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Abstract: To achieve the climate goals of the Paris Agreement, greenhouse gas emissions from the
electricity sector must be substantially reduced. We develop an agent-based model of the electricity
system with heterogeneous agents who invest in power generating capacity under uncertainty.
The heterogeneity is characterised by the hurdle rates the agents employ (to manage risk) and by
their expectations of the future carbon prices. We analyse the impact of the heterogeneity on the
transition to a low carbon electricity system. Results show that under an increasing CO2 tax scenario,
the agents start investing heavily in wind, followed by nuclear and to some extent in natural gas fired
power plants both with and without carbon capture and storage as well as biogas fired power plants.
However, the degree to which different technologies are used depend strongly on the carbon tax
expectations and the hurdle rate employed by the agents. Comparing to the case with homogeneous
agents, the introduction of heterogeneity among the agents leads to a faster CO2 reduction. We also
estimate the so called “cannibalisation effect” for wind and find that the absolute value of wind does
not drop in response to higher deployment levels, but the relative value does decline.

Keywords: agent-based modelling; low carbon electricity system; investment decisions; heteroge-
neous agents; value factor of wind

1. Introduction

The Paris Agreement [1] implies that emissions may have to drop by as much as half
over the next decade or two, and then reach approximately zero by the middle of the
century [2,3] (The required rate of emission reduction depends on the climate sensitiv-
ity, the temperature target as well as the assumed pathway towards the ultimate target
(i.e., the degree to which an overshoot is accepted or not [3]).

In order to achieve the climate objectives of the Paris Agreement, the power sector
must undergo a rapid transition towards carbon-neutral energy technologies over the next
couple of decades. Since investments in power plants today will shape the power system
for decades to come, understanding investment decisions in the context of current climate
ambitions is critical.

Understanding how this transition may take place requires energy-system models.
Typically, these are optimisation models that assume perfect foresight and one central
(rational) optimiser making decisions for the entire economy in pursuit of the least-cost
path that meets climate or emission constraints [4–8].

We believe such models can provide important insights. However, there is also a need
to analyse the transition through a perspective that more closely resembles the workings
of a real economy, where companies compete against one another and make investments
in the power sector based on their risk aversion and capital costs as well as the available
information, including expected electricity, fuel and carbon prices. An agent-based model
(ABM) may provide such a perspective and relevant insights into complex energy-transition
dynamics [9].
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An ABM consists of a system of interacting agents, and it includes an explicit descrip-
tion of agents’ decisions based on their (possibly limited) information about the system
(including other agents). An ABM is often referred to as a simulation technique that enables
modelling individual, heterogeneous and autonomous agents, where each agent individ-
ually assesses its situation and makes decisions on the basis of a set of rules [10]. In the
context of the energy-system transition, ABMs can provide a complementary perspective
to optimisation models.

Several ABMs have been used to study the capacity investments in the energy system
under climate policies. For instance, Chappin, et al. [11] have developed an ABM—the
Energy Modelling Laboratory (EMLab) — and modelled power companies’ investments in
generation capacity under climate policy. Agents in EMLab use past years data to forecast
future fuel, electricity and CO2 prices, and agents’ heterogeneity is represented by the
length of years that an agent used for making the forecast. Jonson et al. [12] compared the
capacity investments from an ABM with a corresponding optimization model, and found
results were similar, but that due to the limited foresight of the agent in the ABM, there are
underinvestments and overinvestments capacity in the ABM compared to the results
from the optimisation model. Kraan, et al. [13] studied energy transition pathways by
simulating decision-making in investing in new power plants. Heterogeneity in this study
is represented by the agents’ discount rates (which range from 4% to 20% in this study).
The results show that under a constant carbon-price scenario, the capacity mix of the system
stays the same over time when agents use the same discount rate (homogeneous agents),
while in the heterogenous agents case, a range of possible transition pathways are taken.
Barazza and Strachan [14] explored the impacts of agent heterogeneity on investment
decisions about power generation technologies. Heterogeneity in this study is represented
by the agent’s aim, technology preference, foresight and costs of capital. They modelled
the transitions of the UK, German, and Italian electricity sectors and illustrated the impact
of agents’ heterogeneous characteristics on the number of investments made, which may
accelerate or hamper efforts to reach decarbonisation goals.

These ABM studies find that at the aggregated system level, results relating to the
overall capacity mix and electricity output differ from cases where models only include
homogeneous agents or a central optimiser. This demonstrates that there may be significant
value to considering the fact that agents in real world electricity systems tend to be hetero-
geneous, and therefore, it may be beneficial to use ABM with heterogeneous characteristics
for exploring the energy transition.

In our previous ABM study [12], we identified how a bottom up analysis of companies’
investment decisions may provide a different perspective or results compared to an opti-
misation modelling approach, and in that way having a model that more directly reflects
decisions on liberalised electricity markets in the real world (where there is no central
optimiser making decisions about the development of the electricity system).

The purpose of with the present paper is to further develop and investigate reasonable
investment mechanisms in a simulation model of the electricity system development. In this
paper, we extend the model [12] by introducing heterogeneous agents that use individual
investment hurdle rates or individual expectations about the future carbon price.

This study also contributes to the literature by looking at one characteristic of the
agents at a time and addressing issues such as how the investment in different technolo-
gies and the dynamics of the system are affected by heterogeneity. We also analyse the
competition among agents with different characteristics, and look at if there are certain
characteristics that come to dominate the investments.

Furthermore, this study contributes to the literature by looking at how the invest-
ment decisions and the heterogeneity of the agents affect the electricity prices and output
variabilities, and how fast carbon emission declines towards carbon neutrality. We also
pay attention to how the value of wind is affected by the so-called “cannibalisation effect”
in a non-equilibrium model, i.e., that more wind power tends to undercut the value of
additional investments in wind.
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In this study, we focus on two characteristics of the agents (hurdle rates and expec-
tations of future carbon price), but we think other heterogeneous characteristics of the
agents are also important for their investment decisions, and we wish to analyse those
other characteristics in future studies. The reason that we focus on agent heterogeneity
in hurdle rates and the future carbon tax is that these two factors are central for power
companies when they make investment decisions.

When evaluating the Net Present Value (NPV) of future revenue streams of different
generation technologies, investors need to select a discount rate (here referred to as their
hurdle rate). This choice has a strong impact on the profitability of different investment
options [12,15,16]. In general, a high hurdle rate favours options with a low investment cost
such as gas-fired power plants, whereas a low hurdle rate tends to favour capital-intensive
energy technologies such as nuclear power plants and wind. However, we will in this
paper notice that systems effects may complicate this pattern.

When comparing future revenue streams of different technologies, investors also need
to estimate the future carbon price since the level of the carbon price will impact the running
cost of the fossil technologies, the merit-order and therefore impact the profits of different
technologies. A recent survey shows that companies worldwide are using (or planning
to use) the internal carbon price for their investment and business operations, and power
and fossil fuel industries have the highest proportion of companies currently using (or
planning to use) an internal carbon price [17]. (An internal price is a monetary value
on greenhouse gas emissions a company considers when making investment decisions
and operating businesses). However, there are uncertainties in future carbon price levels
(i.e., see the carbon price in the EU Emission Trading System [18,19]), and companies expect
different future carbon prices [20]. Studies show that different carbon price assumptions and
scenarios can lead to very different investment decisions (see, e.g., [21–23]). Therefore, it is
important to consider how the competition between companies with different expectations
for the future carbon tax may play out.

In Section 2 we present the model and our scenario assumptions, in Section 3 we
describe three separate cases designs (one homogeneous agent case and two heterogeneous
agents cases), and in Section 4 we present and discuss our results. In Section 5 we provide
our main conclusions.

2. Methodology
2.1. Model Description
2.1.1. Overall Structure

We develop an agent-based model of the electricity system. The agents are individual
power companies that (i) operate their power plants in an ideal electricity market and (ii)
invest in new power-generating capacity. The agents choose investments to maximise their
estimated profits (based on their expectations about the future).

2.1.2. Technologies

There are six power generation technologies: coal-fired, natural gas combined cycle
(NGCC), NGCC with carbon capture and storage (NGCC with CCS), nuclear, solar PV,
and wind power. The plants are characterised by their capacities, fuel costs, investment
costs, lifetimes, and CO2 emission intensities. The NGCC plant can be fuelled by natural
gas or biogas, a decision made by the plant owner based on which has the lower operating
cost when including the carbon tax. (For details on the parameter settings, see Table S1 in
Supplementary Materials).

2.1.3. Time Slices

When modelling the power system in which variable renewable power sources may
provide significant shares of the power supply, the model needs to address the variability
of both supply and demand over time. In our model, we divide each year into 64 time slices
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individually characterised by electricity demand and the availability of variable renewable
supply from wind and solar (for details, see Supplementary Materials).

2.1.4. The Electricity Market

We assume an ideal electricity market and that the agents do not engage in strategic
behaviour. Instead, they sell all the electricity they can generate so long as the electricity
price is greater than (or equal to) the operating cost of the corresponding plant, following
the merit order. This defines the electricity supply function at each time slice, τ, of the
year. An iso-elastic demand function determines the price, pτ , that is reached when the
electricity produced meets the demand,

qτ = q0,τ ×
(

pτ
p0

)ε
(1)

where qτ is the electricity produced and consumed in time slice τ. ε = −0.05 is the
elasticity, and the reference demand q0,τ reflects the varying demand over the year (see the
Supplementary Materials) and gives the demand for electricity when the price of electricity
equals the reference level p0. The reference demand q0,τ is chosen so that the time slices
correspond to the varying electricity demand in Germany in 2011, with p0 = 3.25 EUR
ct/kWh, following Jonson et al. [12] (In the sensitivity analysis, we have tested a case
where the electricity demand is growing over time. See Section S5.4 in the Supplementary
Materials). The carbon tax is part of the operating cost for fossil-fuel-based technologies
and thus influences the electricity supply function.

2.1.5. The Investment Decision Process

The decision process follows the following steps. First, power plants that reached
the end of their lifespan are removed from the current installed capacity mix each year.
If multiple plants are retiring in the same year, the model removes one at a time. Following
any plant removal, the agents take turns, in a randomly set order, making investment
decisions for new plants. An agent adds a hypothetical power plant (testing the range of
available technologies) to the existing capacity mix. The agent can calculate the electricity
price (see Equation (1)), production profile, and the expected annual profit of this newly
added plant for next year.

The agent knows the CO2 tax rate for the next year. Agents thus have a good estimate
of revenues and costs for the first year after an investment, even though subsequent invest-
ment decisions may alter the capacity mix and thereby change the estimated profitability.
However, the agents have limited information about the CO2 tax and the electricity prices
for subsequent periods. In the simplest setting, agents assume that both the CO2 tax and
the estimated annual profit remain constant throughout the life of the power plant. (We also
expand the model to allow for more advanced agents that have different expectations on
the CO2 tax ten years into the future, see Section 3.) The agent chooses the investment
option with the highest positive profitability index, i.e., the highest profit per invested EUR
corrected for the lifetime of the plant.

pro f itability index = NPV
I × CRF (2)

CRF = r
1−(1+r)−T (3)

where NPV is the Net Present Value of all future revenues and costs, T is a plant’s lifespan,
I is a plant’s investment cost, and r is the hurdle rate used by the agent. By multiplying the
NPV with the capital recovery factor (CRF), investment projects with different lifespans
can be compared [24,25]. (We correct for the life of the investment in order to enable a fair
comparison across technologies. However, it turns out that differences in plant lifespans in
the relevant range (say, 20 to 40 years) do not make a major difference to the results since
revenues 20 to 40 years into the future are discounted rather heavily.)
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Following an agent’s decision, all agents are informed and take the information into
account in subsequent decisions. These decision rounds continue as long as agents are
willing to invest. Then, the next plant is removed, and a new round of decisions takes
place, until all plants to be retired in that year have been removed from the capacity mix.
The newly invested plants are added to the capacity mix and start producing electricity the
following year.

As the process of “out with the old, in with the new” repeats every year, the capacity
mix keeps changing over time. In the present version of the model, agents do not take
their current plant portfolio into account when evaluating an investment. (One could
argue that a company with lots of, say, coal-fired power plants should not invest in wind
if that investment would reduce electricity prices and induce lower profits or even losses
for the coal-fired power plants. However, if the wind plant is profitable, it is likely that
another company would carry out the investment anyway, and therefore electricity prices
would drop by as much, but the profits from the plant would just accrue to some other
company. That said, incumbent energy companies may still be less willing to invest in
new technologies. In future work, we plan to consider how strategies that optimise the
profitability of a company’s entire portfolio may affect the overall development of the
power system and the performance of each company).

2.2. Carbon Tax

In the scenario investigated, we assume a rising carbon tax that is zero during the first
10 years, after which it grows linearly to 100 EUR /ton CO2 in year 50 and then stays there.

3. Case Design: Homogeneous and Heterogeneous Agents

We investigate three cases for the model set-up, a base case with homogeneous agents
and two cases with heterogeneous agents: in one, the agents apply different hurdle rates;
in the other, they instead make different assumptions about the rate of the future CO2 tax.

3.1. Homogeneous Case

In the homogeneous case, all agents are identical. They use the same hurdle rate
(8%/year), employ the same investment decision criterion, and have the same expectations
about the future. They know the carbon price for the next year. They also know the
present and already planned power generation capacity. They assume that the carbon price,
power capacity, and electricity prices that are estimated for the subsequent year remain
constant thereafter.

3.2. Heterogeneous Hurdle Rates (HHR) Case

In the second case, 25 agents use hurdle rate values between 5% and 11% per year
(with steps of 0.25%). We want to investigate how the market develops if companies exhibit
different degrees of risk aversiveness (and we assume that this is expressed by using
different hurdle rates). We will refer to this case as the heterogeneous hurdle rate (HHR)
case. In this run, all agents have otherwise the same expectations for the future as in the
homogeneous case.

Here, we assume a hurdle rate of 8%/year in the base case, but in the heterogeneous
cases, we have a range from 5–11%/yr. The base case value and the range are based on
studies by IEA [26] who reported a weighted average cost of capital (WACC) for major
power companies of around 8%/year in 2006 and a drop to around 5%/year in 2018.
IRENA [27] reports a real WACC equal to 7.5%/year for OECD countries and China,
and 10%/year for the rest of the world. The National Energy Modelling System (NEMS)
of the US Energy Information Administration estimates a WACC of roughly 7%/year
(see Figure 8 in Appendix 3. C in [28]), and a recent EU study reported that WACC varied
across the EU Member States from 3.5%/year in Germany to 12%/year in Greece for
onshore wind projects in 2014 [29].
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3.3. Heterogeneous Foresight (HF) Case

In the third case, there are 16 agents with different expectations about the future
growth rate of the carbon tax. We will refer to this case as the heterogeneous foresight (HF)
case. In this case, an agent uses the future CO2 tax rate (as per its expectation), along with
the current capacity mix (including already-made decisions), to estimate the cash flow
10 years ahead. The agents expect future CO2 tax levels Et+10(β) that increase linearly
from the known level Tt+1 in the next year (t+1) to a future level 10 years ahead (t+10),
as described by the following expression,

Et+10(β) = Tt+1 + β(Tt+10 − Tt+1) (4)

where t is the current year, and β reflects the expected growth rate of the CO2 tax, ranging
uniformly from 0 to 1.5 (with steps of 0.1). This means that agent 1 (with β = 0) believes that
the CO2 tax will not increase, and agents 2 to 10 underestimate the growth of the tax, while
agent 11 (with β = 1) expects the true future tax, Tt+10, and agents 12 to 16 overestimate the
tax. Note that the agents calculate the future electricity prices based on their expected CO2
tax. However, all agents assume that the installed capacity mix is unchanged over the next
10 years, apart from the new investment decisions that have already been taken. Linear
interpolation is used to estimate the profitability of the different options over time. In the
HF case, all agents use an 8%/year hurdle rate.

In all cases, the model starts from the stationary state at year 0 and runs for 80 years,
when the system is close to a stationary state again. Initially, there are only coal and gas
power plants, with a total capacity of 64 GW and 2 GW, respectively. The initial plants are
owned and operated by a separate company that does not take part in further investments.
These coal and gas plants have varying remaining lifetimes and are gradually removed
from the system over time. (We also test a case where there are external PV investments
from the households. See Section S5.3 in the Supplementary Materials).

4. Results and Discussion

We present our results from both the system-level perspective and the agent perspec-
tive. For the system level, we present the installed capacity, electricity price and production,
price variations, CO2 emission trajectories, and the ex-post evaluated internal rate of return
(IRR) for each investment. For the agent level, we present the individual agents’ capacity
investments and economic performances. We also compare our model results with results
from the literature or real-world examples in order to corroborate the model.

4.1. Installed Capacity

In all three cases, coal-fired power plants are gradually phased out from the capacity
mix as a result of the increasing carbon tax. Meanwhile, the installed capacities of all other
technologies increase, but to varying degrees.

This pattern can also be observed in the real world, for example, the increasing
carbon price in the EU ETS has led to a rather rapid reduction in coal used for electricity
generation (in particular over the last years), and an increasing use in variable renewable
energy [30,31]. The growth in solar and wind has historically primarily been driven by
various support schemes, but with current EU ETS prices, investments in these technologies
become profitable even without other support schemes.

4.1.1. Homogeneous Case

In the homogeneous case (Figure 1a), the installed capacity of coal starts to decline
around year 15. At that time, investments in wind starts to grow, but the installed capacity
of wind begin to decline some twenty years later due to competition from nuclear, which
then expands significantly (Figures 1a and 2a). It is interesting to note that this happens
for purely economic reasons despite the fact that the assumed levelised cost of wind is
significantly lower than that of nuclear in the model.
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Figure 1. Installed capacity in the (a) homogeneous case, (b) HHR case, and (c) HF case. In all
three cases, the capacity mix goes from coal-based to low-carbon, but the transition speed and final
mix vary.
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Figure 2. Installed capacity by technology in homogeneous, HHR, and HF cases. (a) Nuclear, (b) wind.
In the HHR case, there is significantly more nuclear and less wind. The earliest wind expansion is
observed in the HF case.

This illustrates why the levelised cost of electricity (LCOE) metric is inappropriate
when comparing the competitiveness of, in particular, dispatchable technologies such as
nuclear and gas-fired power plants with that of intermittent technologies such as wind
and solar [32]. The fundamental reason for this is that the LCOE metric does not consider
that the price of electricity varies during the course of a year and hence that different
generation technologies will receive different average revenues per kWh of electricity
produced. Therefore, in this case, when the installed capacity of wind grows to sufficiently
high levels, wind eventually begins to receive lower revenues per kWh than does nuclear
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(because they produce power at different points in time). (See more about the revenue and
value factor of wind in Section 4.2.2.)

4.1.2. Heterogeneous Hurdle Rate (HHR) Case

In the HHR case, nuclear starts to grow earlier and at a higher rate compared to the
homogeneous case (see Figure 2a). By the end of the period we have 40 GW nuclear in
the HHR case compared to some 15 GW in the homogeneous case. We also see an earlier
introduction of wind in the HHR case than in the homogeneous case. Interestingly, towards
the end of the period, the installed wind capacity is significantly lower in the HHR case
(75 GW in the homogeneous case, but 42 GW in the HHR case, see Figure 2b). The impact
of agent hurdle rate heterogeneity in the long run is thus different for wind and nuclear.

The explanation for this has two steps. First, when the model is run with heterogeneous
hurdle rates, the investments are unevenly distributed among the agents (Figure 3), and the
agent with the lowest hurdle rate (5%/year) does almost all the investing. With a low
hurdle rate among those who carry out almost all the investments, the levelised costs of
both nuclear and wind drop more than the cost of coal does, so wind and nuclear are
introduced earlier than in the homogeneous case.

Figure 3. Illustration of the installed capacity for some agents in HHR case, (a) r = 5.0%, (b) r = 5.25%,
(c) r = 5.5%, (d) r = 5.75%. The agent with r = 5% dominates the investing, while agents with r > 6.75%
make no investments.

Second, the lower hurdle rate makes the cost of nuclear drop more than for its dis-
patchable competitors—NGCC—and natural gas with CCS, and therefore nuclear takes
market shares from these technologies. Now, since wind and gas-fired power plants tend to
be more complementary to, than competitive with, each other [12,33], the installed wind ca-
pacity actually drops as a consequence of the decline of gas-fired power plants (both NGCC
and natural gas with CCS). Therefore, towards the end of the period, there is significantly
more nuclear and less wind in the HHR case than in the homogeneous case. (We conducted
a sensitivity analysis of the impact of the hurdle rate on the installed capacity of wind and
how it is related to the availability of gas-fired power plants. See Supplementary Materials
for details).

When looking at the HHR case from the agent’s investment perspective, we see that
while the agent with the lowest hurdle rates (5%/year) dominates investing, agents with
hurdle rates over 6.75%/year do not make any investments at all (see Figure 3a–d). This is
because agents with lower hurdle rates are more willing to invest than other agents, as they
have a lower requirement on future net revenues, which in turn lowers the electricity price.
This reduces returns on investment so much that agents requiring a higher return never
invest and are largely outcompeted.

Our finding here also supports the results in [13,14], where they find that with agents
applying various hurdle rates, the transition to a low-carbon system is accelerated due to
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the investments from agents that apply lower hurdle rates, and those agents take a major
share of the investments [34].

4.1.3. Heterogeneous Foresight (HF) Case

The expansion of wind and nuclear in the HF case is similar to the expansion in the
homogeneous case, and the installed capacity in these two technologies towards the end is
roughly the same as in the homogeneous case, but investments in wind and nuclear start a
decade earlier than in the homogeneous case.

However, one interesting difference is the faster phase-out of coal plants (compared to
in the other two cases) and the expansion of gas-fired power plants is much faster, and this
in turn depends on two factors: (i) the agents have 10-year foresight, so many of them
expect that the carbon tax will be higher in the future, and that prompts them to invest in
gas with CCS earlier; and (ii) some agents expect a carbon price that is even higher than
the one that eventually materialises, and this creates an even stronger incentive to act early.
These findings can be also observed in the actions taken by companies in the energy sector.
For example, the Dutch company Shell expects the carbon cost to increase to more than
$100 per tonne of GHG emissions by 2050, and this high price expectation influences Shell’s
decisions to invest in carbon capture technology (as well as investments in natural gas and
biofuels) [35].

Agents that anticipate a high carbon price dominate the overall investment activity
(but only prior to the stabilisation of the carbon price). Figure 4 shows that the agent that
expects the highest carbon price makes most of the investments during the transient phase
(years 10 to 50). This agent (falsely) believes the electricity price will be higher than the
other agents think, due to overestimating the future carbon price. However, during the
final 20 years, when the carbon price has stabilised, all agents foresee the same future
carbon price, and they all invest and gradually approach equal installed capacities.

Figure 4. Illustration of the installed capacity for some agents in HF case. (a) β = 0.0, (b) β = 1.0,
(c) β = 1.2, (d) β = 1.5. (β is the multiplication factor of expectation of CO2 tax). The agent with
β = 1.5 dominates the investing in the first 50 years; afterwards, all agents contribute to investing in
new capacities.

4.2. Electricity Price and Production
4.2.1. Average Electricity Price

The annual average electricity price increases over time in all three cases, but to
different degrees and at different speeds (Figure 5). The electricity price increases because
the growing carbon price results in higher marginal costs of the fossil plants, which sets
the market price. Once essentially all CO2 emissions are phased out, the electricity price
is nevertheless higher than in the beginning of the modelling period, since the cost of the
technologies that replaced coal are higher than the cost of coal.
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Figure 5. Average electricity prices for the homogeneous case, HHR case, and HF case.

In the long run, the electricity price is the same in the HF case as in the homogeneous
case, because the CO2 tax stabilises (and the hurdle rate is the same). However, in the
near term, the electricity price is lower in the HF case, since agents invest more heavily
in the wind as some agents believe that carbon prices will be higher than they really turn
out to be. This increases available capacity and hence lowers electricity prices during the
transient phase.

In the HHR case, due to the lower hurdle rate applied by the dominating agent,
the price increase is smaller. In this case, the agents use lower hurdle rates, so with a
lower cost of capital it becomes less costly to produce electricity, and therefore the price of
electricity drops in a competitive market.

4.2.2. Average Revenues per kWh Received by Wind—The So-Called “Cannibalisation Effect”

Several studies have found that as the installed capacity of wind increases, the value
of wind (the average electricity price received by wind producers) tends to drop [36–38].
The average revenues per kWh received by wind producers are expected to drop in absolute
terms if the wind is introduced through, for instance, an investment subsidy (this is
what is sometimes referred to as the cannibalisation effect). However, here we find that
when wind is introduced as a result of an increasing carbon tax, the revenue received by
wind generators will not drop in absolute terms but in relative terms (see Figure 6a,b).
Our results here corroborate the findings by Brown and Reichenberg [39] and Jonson
et al. [12]. The reason why the absolute value of wind does not drop is that on a competitive
market, agents will not invest in wind if the average revenues received per kWh are lower
than the levelised cost of wind. The reason why the relative value (the wind value factor)
tends to drop is that while the average revenues per KWh received by wind operators
remain roughly constant, the average electricity price increases in response to the increasing
carbon tax. Hence, the relative value of wind drops.
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Figure 6. Revenues received by wind: (a) in absolute term (homogeneous case), (b) in relative term
(all three cases).

4.2.3. Electricity Price Variations

Another important question for a transition towards a greater share of variable renew-
able energy is whether and to what extent price variations are more pronounced over the
course of the year. Studies, e.g., [40–42], have shown that the higher share of renewable
energy has increased the variance of wholesale electricity prices. Our results here show a
similar pattern.

Figure 7 shows the amount of electricity produced at different prices for the homoge-
neous case. In year 5, while coal still dominates production, we see that most electricity
is produced and sold at 3–4 EUR ct/kWh, but there is also some electricity produced at
around 20 EUR ct/kWh, associated with ~500 h of the highest reference demand. In year 25,
most electricity produced, from both wind and coal, is sold at 5–6 EUR ct/kWh. Meanwhile,
the high wind capacity can result in very low prices, ~1 EUR ct/kWh, as well as very high
prices, 25 EUR ct/kWh or above, for some hours of the year (a similar observation has been
made by Auer and Hass [43]). When agents have invested heavily in wind, there is less
incentive to invest in other technologies (because prices have been depressed), and when
demand is high and wind output is low during certain hours of the year, prices may become
very high. By year 40, the expansion of wind has led to a situation with many hours having
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a price level of less than 1 EUR ct/kWh. However, the high price spikes are damped by
the increased presence of biogas, natural gas with CCS, and nuclear power (see Figure 7
for year 80). The price variation is also presented by the 10th and 90th percentiles in the
Supplementary Materials, see Figure S6a–c.

Figure 7. Power output at different price levels for four years (years 5, 25, 40, and 80) in the
homogeneous case. Each column represents all production sold at prices in an interval [p–1, p] EUR
cent/kWh, for integer values of p. The 25 EUR cent level also collects all production from higher
prices. Each column shows produced amounts in merit order from bottom to top.

4.3. CO2 Emissions

As the electricity system shifts from a coal-based mix to low-carbon energy sources,
CO2 emissions drop from around 480 megatons per year to 5 megatons in the homogeneous
and HF cases, and to 1 megaton in the HHR case (Figure 8). The earliest emission decline
happens in the HF case.

The HF case illustrates that the uncertainty about future carbon prices may lead to
a faster transition. However, this result does not hold if “uncertainty” is interpreted as if
companies are uncertain whether the tax will increase at all and the true subsequent increase
is higher than what all the companies expected (see e.g., Figure S9 in Supplementary
Materials, where we compare the rate of emission reductions in a case where agents have a
one-year correct foresight for the carbon tax and a ten-year correct foresight).

What we have found (and estimated the impact of) is a case where the companies are
uncertain about how much the carbon tax will increase and some companies expect that
carbon tax will increase more than it eventually does, while others expect it will increase less.
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Figure 8. Annual CO2 emissions trajectory for the homogeneous case, HHR case, and HF case.

4.4. Economic Performances—Ex-Post Analysis of the Investments
4.4.1. Internal Rate of Return of Investments

Figure 9a–c show ex-post analyses of the profitability of the investment projects over
time. We compare the internal rate of return (IRR) for all investments done in the three
cases. Each dot represents an investment that was made in a particular year.

Figure 9. Cont.
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Figure 9. Internal rate of return (IRR) of investments in the (a) homogeneous case, (b) HHR case,
and (c) HF case. Except for coal, the IRRs are mainly close to the level of the hurdle rates used by
agents who make the investments.

In the homogeneous case, the IRR of coal drops rapidly from above 8% to 2% per
year. This is because the increasing carbon tax makes investments in coal-fired power
plants increasingly unprofitable. The reason why investments are nevertheless made in this
technology is that the agents do not foresee the increase in the tax. For gas plants, the IRR
declines during the first 30 years due to the carbon tax, but after switching to biogas around
year 42, the IRR goes up and exceeds 9% per year at its highest. Meanwhile, all other
investments have an IRR around 8% per year, which indicates that agents in general are
close to the target set by their hurdle rate, despite their limited foresights (the reason we
do not get exactly 8%/year is that (i) we have limited foresight so all investments are not
perfect, and (ii) we have discrete name plate capacities, which means we cannot invest to
get the exactly “optimal” solution).

The declining profitability of coal power can be observed in Germany and the EU.
Analyses have shown that the coal plants have been operating at a loss in recent years due
to the carbon price in the EU ETS and competition from renewable energies [44,45].

In the HHR case, IRRs of most investments are around 5%/year, which is the hurdle
rate applied by the agent that made almost all the investments. The IRR of coal is even
lower in this case, due to a lower electricity price.

In the HF case, during the first half of the simulation, the IRRs are much lower than in
the homogeneous case. This is due to overinvestment by the agent that expects the highest
carbon tax, which in turn yields low electricity prices during the transient phase (Figure 5).
In the second half period, when the carbon tax begins to stabilise, all agents have roughly
correct foresight, and the IRRs of wind and gas grow back to around 8%/year, similarly to
the homogeneous case.

4.4.2. Economic Performance of Individual Agents

To measure an individual agent’s economic performance, we use a performance index
which is defined as the agent’s annual profit divided by the total investment costs of all
plants it owns. Here we assume that an agent buys a plant by borrowing money from the
bank at a 4% interest rate. The annual profit is then calculated as the revenue minus the
operating costs and the annuitised capital costs, where the capital cost is calculated with
the 4% bank rate. This means that the varying hurdle rates assumed by the agents in our
model (5% to 11%) reflect different risk premiums or margins compared to the bank rate.
A positive performance index in a certain year thus means that an agent’s net revenues
cover more than the annuitised capital cost of its plants.
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In the homogeneous case (Figure 10a), the index starts at around 5%, but falls to 1%
around year 20, due to the dropping revenue from coal investments and large expenditures
on wind investments. However, the index gradually grows back to around 3.5%.

Figure 10. Individual agents’ economic performance in the (a) homogeneous case, (b) HHR case,
and (c) HF case. In the homogeneous case, the index stays positive during the whole model run,
while in the two heterogeneous cases, the index varies among agents due to their different invest-
ment behaviours.
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In the HHR case (Figure 10b), the performance varies among agents with different
hurdle rates. The agent with the lowest hurdle rate performs well as the index stays above
0 during the entire 80 years. The performance indexes of agents with hurdle rates from
5.25% to 6.5% per year show a different pattern. Their indexes are positive during the
first 15 years, then drop to negative, and stay negative for most of the period between
years 20 and 50. These agents invest in coal early on, and that turns out to be a bad
investment. The indexes return to positive during the final 30 years, thanks to the profits
from subsequent investments in low-carbon technologies. Agents with hurdle rates over
6.5%/year made no investments, so their indexes are 0.

In the HF case (Figure 10c), it is helpful to divide the discussion of our results into
two separate periods—before and after year 50 (when the CO2 tax stabilises). During the
first period, agents that expect lower CO2 prices (β smaller than 0.5) perform poorly due
to losses in coal plant investments. However, these losses are actually rather small and
largely stem from the fact that these agents did not make additional investments until
year 50. Meanwhile, agents with β values between 0.6 and 1.3 either did not invest or
invested in several gas plants (see Figure S4 in Supplementary Materials). During that
period, agents with high β values (i.e., β = 1.4 and 1.5) had already started investing in
wind, and they performed relatively well. In the second period, all agents perform equally
well because after the carbon tax stabilises, agents foresee the same CO2 tax and make the
same investment decisions.

One important and perhaps counterintuitive result is that the two agents that expect
the highest future CO2 tax exhibit the best overall performance, even though their assump-
tions were incorrect. These agents invest heavily in wind, and that turns out to be profitable
(see IRR in Figure 9c).

5. Impacts of Assumptions and Simplifications

In this section, we discuss some limitations of our model and the impact they may
have on our results. We also present some additional sensitivity analysis with respect to
these assumptions.

5.1. Type of Agents

All agents in the study are assumed to be power companies, and investments from other
types of agents are not included, for example, distributed solar PV invested by households.

We have tested a case where there are “external” investments made in solar PV to
resemble solar PV investments from households. We find that when significant (around
70 GW) exogenous PV is installed (by the households), power companies invest less in
nuclear capacity, but actually more in wind and gas, compared to the case where there is
no exogenous PV investment. This leads to less electricity generation from nuclear plants
but more from solar, wind and gas power plants. Detailed results are presented in the
Supplementary Materials, see Supplementary Section S5.3.

5.2. Electricity Demand

The electricity demand in this study is assumed to vary during the course of the year
(seasons and day and night variations) but this demand pattern is also assumed to remain
the same from one year to the other. We have tested a case where there is a 1%/year
increasing demand, and find that the installed capacity of each type of technology increases
compared to our base case scenario, but the overall pattern does not change. Detailed
results are presented in the Supplementary Materials, see Supplementary Section S5.4.

5.3. Size of the Plant

Here we tested a case with a uniform plant size of 50 MW instead of 500 MW, which
is used in this study. We find that with smaller plant sizes, there are slightly more nu-
clear and less wind and gas capacities, but the overall result is similar to the case with
500 MW plants. The reason why there is more nuclear is because nuclear has a rather
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high investment cost per MW, and a smaller plant size makes it possible to invest in
nuclear incrementally. Detailed results are presented in the Supplementary Materials,
see Supplementary Section S5.5.

6. Conclusions

In this paper, we have developed an agent-based model of the electricity system
with heterogeneous agents. Results from this study can be useful for both modellers in
the energy system community as well as scholars who investigate the low-carbon energy
system transition. Results pertaining to the dynamics of the electricity system transition
could also be in the interests of policy-makers.

We primarily analysed how investments in new generating capacity are affected by
heterogeneity and uncertainty in terms of how agents form their capital cost (presented
by the hurdle rate in this study), expectations about the future carbon price, and the
competition with other agents. We then looked at how investments in the power sector
change over time, and how this affects the capacity mix, electricity output, electricity prices
(the average and the variability), carbon emissions and profits for the various agents.

In optimisation models, there is a central decision maker that ensures that all necessary
investment decisions are made. In liberalised electricity markets, those decisions are left
for the different agents to make. One interesting feature with the type of simulation model
employed here is that it more closely mimics the workings of a decentralized electricity
market and the fact that the system properties emerges from decisions made by individual
agents that compete against one another (bottom up rather than top down). Another feature
is that we may with this approach investigate how different successful companies with
different investment decisions strategies eventually turn out to be and which investment
decision criteria that lead to either losses or a low activity.

At the systems level, we find two distinct phases of the transition:

• The first phase takes place when wind starts to increase rapidly in response to the
increasing carbon tax. This tax makes the electricity price grow, which makes invest-
ment in wind profitable. However, as the tax continues to grow, the price of electricity
tends to increase most during those time periods of the year when wind output is low
(because during those time periods dispatchable coal-based power generation is still
used in combination with natural gas fired power plants).

• This takes us into the second phase (around the years 30–40) when changes of the
profitability of future investment start to occur. During this phase it becomes more
profitable to invest in technologies that can generate electricity also during time periods
when wind output is low (and the electricity price is high). Thus, in this phase we see
investments in nuclear, gas-fired power plants with biogas and natural gas with CCS,
but also solar PV, and during this period wind capacity actually drops.

The technology mix that eventually comes to dominate the electricity system (during
phase two and thereafter, see Figure 1a–c) depends on the characteristics of agents that
make most of the investments.

In the heterogenous hurdle rate case, most investments are made by the agents with
the lowest hurdle rate. One interesting dynamic here is that once these agents start to
invest, electricity prices become lower (because of their lower cost of capital), and this then
tends to outcompete the agents with a higher cost of capital. Furthermore, the lower hurdle
rate—it turns out—leads to that nuclear becomes a much bigger player (twice as big as in
the homogenous and the heterogenous forecast case, see Figure 2a). Interestingly, it also
means that wind ends up playing a less important role—despite the fact that a low hurdle
rate is typically considered advantageous for wind (given that wind is a capital-intensive
technology). The reason for this has to do with the systems interactions that take place
between nuclear, wind and gas-fired power plants (see the discussions in Section 4.1.2).
Thus, one result from our paper is that the impact of the hurdle rate on the technology mix
is significantly more complex than what is often thought.
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In the heterogenous forecast case, it is the agents with the highest expectation for the
carbon tax that makes most investments, and that means the transition starts a bit earlier and
happens at a slightly faster rate (see the discussions in Section 4.1.3.) (see Figures 2 and 10).
However, it should also be observed that when the agents believe that the carbon tax will be
significantly higher than it really turns out to be, they tend to overinvest in carbon neutral
technologies which in turn leads to depressed electricity prices and lower profit margins
(Figures 9c and 10c).

We can hence conclude that, in the present modelling effort, the heterogeneity in terms
of variations in hurdle rates and tax expectations results in a “selection” of companies
that dominate the investment decisions. This leads to more investments in low carbon
technologies, as compared to a homogenous agents situation where all agents have a middle
value in the range of possible hurdle rates and tax expectations. This in turn speeds up the
transition towards lower CO2 emissions. In the case with homogeneous agents, emissions
drop by more than 50% once the carbon tax reaches around 50 EUR /ton CO2. However,
when we analyse the heterogeneous cases, emissions drop much faster. When the carbon
tax reaches 50 EUR /ton CO2, emissions are down by roughly 80% (see Figure 8).

Moreover, we have estimated the value factor for wind (i.e., the revenues received by
wind per kWh compared to the average electricity price, see [37]) during a non-equilibrium
transient phase. We find that although wind expands to significant shares of the electricity
system, the absolute revenues for wind per kWh do not drop (which is in line with Brown
and Reichenberg [39] who performed this in an equilibrium setting). However, the relative
value of wind drops. The relative value decline for wind and the increasing price variations
calls for policy interventions to deal with the increasing share of the variability of wind
and solar. It could include state support for an expansion of the grid, expansion of storage
technologies, and various demand side management strategies [46–48].

Supplementary Materials: The following are available online at: https://www.mdpi.com/article/
10.3390/en15010084/s1, Table S1: Assumed power plants parameters – costs and efficiencies; Table S2:
Number of hours in each of the time slice; Table S3: Values of the demand reference, solar availability
and wind availability; Table S4: Installed capacity of wind in year 80 in different set-ups in terms of
hurdle rates and gas plants availability; Figure S1a–c: Annual electricity production by technologies
in the (a) homogeneous case, (b) HHR case, and (c) HF case; Figure S2: The reference demand
level (dashed) and the dispatched power (solid) across the time slices of the year, for four different
years (years 5, 25, 40, and 80) in the homogeneous case; Figure S3: Illustration from one simulation
showing the installed capacity of agents with hurdle rates from 5%/year (top figure) to 6.75%/year
(bottom figure) in the HHR case; Figure S4: Individual agent’s financial performance (measured by
Performance Index) in the HHR case; Figure S5: Individual agents´ installed capacity (GW) over the
time period of 80 years in the HF case; Figure S6: Individual agent’s financial performance (measured
by Performance Index) in the HF case; Figure S7a–c: Electricity-price spread over time illustrated by
10th and 90th percentiles, as well as the average and median prices for the (a) homogeneous case,
(b) HHR case, and (c) HF case; Figure S8: Standard deviation of electricity price for the homogeneous
case, HHR case, and HF case; Figure S9: Annual emissions in the homogeneous case, HF case and
homogeneous 10-year foresight case; Figure S10: The system installed capacity in the HHR case;
Figure S11: Annual electricity production by technology in the HHR case; Figure S12: Installed
capacity in the HHR case in the two demand scenarios; Figure S13: Installed capacity of individual
technologies in the HHR case.
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