/informal households and
categories of productive enterprises. The waste-to-energy technologies and the criteria
used in the selection process are listed in Section 3. The methodology is described in detail
in Section 4 and the criteria are evaluated with the use of formulas. The results of the
MCDM selection and the general survey on the slum/informal settlements are detailed in
Section 5. Finally, we conclude in Section 6.

2. Study Area

The Greater Karu Urban Area is situated between latitude 8.996456 and longitude
7.632282. It is a conurbation of hybrid formal and informal settlements, and it is approxi-
mately 28 km from Abuja, the capital city of Nigeria [47]. This makes it a strategic location
for informal workers to live and travel to and from, in order to escape the expensive cost of
living in Abuja. The population growth rate peaked at 40% per annum, giving it one of the
fastest urbanization rates in the world [47,52]. Some of the settlements include Ado, New
Karu, Masaka, Mararaba, Orozo, Karshi, Kurudu, and Uke. The informal workers resort
to erecting illegal structures in the Greater Karu Urban Area to shelter their families. The
face me-I-face you (tenement building) represents the prototype of the informal housing
structures that are prevalent in GKUA. The average number of hours of electricity supply
in the Greater Karu Urban Area (GKUA) is 5 h per day [53].

2.1. Current Waste Handling Method

Urban solid waste in GKUA includes food, plastics, paper clothes/ textiles, and wood
materials; their percentage compositions are depicted in Table 1, and the ultimate and
proximate analysis of the waste components is presented in Table 2. The current waste
handling methods in GKUA include open burning, pit dumping, and composting. In the
four informal settlements examined in this study (i.e., Ado, New Karu, Mararaba and
Masaka) see Figure 1, open burning is the most popular waste handling method. This is
followed closely by direct dumping in pits and bins, and lastly by composting [9]. The
problem with burning waste is associated with the amount of uncontrollable toxic gases
released into the atmosphere. Furthermore, the direct dumping and composting method
can also be disadvantageous as a result of land space requirements, bad odor, and other
environmental hazards when not properly controlled [7,14,54].
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Table 1. Percentage composition of waste in GKUA.

Composition Waste Code % New Karu % Ado % Masaka % Mararaba

Food Waste MSW1 31 30 36 29
Paper MSW2 6 6 2 -
Plastic MSW3 2 1 2 4
Nylon MSW4 5 4 6 8

Bottle/glass MSW5 10 4 12 12
Metals MSW6 4 8 10 8
Clothes MSW7 - - 6 6
Wood

Leather
Ashes

MSW8
MSW9
MSW10

11
-

14

8
-

12

8
-

10

7
16
8

Other waste 17 27 8 2

Table 2. Ultimate and proximate analysis of waste components in Nigeria.

Waste
Component

%
Ash

%
Carbon

%
Oxygen

%
Sulfur

%
Hydrogen

%
Nitrogen

%
Ash

%
VM

%
FC

%
Moisture

Food waste 5.0 48 37.60 0.40 6.4 2.60 5.0 21.4 3.6 70.0
Wood 1.4 48 43 0.20 5.60 1.8 0.6 67 12.4 20.0
Paper 6.0 43.4 44.30 0.20 5.80 0.3 5.4 75.9 8.4 10.3

Plastics 12 58 24.0 - 6.0 - 1.8 96 2.0 0.2
Cloth/Textiles 8.2 58.49 22.80 0.31 5.40 4.8 9.0 69 14 8

Average 6.52 51.18 34.34 0.27 5.84 2.38 4.36 65.9 8.08 21.68
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Generally, the waste hierarchy method ranks waste management options, with the
top and least priorities given to the prevention and disposal methods, respectively. The
option of recycling waste is an effective waste disposal method and is given priority over
the waste-to-energy recovery method, but only on the condition that the waste available
for collection is recyclable. Recycling avoids the need for the usage of fresh raw materials,
thereby contributing to the reduction in energy consumption, and water and air pollution.
Through recycling, global warming is contained, pollution is minimized, the environment
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is protected from the activity of deforestation, the amount of waste in landfills is drastically
reduced, and more jobs are created. However, with regards to the waste composition
in GKUA, there is a higher percentage of food waste in comparison to paper, plastic,
bottle, metal, and clothes. Even though food waste is considered a recyclable waste, the
waste separation technique has not been fully implemented in Nigeria, unlike for paper,
plastic, and other recyclables. This is a result of poor knowledge about the handling and
separation of the organic components in food waste, which often ends up in landfills,
thereby contributing to leachate formation. Furthermore, recycling food waste in the form
of compost creation to produce fertilizers is still not properly regulated by quality checks.
There are instances where food waste recycled from homes includes materials such as
cooked meat and fish, which find their way into compost vessels, thereby disrupting the
overall process of decomposition. In the context of this study, even though recycling is an
effective waste handling method, it significantly meets the demand for fertilizers from the
activity of composting, whereas waste-to-energy technologies are implemented to meet the
demand for electricity for the informal settlements of GKUA.

The importance of awareness about the segregation of waste cannot be overempha-
sized. The knowledge about waste has been proven to have a positive correlation with
waste management and collection efficiencies. Generally, different waste compositions are
deemed appropriate for the available waste-to energy technologies. The identification of
waste as either biodegradable and non-biodegradable, or as wet and dry waste, enables
the improvement in the overall collection efficiency of the waste. Wet and biodegradable
waste is selected for the use in anaerobic digestion waste-to- energy technology, whereas
dry waste is used in the gasification and incineration waste-to-energy technologies. In the
case of GKUA, the segregation of waste is shown in Table 3 [56].

Table 3. Waste classification according to the applicable energy recovery technology.

Location Anaerobic
Digestion

Landfill Gas
Recovery Incinerator Gasification

New Karu MSW1 (MSW1 + MSW2) (MSW2 + MSW3 + MSW7 + MSW8) (MSW2 + MSW3 + MSW8)
Ado MSW1 (MSW1 + MSW2) (MSW2 + MSW3 + MSW7 + MSW8) (MSW2 + MSW3 + MSW8)

Masaka MSW1 (MSW1 + MSW2) (MSW2 + MSW3 + MSW7 + MSW8) (MSW2 + MSW3 + MSW8)
Mararaba MSW1 (MSW1 + MSW2) (MSW2 + MSW3 + MSW7 + MSW8) (MSW2 + MSW3 + MSW8 + MSW9)

The selection of the appropriate waste-to-energy method with the use of PROMETHEE
will assist in adopting a sustainable means of waste disposal in GKUA. The benefit of the
preferentially selected waste-to-energy technology also extends to the provision of electric-
ity for the underserved informal settlements in this study. The electricity requirement for
the informal settlements in the GKUA was obtained with the use of descriptive statistics
from the sampling of houses and productive enterprises.

2.2. Sampling Method

The sampling of houses and productive enterprises was carried out using Cochran’s
formula, which can be obtained by applying Equation (34). The formula is used to deter-
mine the sample size. From the standard distribution table, at a 95% confidence level, a
standard deviation of 0.5, and a 5% error, the sample size was obtained as 384.

Data Collection

The selection involved random sampling of household members and owners of pro-
ductive enterprises. The primary data was collected using the sample questionnaires see
Supplementary Questionnaires S1 and S2 which were completed on the spot, rather than
via the use of emails and telephones, which are restricted due to poor Internet and tele-
phone services in these areas. The reliability of the questionnaires was validated using the
Cronbach alpha and the analysis was carried out using Microsoft Excel.
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2.3. Typology of Informal Houses and Productive Enterprises

The classification of household and productive enterprises was conducted to establish
the difference in the electricity consumption pattern. There are two typologies of infor-
mal houses and two categories of productive enterprises, which were obtained from the
survey; these are: hybrid slum/informal house (typology A), stand-alone slum/informal
house (typology B), commercial enterprise (category A), and agriculture-based enterprise
(category B).

2.3.1. Hybrid Slum/Informal House

The hybrid informal house is described as a municipal bungalow building provided
by the government with a backyard and illegally erected front-gate shacks. This is very
common in the inner parts of GKUA.

2.3.2. Stand-Alone Slum/Informal House

The stand-alone informal house is a shack or make-shift tent built on land designated
for the construction of infrastructure such as roads, electricity poles, and gas pipelines.

2.3.3. Commercial Enterprises

The commercial enterprises are seen as being most popular in GKUA, where the
majority of the slum/informal settlers engage in activities such as food vending, phone
charging services, tire repairs, pepper blending, and selling of ice blocks.

2.3.4. Agriculture-Based Enterprises

The agriculture-based enterprises are owned by informal settlers who specialize in
farming activities that include the production of milk from cows, and the cultivation of rice,
maize, and sorghum.

3. Waste-to-Energy Technologies

Generally, waste-to-energy technology is capable of converting urban waste that is
generated in the informal/slum settlements of GKUA to electricity through thermochemical
and biochemical processes in a sustainable manner.

3.1. Description of Technologies

In this study, the four waste-to-energy technologies that were taken into consideration
in the selection of the most appropriate for the GKUA are briefly described below:

3.1.1. Anaerobic Digestion (ANR)

This technology utilizes a biochemical pathway that recovers energy from waste
through the putrefaction of organic matter in the presence of microbes in an environment
with little or no oxygen to produce biogas. The biogas produced in the digester vessel
is rich in methane (about 50–75%) and (25–50%) carbon dioxide, which can be used to
generate electricity [57].

3.1.2. Landfill Gas Recovery (LFILL)

With this technology, landfill gas is produced from a landfill site in a biochemical
process that follows the same principle as the anaerobic digestion technology. The landfill
gas obtained can be used to generate electricity.

3.1.3. Incineration (INC)

This technology involves a thermochemical process where the urban solid waste is
subjected to burning at high temperatures that range between 600 and 1200 ◦C [58–60]. The
heat produced from the process can be used to generate electricity [14].
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3.1.4. Gasification (GAS)

Gasification technology is a thermochemical process that converts waste with carbon
content into syngas and other valued products at a high-temperature range between 750
to 1000 ◦C, with the aid of controlled air and steam. The syngas can be used to produce
electricity [61–64].

3.2. Criteria Description

The criteria required for selecting the most appropriate waste-to-energy technology
are based on technical, environmental, financial, and economic parameters [64]. For each
criterion, there are sub-criteria, which are described in Table 4 below:

Table 4. Sub-criteria description for the selection of the best waste-to-energy technology.

Criteria Sub-Criteria Description Type of Factor Unit

Technical Electricity
Generation (T1)

This is the yardstick used to
determine the amount of

electricity generated from waste.
Maximum/beneficial/positive. kWh

Efficiency (T2)

This measures the ability of the
waste energy technology to

convert all the energy produced
effectively.

Maximum/beneficial/positive. %

Economic Investment
Cost (EC1)

The technology that requires the
least amount of investment is

preferentially selected.

Minimum/non-
beneficial/negative. Million (USD)

Operation and
Maintenance
Cost (EC2)

The technology that has the least
cost to operate and maintain is

preferentially selected.

Minimum/non-
beneficial/negative. Million (USD)

Cost of Energy
(EC3)

The technology that produces
electricity at the least cost is

preferentially selected.

Minimum/non-
beneficial/negative. USD/kWh

Environmental CO2 Emissions
(ENV1)

This measures the amount of
carbon dioxide emitted into the

atmosphere during the
utilization of a given technology.

Minimum/non-
beneficial/negative. kt CO2eq

Social Land
availability (S1)

This criterion measures the
perception of available land

space for productive use for the
slum settlers after the

construction of a
waste-to-energy plant of any

given technology.

Maximum/beneficial/positive. Likert scale

Community
acceptance (S2)

This criterion measures the
acceptance rate by the informal

inhabitants of the given
waste-to-energy technology.

Maximum/beneficial/positive. Likert scale

3.3. Criteria Weight Determination

The MCDM applies the use of criteria weights to attribute varying levels of importance,
in order to filter the less preferred alternatives during the selection process. The significance
of this is that, the bigger the weight, the more influential the criterion. The criteria weights
determine the success of a decision-making process; however, a major challenge is the
determination of the accuracy in its measurement. Generally, the weights of the criteria can
be obtained either by a subjective or an objective method.
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3.3.1. Subjective Weight Method

Subjective weights are determined by expert evaluation. These weights express
the opinions of experts and are associated with bias and vagueness on the part of the
decision maker. Examples of subjective weighting methods include Stepwise Weight
Assessment Ratio Analysis (SWARA), Simple Multi-attribute Ranking, (SMART) [65], Ana-
lytical Hierarchy Process (AHP), Delphi, and Kemeny Median Indicator Ranks Accordance
(KEMIRA) [66–69]. The bias in the judgment of the decision maker can be attributed to
lack of experience and the insubstantial nature of the criteria. Some studies have ex-
plored the use of surrogate weights in eliciting methods to improve the decision-making
process [70–72].

3.3.2. Objective Weight Method

Generally, objective weights consider the criteria values of the data array provided in
the decision matrix. They are represented by mathematical equations, which determine
their values without the input of the decision maker [73]. They are not as common as the
subjective weight methods. Examples of objective weighing methods include Criteria Im-
portance Through Intercriteria Correlation (CRITIC) [74,75] and ENTROPY [76–78]. Other
examples include Criterion Impact Loss (CILOS) [79], Linear Programming Technique
for Multidimensional analysis of Preference (LINMAP) [80], Integrated Determination of
Objective Criteria Weights (IDOCRIW), and standard deviation [81]. The objective weights
are employed to eliminate bias by carrying out a dispersion analysis of the criteria values
in the data of the array [65].

Over the years, several studies involving MCDM made use of subjective and objective
weights separately, without the inclusion of a common formula in the decision-making
analysis. Biswajik [82] performed an analysis using Pythagorean fuzzy numbers with
the TOPSIS method to eliminate uncertainties from the decision-making process. The
AHP and entropy weights were used in a fuzzy MCDM to rank shipping companies [83].
Chung et al. [84] assessed the vulnerability characteristics of regional population size
by considering the Delphi technique and Shannon entropy as subjective and objective
weights, respectively.

3.3.3. Combined Weight (CWM)

To overcome the shortcoming of the above methods and improve the accuracy of
criteria weight determination, the integration of subjective and objective weights into one
single component was achieved using the integrated method proposed in the work of
Ma et al. [85]. The integrated weight method is also supported in these studies [86–88].
However, Jahan et al. [89] proposed the combination weighting method after criticizing
the accuracy of the integrated weight formula and noting the inconsistencies observed
with the inclusion of objective weight values. The application of the combined weight
formula can be found in these studies [90–92]. The combined weight method was tested
on other MCDMs in the work of Vinogradov et al. [92].Therefore, this study applied the
combination weighting method to obtain an accurate measurement of the objective and
subjective criteria.

4. Methodology

The methodological approach of this study is depicted in Figure 2. This section also
presents the formulas used for analysis in this study, which consisted of four subsections:

1. Evaluating the sub-criteria with mathematical expressions.
2. Determining the criteria weights using the combined weight method.
3. Application of PROMETHEE to select the most appropriate waste-to-energy technol-

ogy for the informal settlements of GKUA.
4. The sampling of slum houses and productive enterprises to determine their electricity

requirement.
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4.1. Formulas and Equations for Evaluating the Sub-Criteria

Mathematical expressions are used to estimate the quantitative criteria, whereas the
qualitative criteria (land availability and community acceptance) are evaluated with the
use of the Likert scale.

4.1.1. Waste Generation Potential

Electricity can be obtained from waste, and in this study, the waste generated in the
informal settlements of the Greater Karu Urban Area is utilized for power generation. The
Greater Karu Urban Area is located in Nasarawa State and the waste generation per capita
is given as 0.65 kg/capita/day [93]. The population of the Greater Karu Urban Area is
estimated at 2 million from the last census conducted in 2006 [11,94]. The estimated amount
of waste generated (Waste(GR)) over a specific number of years (t), can be obtained by
applying Equations (1)–(3) presented below:

WasteGR =
Pt×Wt ×365×Wfrac

1000
(1)

Pt= Po (1 + r o)
t (2)

Wt= Wo (1 + r econ)
t (3)

where recon is the per capita waste generation rate, which is linked to the gross domestic
production (GDP) of the Nigerian economy [19], ro is the population growth rate of the
country, and Wfrac is the collection efficiency of the waste. The values for recon, ro, and
Wfrac are given as 3.4%, 3.5%, and 74% respectively [14,19,95,96].

4.1.2. Evaluating the Technical Criteria

The two technical sub-criteria used in this study are the electricity generating potential
and the efficiency of the waste-to-energy plant. The quantity of electricity produced
is dependent on the type of waste recovery technology that is applied. The formulas
used to represent the amount of electricity generated from the different waste-to energy
technologies are presented in Equations (4)–(8):

GeneratedANR =
WasteGR × FANR ×MANR × LHVANR × ηANR

3.6
(4)



Energies 2022, 15, 3481 11 of 26

QCH4
=

n

∑
i=1

1

∑
j=0.1

kLO

(
Mi

10

)
e−ktij (5)

GeneratedLFILL =
QCH4

×WFrac × LHVLFILL × ηLFILL

3.6
(6)

GeneratedINC =
WasteGR×FINC×LHVINC × ηINC×1000

3.6
(7)

GeneratedGAS =
WasteGR×FGAS×LHVGAS × ηGAS×1000

3.6
(8)

PC (i) =
Generated(i)

Operation(t)
(9)

where QCH4 represents the annual methane generation from the landfill site (m3/year)
and Mi is the waste disposal index (T/year). The US EPA (United States, Environmental
Protection Agency) Land GEM model was used to estimate the value for QCH4. The values
for the methane generation rate (k) and the potential methane generation capacity Lo
were taken as 0.040 (1/year) and 100 (m3/Mg). The percentage fractions of waste utilized
for each technology are represented as FANR, FLFILL, FINC, and FGAS, respectively. The
values for the methane generation potential from organic waste for anaerobic digestion and
landfill gas recovery technologies (MANR and MLFILL) are taken as 80 and 120 Nm3/ton,
respectively [97]. The lower heating values for ANR and LFILL are the same as that of
methane gas, which is given as 37.2 MJ/Nm3 [98,99]. The value for LHVGAS is obtained as
15.3 MJ/kg [100] and the value for LHVINC is obtained as 10.4 MJ/kg from [14], and the
LHV of the waste is obtained by applying Equations (24) and (25).

The value for the efficiency of ANR is taken as 33% from previous studies [14,101,102].
The efficiency of the gasification technology is obtained as 64% [102,103], whereas that of
incineration technology is taken as 12% [104–107]. The efficiency of landfill gas recovery
technology is also obtained as 33% from previous studies [14,108].

4.1.3. Evaluation of the Economic Criteria

The economic criteria measure the cost effectiveness and affordability of the given
waste-to-energy technology to the end-user, and this is dependent on the amount of money
required to produce every kilowatt of electricity. These criteria are non-beneficial/minimum
because an alternative with a smaller value is preferentially selected over an alternative with
a larger value. The sub-criteria include the investment cost (IC), operation and maintenance
cost (O&M), and the cost of energy (COE). The sub-criteria can be obtained using the
Equations (10)–(19) presented below:

ICANR= PCANR×UCANR (10)

ICLFILL= PCLFILL×UCLFILL (11)

ICINC= WasteGR × Finc× UCAD (12)

ICGAS= PCGAS × FGAS ×UCAD (13)

where IC(i) is the investment cost of the waste-to-energy recovery technologies, PC(i) is
the capacity of the waste-to-energy plant, operating at 8000 h per year, and UC(i) is the
unit investment cost in USD/kW. The fixed O&M cost is obtained as a percentage of the
investment cost, and for ANR technology, we assume a value of 3%. The variable O&M
cost is a fraction of the production output; in this instance we use 4.2% for the ANR
technology. We also assume the values of 4%, 4.3%, and 10% for LFILL, INC, and GAS
technologies, respectively [14,104]. The value for the fixed operation and maintenance
cost for LFILL technology is obtained as 11.0% [109]. The values for UCANR, UCLFILLI,
UC INC, and UCGAS are obtained as 2200 USD/kW, 1900 USD/kW, 600 USD/ton, and
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2700 USD/kW, respectively [14,104,109,110]. The operation and maintenance cost is pre-
sented in Equations (13)–(16) as follows:

O&MANR = (0.03ICANR + 0.042 GeneratedANR )×CRF (14)

O&MLFILL= (0 .11ICLFILL+0.04 GeneratedLFILL)×CRF (15)

O&MINC = (0.03ICINC + 0.04 GeneratedINC )× CRF (16)

O&MGAS= (0 .06ICGAS+0.01 GeneratedGAS)×CRF (17)

Consequently, the capital recovery factor (CRF) is obtained using Equation (18):

CRF =
1 + Rateinf

Rateint − Rateinf
×1− (Rcrf )

t (18)

where Rate(inf) represents the inflation rate of Nigeria, which is obtained as 15.70% [111].
The value for the interest rate, Rateint, in the country is given as 11.50% [112], and t
represents the number of years for the plant project. The value for the cost of energy is
obtained using Equation (19) as follows:

Rcrf =
1 + Rateinf
1 + Rateint

(19)

Rcrf =
1 + Rateinf
1 + Rateint

(20)

where IC(i) and O&M(i) are the investment cost, operation and maintenance cost, and the
electricity generated for each technology (i) obtained using Equations (4)–(7).

4.1.4. Evaluating the Environmental Criteria

The impact on the environment from utilizing any given waste-to-energy technology
was assessed with the use of these criteria. Air pollutants such as carbon dioxide (CO2),
methane (CH4), particulate matter (PM), nitrous oxides (N2O), and sulfur (S) are associated
with the operation of these technologies. CO2 and CH4 are the main greenhouse gases ex-
amined in this study as a result of their global warming potential (GWP). The sub-criterion
is non-beneficial/minimum, meaning that high values for the emissions of greenhouse
gases places the waste-to-energy technology at a disadvantage with respect to the multi-
criteria selection process. We assume that 5% of the methane leaked out of the digester and
only 75% of the landfill gas is successfully collected, while 25% escapes into the atmosphere,
which is consistent with the guidelines stipulated by the IPCC (Intergovernmental Panel
on Climate Change) [14,113]. The CO2 equivalent measure of the greenhouse gases is used
to measure the amount of emissions from any given waste-to-energy technology, and the
values are obtained using the Equations (20)–(23) presented below:

CO2eqANR= 0.05 ×WasteGR × FANR ×MAD × ρANR × GWPCH4 (21)

where the value for the density of methane is given as 0.717 kg/m3, which is the same as
that for the ANR and LFILL waste-to-energy technologies [114]. The GWP for methane is
32 times that of CO2 [115].

CO2eq(LFILL) = 0.25 × WasteGR ×MLFILL × GWPCH4 × ρLFILL× FLFILL (22)

The CO2 emission from the incineration technology is broadly determined by applying
the IPCC guidelines for national greenhouse gas inventories [116].

CO2eq(INC) =

(
WasteGR × 1000× FINC × FC×OF ×CF×DM× GWPCO2

)MCO2

MC
(23)
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where the fossil content (FC) is obtained as 34% [117]. The oxidation factor (OF) is
obtained as 1, the dry matter content in the waste (DM) is taken as 91%, and the fraction of
carbon in the dry matter (CF) is obtained as 47.4% [118]. MCO2 is given as 44 kg/mol and
MC is 12 kg/mol; these both constitute the conversion factor [119].

CO2eq(GAS) = WasteGR×LHV(GAS)×FGAS×(E mfCO2×GWPCO2+EmfCH4×GWPCH4) (24)

The emission factors for methane and carbon dioxide from a gasification process are
obtained as Emf(CH4), 0.0000035 kg/MJ, and EmfCO2, 0.06675 kg/MJ [14]

LHV(Waste)= HHV− (9 × %H + %H 2 O) × 2.4 (25)

The ultimate analysis gives the breakdown of the elements in the HHV formula, which
consists of the elements carbon, hydrogen, oxygen, nitrogen, sulfur, and ash, which are
represented as C, H, O, N, S, and A, respectively. The values for the elements are obtained
from Table 2.

HHV = 0.3491C + 1.1783H + 0.1005S− 0.1034O− 0.015N− 0.0211A (26)

4.1.5. Evaluating the Social Criteria

The measurement of these criteria is conducted with the use of the Likert scale. The
sub-criteria are assigned numbers from 1 to 5, with 1 being the lowest score and 5 being
the highest. The measure is qualitative, so it requires the input of experts to rank the
available waste-to-energy technologies based on their performances with respect to the
score attributed to each criterion. The land availability sub-criterion is defined as the
amount of space available after the construction of any given waste-to-energy technology.
A score of 1 is attributed to a waste-to energy-technology that creates little or no space
for other productive use of land after its construction is completed. This also applies to
the community acceptance sub-criterion, for which the most accepted waste-to-energy
technology is given a score of 5.

4.2. Criteria Weight Determination

The accuracy in the measurement of the criteria weight is ensured with the use of
the combined weighting method, which prevents any bias in judgment obtained from
the objective or subjective criteria. The subjective and objective criteria are first deter-
mined separately, before the collective evaluation is conducted with the combination
weighting method.

4.2.1. AHP Method

The AHP method is the subjective method used in this study, and the steps are
described below:

(1) The first step in the AHP method is to develop a hierarchical structure with the
objective of the selection process placed on the top level, the criteria on the second
level, and the alternative waste-to-energy technologies on the third level.

(2) The second step is to create a pair-wise comparison matrix using the scale of relative
importance with respect to the objective of selecting the most appropriate waste-to-
energy technology.

(3) The criteria weights are then determined from the normalized pair-wise comparison
matrix.

(4) The value for Λmax is determined.
(5) Equation (27) is applied to check for consistency.
(6) It is confirmed that the consistency ratio is <0.1 with the use of the random index table.

C.I =
Λmax − n

n− 1
(27)
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4.2.2. Entropy Method (EWM)

The value for the objective weight is obtained from applying Equations (28)–(31):

Ej = −h ∑n
i=1 pijlnpij (28)

where the value of the degree of diversification and the objective weight vector are given
as dj and wjo, respectively.

h =
1

lnm
(29)

wjo =
dj

∑n
j=1 dj

(30)

dj= 1− Ej (31)

4.2.3. Combined Weight Method (CWM)

The objective weight and subjective weights are combined using Equation (32), where
ω(Rj) andω(X/Rj) are two independent events that represent the objective and the subjec-
tive weights, respectively:

ω
(
Rj/X

)
=

ω (R j) ∗ω(X /Rj

)
∑m

j=1ω
(
Rj
)
∗ω
(
X/Rj

)′ (32)

4.3. Application of PROMETHEE MCDM

The combined weight obtained from using Equation (32) is the criteria weight (Wj)
that is applied to the PROMETHEE technique described below:

Step 1: The first step in the application of the PROMETHEE method is to deter-
mine the criteria (gdj = 1, k) and create a matrix table of the possible alternatives for the
selection process.

Step 2: The next step is to normalize the decision matrix using Equations (33) and (34),
where Xij is the value provided by the decision maker during the selection process (i = 1, 2.,
n and j = 1,2 . . . m).

Rij =
[X ij −min

(
Xij
)]

[max(X ij)−min(X ij)]
(33)

Rij =
[max(X ij

)
−Xij

]
[max(X ij)−min(X ij)]

(34)

Step 3: Determine the preference function from the deviation of the alternatives by
pairwise comparison:

ej(a, b) = vj(a)− vj(b) (35)

where ej(a,b) represents the difference between the value evaluations of a and b for each
criterion used in the decision-making process.

Pj(a, b) = Fj[e j(a, b)
]

(36)

where Pj denotes the evaluation of one alternative a with respect to another b on each
criterion within a range of 0 to 1, with the value 1 indicating greater criteria performance.

Step 4: Determine the aggregate preference function.

π (a, b) =
k

∑
j=1

P (a, b)wj (37)
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where wj is the weight of each criterion determined by a subjective, objective, or integrated
method.

Step 5: This step involves the ranking of the alternatives, which is performed com-
pletely. The entering flow and leaving flow are obtained using Equations (38) and (39):

∅ (a)+ =
1

n− 1 ∑
xεA

π (a, x) (38)

∅ (a)− =
1

n− 1 ∑
xεA

π (a, x) (39)

The net flow outranking flow φ(a) is obtained using Equation (40):

∅(a) = ∅+(a)−∅−(a) (40)

4.4. Sampling Method Using Cochran’s Formula

The Cochrans formula is used to estimate the sample size used in the survey analysis
and it is provided below:

no =
Z2(p)(q)

e2 (41)

where no is the sample size, e is the margin of error, (p) is the standard deviation, and Z2 is
the value obtained from the standard distribution table at a 95% confidence interval.

4.5. Energy Price Comparison Using the Levelized Cost of Electricity

The levelized cost of electricity is used to compare the price of energy from the different
waste to energy technologies over their respective lifetime. The equation is provided below:

LCOE =
∑n

t=1
IC(i)+O&M(i)

(1+r)t

∑n
t=1

Generated(i)

(1+r)t

(42)

where IC(i) is the investment cost of the waste-to-energy technology, O&M(i) is the operation
and maintenance cost, and r is the discount rate. Generated(i) is the amount of electricity
generated from the waste-to-energy technology. The values for IC(t) and O&M(i) were
previously determined by using Equations (9)–(16). The values for Generated(i) were also
previously obtained using Equations (4)–(8). The number of years (t) for the plant project is
25 years.

5. Results and Discussion

This section presents the results of the selection process for the evaluation of the sub-
criteria, the criteria weight determination, the preferential selection of the most appropriate
waste-to-energy technology, and the energy requirement of the informal settlements.

5.1. Decision Matrix

The quantitative and qualitative evaluation of the sub-criteria was carried out with
the use of mathematical expressions and the Likert scale, respectively. The quantitative
analysis includes the technical, economic, and environmental sub-criteria T1, T2, EC1, EC2,
EC3, and ENV1, while the qualitative analysis was performed on the social sub-criteria
(S1 and S2). The results are presented in Table 5.
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Table 5. Decision matrix.

Sub-Criteria Alternatives

ANR LFILL INC GAS

T1 (GWh) 12.77 0.07 30,7 147
T2 (%) 33 33 12 64

EC1 (Million USD) 3512 18.07 76.34 7465
EC2 (Million USD) 618 4.8 1277 1852
EC3 (USD/kWh) 0.32 0.30 0.04 0.06
ENV1 (ktCO2eq) 176,212 1,468,400 496,500 898,425
S1 (Qualitative) 4 1 1 5
S2 (Qualitative) 3 1 1 5

The results in Table 5 show that the waste-to-energy technologies perform differently
under each sub-criterion. For the technical sub-criterion T1, GAS and INC have the highest
electricity generation potential of 147 and 30.7 GWh, respectively. The technology with
the least electricity-generating potential is LFILL. However, the investment required to
build and construct a LFILL plant is less than that for the other technologies when sub-
criteria EC1 is taken into consideration. The LFILL technology also performs the best
under sub-criterion EC2, as it requires USD 4.8 million for its operation and maintenance,
which is the lowest value required in comparison to the other technologies. The LFILL
and INC technologies perform the worst under the social sub-criteria S1 and S2. The
sub-criterion S1, which is the amount of space available for other productive uses of land
for the slum settlers, gives leverage to ANR and GAS over INC and LFILL. This is due to
the proliferation of small size ANR and GAS units for household usage in comparison to
INC and LFILL technologies. The S1 sub-criterion easily influences the S2 sub-criterion, as
there is a higher level of acceptance for ANR and GAS technologies by the informal settlers.
With respect to the environmental sub-criterion EC1, the ANR technology performs better
than the other alternatives. This is attributed to the smaller amount of carbon dioxide
it emits into the environment by the consideration of the global warming potential of
each technology. Conversely, the INC technology performs the best with the economic
sub-criterion EC3, by having the lowest cost of energy at 0.04 USD/kWh. The GAS
technology is the most expensive, costing 0.06 USD/kWh, which raises questions about its
affordability for the slum settlers, even though it shows the best performance for electricity
generation. There is clear evidence of the existing conflict in obtaining a desirable outcome
due to the performance of the waste-to-energy-technologies in terms of the different sub-
criteria. Hence, there is a need to rank the alternatives based on the importance of the
sub-criteria. This was carried out with the PROMETHEE technique and the combined
weighting method.

5.2. Normalized Decision Matrix

When applying the PROMETHEE method, the first step is to normalize the values
already provided in the decision matrix using Equations (33) and (34). The result of this is
presented in Table 6.

5.3. Criteria Weight Determination

The accuracy of the criteria weight is improved by inputting the objective weight
vector from the entropy methodω(Rj) and the subjective weightω(X/Rj) from the AHP
method into Equation (32). The results of the different weight categories are presented in
Table 7.
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Table 6. Normalized decision matrix.

Sub-Criteria Options

ANR LFILL INC GAS

T1 0.086 0 0.2083 1
T2 0.403 0.403 0 1

EC1 0.530 1 0.992 0
EC2 0.667 1 0.311 0
EC3 0 0.079 1 0.931

ENV1 1 0 0.752 0.441
S1 0.75 0 0 1
S2 0.5 0 0 1

Table 7. Criteria weights from the different methods.

Weight Method T1 T2 EC1 EC2 EC3 ENV1 S1 S2

CWM 0.231 0.028 0.220 0.049 0.227 0.087 0.095 0.015
AHP 0.123 0.078 0.117 0.051 0.285 0.155 0.161 0.027
EWM 0.240 0.047 0.241 0.124 0.122 0.072 0.076 0.074

From Table 7, the sub-criterion EC1 has the highest value for criteria weight using
the EWM method and the fifth highest value with the AHP method. In addition, the
sub-criterion EC3 has the highest value using the AHP method, but is ranked fourth with
the EWM method. This indicates inconsistencies in determining the actual criteria weights,
thereby affecting the outcome of the decision making; thus the inconsistencies are corrected
by combining the weights. The sub-criterion T1 has the highest weight measured with
the CWM, which is followed by the EC3 and EC1 sub-criteria. This strongly indicates
the relevance of the technical and economic criteria in determining the outcome of the
decision-making process. The least important sub-criteria are T2 and S2; however, the sub-
criterion S1 is more important than the environmental sub-criterion ENV1. This is because
of the highly dense area of the informal settlements, which consider the availability of land
space more important than the emissions of CO2. The aggregate preference function of one
alternative over the other is obtained by applying Equations (35)–(37). This is performed
with the use of the criteria weights determined by the CMW method, and the results are
presented in Table 8.

Table 8. Aggregate preference function.

Alternatives T1 T2 EC1 EC2 EC3 ENV1 S1 S2

ANR-
LFILL 0,019 0 0 0 0 0.087 0.071 0.007

ANR-INC 0 0.011 0 0.017 0 0.021 0.971 0.007
ANR-GAS 0 0 0.116 0.033 0 0.048 0 0

LFILL-
ANR 0 0 0.103 0.016 0.021 0 0 0

LFILL-INC 0 0.011 0.001 0.034 0 0 0 0
LFILL-GAS 0 0 0.220 0.049 0 0 0 0
INC-ANR 0.028 0 0.101 0 0.271 0 0 0
INC-LFILL 0.048 0 0 0 0.249 0.065 0 0
INC-GAS 0 0 0.218 0.015 0.018 0.027 0 0
GAS-ANR 0.211 0.0171 0 0 0.252 0 0.023 0.007
GAS-LFILL 0.231 0.0171 0 0 0.231 0.038 0.095 0.015
GAS-INC 0.182 0.0288 0 0 0 0 0.095 0.015
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5.4. Ranking of the Alternatives

The complete ranking of the alternatives is determined from the net outranking flow
value. The leaving flow and the entering flow values are obtained from the 4 by 4 matrix
using Equations (38)–(40). The results are presented in Tables 9 and 10.

Table 9. Determining the leaving and entering flow.

Alternatives ANR LFILL INC GAS

ANR 0 0.186 0.130 0.198
LFILL 0.141 0 0.047 0.270
INC 0.401 0.363 0 0.279
GAS 0.512 0.629 0.322 0

Table 10. Ranking of the alternatives.

Alternatives Net Outranking
Flow (CMW)

Ranking
(CMW) Ranking (AHP) Ranking

(EWM)

ANR −0.179 3 3 4
LFILL −0.240 4 4 3
INC 0.181 2 2 2
GAS 0.238 1 1 1

From Table 10, the results show that the most appropriate waste-to-energy technology
for slum/informal settlements is the gasification technology (GAS), which is followed by the
incineration technology (INC), using the combined weight method. The consistency in the
results is further ascertained from the use of the AHP method. The deviation in the ranking
observed with the use of the entropy weight method (EWM) proves the effectiveness of
the application of the combined weight method. The combined weight method corrects
any errors or bias obtained from the use of the subjective or objective weights by taking
into consideration the weighted sum value. The landfill gas waste-to-energy technology
(LFILL) has the lowest ranking from the application of the PROMETHEE MCDM.

5.5. Energy Requirement of the Informal Settlements

The results from the application of the PROMETHEE technique reveal that the sub-
criteria electricity generating potential (T1) and the cost of energy (EC1) are the most
influential, and are given priority over the other criteria. Due to this importance, this study
conducted a further analysis to examine the energy requirement of the informal settlements
and to determine the affordability of the gasification waste-to-energy technology.

A map showing the four informal settlements (Ado, Mararaba, New Karu, and Masaka)
is depicted in Figure 1. From the random sampling, the two typologies of houses identified
are the hybrid and stand-alone shack, and agriculture and commercial enterprises are
identified as the major productive users of electricity.

The survey questionnaire was sent to 100 respondents from each of the four informal
settlements. The total sample size of 381, which was rounded up to 400, was estimated
by applying Equation (41). A value of 0.834 was obtained for Cronbach’s alpha, which
validates the results by checking for consistency. The results of the survey are summarized
in Tables 11–14. The response from the questionnaires sent out shows that 20% of the total
participants were females and 80% of the participants were males, which suggests male
dominance in the society. The age of the participants ranged between 16 to 80 years. A
share of 49.5% of the participants are owners of category A productive enterprises, 15.5%
own category B productive enterprises, 9% are technicians, and the remainder accounts for
participants who are apprentices or have other vocational jobs. A share of 56.25% earn NGN
50,000 per month, 17.5% of the participants earn between NGN 1 and 30,000 per month,
and about 22.75% of the participants are unemployed. A share of 76% of the participants
pays NGN 4000 for their electricity per month and 12% of the participants do not pay
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electricity bills; this reflects the number of illegal connections to pre-paid and post-paid
electricity meters. A share of 9.5% of the participants pays between NGN 1000 and 4000 for
electricity per month. The conversion factors for 1 liter of kerosene and 1 kg of dry wood
are is 10 and 5.5 kWh, respectively [120,121].

Table 11. Results of the survey of the informal settlements.

Informal Settlements Income per Month
(NGN)

Average Energy
Bill/Month (NGN)

Fuel Choice
for Domestic Use

Fuel Choice for
Productive Use

Ado 50,000 4000 72% Kerosene 50% Diesel
28% Electricity 50% Gasoline

Mararaba 30,000 4000 70% Kerosene 60% Diesel
30% Fuelwood 40% Gasoline

New Karu 30,000 3000 73% Kerosene 60% Diesel
27% Fuelwood 36% Gasoline

4% Electricity
54% Diesel

Masaka 50,000 4000 75% Kerosene 38% Gasoline
25% Electricity 8% Electricity

Table 12. Results of the survey on typology A informal house.

Disaggregated Sector Basic Appliance Hourly Use (h) Power Rating (kW) load (kWh/day)

Cooking Electric stove 5 h 2 kW 10 kWh

Kerosene stove
0.25 L of

kerosene is
consumed in a day.

Applying the
conversion factor of

10 kWh per liter
2.5 kWh

Lighting Incandescent bulbs 5 h 0.1 kW 0.5 kWh
Water heating Electric boiler 5 h 2 kW 10 kWh
Refrigerating Fridge 5 h 0.3 kW 1.5 kWh

Others TV 5 h 0.05 kW 0.25 kWh

Table 13. Results of the survey on the typology B informal house.

Disaggregated Sector Basic Appliance Hourly Use (h) Power Rating (kW) Load (kWh/day)

Cooking Open fire cookstoves 1 kg of dry wood is
consumed per day

Applying the conversion
factor of 5.5 kWh per kg of

dry wood
5.5 kWh

Kerosene stove
0.25 L of

kerosene is consumed
in a day.

Applying the conversion
factor of 10 kWh per liter 2.5 kWh

Lighting Rechargeable lamps 5 h 0.015 kW 0.075 kWh
Water heating Electric boiler 5 h 2 kW 10 kWh

Other Radio 5 h 0.005 kW 0.025 kWh

Table 14. Results from the survey on category A productive use enterprises.

Disaggregated Sector Basic Appliance Hourly Use (h) Power Rating (kW) Load (kWh/day)

Food vending Kerosene stove 1 L of kerosene is
consumed per day

The conversion
factor of 10 kWh per liter 10 kWh

Ice block vending Fridge 9 h The conversion
factor of 10 kWh per liter 90 kWh

Hair Salon Hair clipper 9 h 0.1 kW 0.9 kWh

Video gaming Game console 9 h 2 kW 18 kWh

The affordability of the gasification technology, which was selected as the most appro-
priate waste-to-energy technology, was determined from the results of the survey presented
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in Tables 11–15. The levelized cost of electricity (LCOE) for the gasification technology
obtained in this study using Equation (42) was 0.039 USD/kWh. The value for the levelized
cost of energy (LCOE) of the gasification technology was validated with the studies con-
ducted on a similar community within the sub-Saharan region of Africa and Brazil [122,123].
In these studies, the values for the LCOE are obtained as 0.15 and 0.12 USD/kWh., respec-
tively The variation in the values of the LCOE obtained from these studies in comparison
with this research work can be attributed to the amount of electricity produced, which is
also a function of the plant size provided that other variables remain constant. In these
studies, the plant sizes were small, having a capacity of 200 kW, compared to 0.14 TW
(terawatts) obtained in this research work. The value of the LCOE obtained in this work
was compared to the cost of the other forms of energy for the informal settlements of Ado,
New Karu, Masaka, and Mararaba. Table 11 shows that kerosene, diesel, gasoline, and
electricity are the major energy sources for domestic and productive activities. According to
the National Bureau of Statistics, the costs of kerosene, diesel, and gasoline are 450, 311, and
170 NGN per liter, respectively [111]. By applying the energy conversion factors for fuels
and the official exchange rate of the Naira to the US dollar, the unit costs for kerosene, diesel,
and gasoline were obtained as 0.104, 0.074, and 0.045 USD/kWh, respectively [112,121].
GKUA falls under the electricity distribution franchise area from the national grid. Under
the franchise agreement with the Federal Government of Nigeria, the Abuja Electricity
Distribution Company (AEDC) is responsible for the distribution and sale of electricity to
the Federal Capital Territory, Niger, Kogi, and Nasarawa States. The electricity tariff for the
residential class under the multi-year tariff order (MYTO) is set at 53 NGN/kWh, which is
equivalent to 0.127 USD/kWh [124].

Table 15. Results of the survey on the category B productive use enterprise.

Disaggregated
Sector Basic Appliance Hourly Use (h) Power Rating

(kW)
Load

(kWh/Day)

Maize milling Maize miller 9 h 18.6 kW for a
three-phase 167.4 kWh

Rice milling Rice miller 9 h 11.2 kW 100.8 kWh
Sorghum milling Sorghum miller 9 h 5.0 kW 45 kWh
Cassava grating Cassava grater 9 h 7.5 kW 67.5 kWh

The significance of this finding is that the incineration technology is the cheapest
waste-to-energy technology, with the value of 0.043 USD/kWh as its cost of energy (COE).
When we consider the multi-criteria effect, the gasification technology was obtained as
the most appropriate. However, in comparison to the major sources of energy used in
the household or productive sector in GKUA, the gasification technology is cheaper than
grid electricity, kerosene, diesel, and gasoline. In addition, it is clean and environmentally
friendly in comparison to the fossil fuel sources that release CO2 emissions when consumed.

The average income for men and women in GKUA is NGN 40,000 per month, and the
average energy bill is about NGN 3750 Naira. The energy requirement for typology A and
B slum/informal houses is 742.5 and 543 kWh/month, respectively; see Tables 12 and 13.
This means that USD 28.95 and 21.17 are required, respectively, to pay for a constant
electricity supply from the gasification technology each month. The average income of
NGN 40,000 (USD 96) is sufficient to pay for electricity, and the remainder can be used to
pay for other needs, such as food and clothing. From the survey, 287 of the respondents
indicated they were willing to pay the same price as their current electricity bill in exchange
for a cleaner and stable electricity supply. A total of 64 respondents indicated that they
can pay for an alternative source, even if it is more expensive than the rate from their
current electricity provider. This suggests that the gasification technology is well received
and affordable for household and domestic use. The energy requirements for category A
and B productive enterprises (see Tables 14 and 15) were obtained as 3567 and 11,421 kW,
respectively, which means their required monthly payments for electricity are USD 139.11
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and 445.4, respectively, using the gasification technology. These costs can only be afforded
by productive enterprises that make enough profit; from the results of the survey, only
4.75% of the respondents earn above NGN 50,000 per month.

The significance of these findings is that the government can provide the enabling
environment for the proliferation of the gasification technology to the slum/informal
settlements in GKUA and other parts of the country. In the case when the levelized cost of
energy for a small-scale gasification plant rises to 0.1–0.15 USD/kWh, the application of
hybrid waste-to-energy technologies will be necessary to drive down the cost. Financial
support can come in the form of grants and subsidies to productive enterprises to enhance
their profitability. The general consideration of informal waste management should be
finally implemented and incorporated into the existing energy policies. Furthermore, the
policies should be adapted to include sanctions against uncontrolled burning of waste in
the slums and informal settlements.

6. Conclusions

This study evaluated the sub-criteria needed for the selection of the most appropriate
waste-to-energy technology for the slum/informal settlements of the Greater Karu Urban
Area. The results from the study showed that the gasification technology received the
highest ranking using the PROMETHEE technique. The combined weighting method
improved the accuracy in determining the criteria weights, thereby ensuring a reliable
outcome for decision making. The findings of this work also extend to the provision
of electricity for the underserved inhabitants of the informal settlements. These results
showed that the gasification technology is affordable and commensurate with income levels
for the household sector. In comparison to grid electricity, diesel, and kerosene, gasification
technology offers the cheapest and cleanest source of energy for slum/informal settlements.
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