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Abstract: From the breakdown of the Kaplan rotor of a hydrogenerator unit and the monitored data
collected during its operation before such a failure, this work presents a post-occurrence data analysis
in which a previously developed hybrid method based on unsupervised machine learning techniques
is applied to detect and diagnose failure before a unit shutdown. In addition to demonstrating the
efficiency and capacity of the developed method in an application with real data, the conducted
analysis seeks to shed light on the events that occurred at the considered hydroelectric power plant,
helping to understand the failure mode evolution and outcome. The results of the fault detection
and diagnosis process clearly demonstrated how the evolution of failure modes took place in the
analyzed equipment. The detection of potential failures far in advance would support adequate
maintenance planning and mitigating actions that could prevent unit breakdown and the consequent
damage and financial losses.

Keywords: fault detection and diagnosis; Kaplan turbines; rotor blades failure analysis; moving
window principal component analysis; MWPCA; Bayesian networks

1. Introduction

The use of renewable energies and more efficient technologies have become a current
solution to meet energy demands while accommodating the decarbonization targets es-
tablished in the Paris Agreement of 2015 [1]. Among the low-carbon electricity generation
technologies, hydropower stands out by producing more than all other renewables-based
generation combined, with an installed global capacity of more than 1300 GW and having
provided nearly 4500 TWh of power generation in 2020, which corresponds to one-sixth of
global electricity generation [1,2].

Furthermore, given the rise of intermittent clean energy sources such as wind and
solar, the role of hydropower is shifting to the most powerful and reliable tool capable of
stabilizing the electrical grid [3]. The variable demand in the energy market, as well as the
limited energy storage capacity of the electrical system, require great flexibility in the opera-
tion of Hydroelectric Power Plants (HPP) which, unlike thermoelectric plants, can start-up,
increase, and decrease the power output very quickly, allowing prompt adjustments to
changes in demand and to compensate for fluctuations in the supply of other electricity
sources. Consequently, hydroelectric generators are often operated in a wide range of
regimes, which ends up creating additional stress to their components [2,4]. Although
HPPs are considered extremely robust facilities, they are not immune from unexpected
serious incidents, which end up generating long periods of downtime, considerably high
restoration costs, and sometimes representing a serious threat to the life of Operation and
Maintenance (O&M) personnel [3,5].
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Among all the subsystems and components of a hydroelectric generator, the turbine is
probably the one that suffers the most from such aforementioned variation in operational
regimes. Basically, there are four main failure modes identified in the literature for a
hydroelectric generator turbine: cavitation, erosion, fatigue, and material defects [5]. While
the combined effects of sediment erosion and cavitation are the most frequent cause of faults
in hydraulic turbines (particularly Kaplan turbines), failures resulting from material defects
are considered very rare. Both erosion and cavitation are failure modes that generally
develop slowly, bringing relatively mild consequences if properly monitored. On the other
hand, material failures can have severe consequences since they often do not allow the
previous monitoring of their development and thus occur suddenly.

Having a higher occurrence rate than material defects and consequences much more
severe than erosion or cavitation, fatigue may be the failure mode with the higher risk
priority among the four failure modes considered. Turbine components that are subjected
to repeated alternating or cyclic stresses below the normal yield strength fail progressively
due to the development of cracks. The main source of vibration in a hydraulic turbine is
the turbulence of the water flow in the turbine blades and eventually, the occurrence of cav-
itation. The resulting cyclic stresses in the turbine blades end up being transferred to other
components because of physical interconnections, causing deformation cycles in practically
all turbine components. Furthermore, an overloading of the already affected parts can
result in an abrupt failure of the component, making the issue even more serious during
operational transients, i.e., machine starting, synchronizing, load changing, shutdowns,
load rejections, tripping, failures, or over-speed [5,6].

Faced with the risk of such incidents and aiming to maintain the continuous supply of
electricity with minimal operating costs, maintenance activities become extremely relevant
and shall be managed to avoid the breakdown of critical components. The most appropriate
techniques and the most efficient tools shall be considered to provide the necessary support
to maintenance teams in this endeavor, since effective management and maintenance
contribute to mitigated physical assets’ risks and business strategy [7], while failures in the
processes can be a consequence of poor maintenance [8].

Preventive Maintenance (PM) and Condition-Based Maintenance (CBM) are the most
commonly used strategies for maintaining HPP equipment. While the former has proven
to be a very effective maintenance method in this type of application, being the basis of
most HPP maintenance programs, the latter has gained more prominence in the recent
decades, focusing on determining the status of individual components or systems through
condition monitoring. In the view of experts, the combination of these two strategies offers
the most comprehensive and efficient solution for the maintenance of HPPs [9].

Nevertheless, maintenance techniques continue to evolve, and new tools are available
every day, such as machine learning techniques, used to assist in the decision-making
process. The role of CBM is fundamental for maintenance planning improvement and the
ability to detect potential failures in advance is a key point in this matter.

It is important to have in mind however, hydrogenerators are part of a class of
equipment whose access to previously labeled data under fault conditions is generally rare,
expensive, or very difficult to obtain. Hydrogenerators are usually customized equipment,
designed and built according to the installation that will be carried out, and their projects
are rarely reused in different HPPs. Even units in the same plant do not have identical
behavior, which means that the development of a certain failure mode does not occur in
the same way on different machines.

Due to such features, generally only operational data collected under healthy and
certain operational conditions is available, making unsupervised methods, in particu-
lar data-based multivariate statistical methods such as Principal Component Analysis
(PCA), Partial Least-Squares (PLS), Independent Component Analysis (ICA), and Bayesian
Network (BN), more suitable for fault detection and diagnosis in these cases [10,11].

Still, no single method is considered capable of bringing together all the desirable
characteristics that a complete approach must contain, such as rapid detection and diagnos-
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tic capability, isolability, robustness, adaptability, and multiple fault identification, among
others, driving the development of hybrid solutions, in which two or more methods are inte-
grated, complementing and overcoming the limitations of single method strategies [12,13].

In this context, the authors of this work have recently published an article in which a
hybrid framework to automate Fault Detection and Diagnosis (FDD) was proposed. FDD
is a very important process in CBM strategy, directly influencing maintenance planning
and decision making, being a challenging field that has encouraged the development of a
wide range of methods and heuristics [14–18].

The proposed framework is based on a combination of two unsupervised machine
learning techniques—an extension of the Moving Window Principal Component Analysis
(MWPCA) and the Bayesian Network (BN) [12]—that was validated through a case study
considering simulated data from a simplified model of a hydrogenerator from a Brazilian
HPP, being able to demonstrate the theoretical applicability of the method in a complex
engineering system. However, despite the positive results obtained from the analyzed case
study, an application with real data was still needed to fully demonstrate the capability of
the method.

From such a premise, the present work seeks to verify if the previously published
method is capable of correctly detecting and diagnosing a real fault and assess how far
in advance this process can be carried out. Furthermore, given the opportunity to better
understand the failure mechanisms of hydrogenerators, a discussion about the failure
mode development that occurred is also held.

At the beginning of 2020, a severe breakdown of the Kaplan rotor of a hydroelectric
generator unit installed in a Brazilian HPP occurred, causing, in addition to a significant
cost for its recovery, an inoperative period that lasted until the second half of the same
year. The failure occurred during the unit startup and without any prior evidence. Both
the monitoring and diagnosis and the Supervision and Data Acquisition (SCADA) systems
installed at the plant did not indicate, either during the machine startup or during its
steady-state operation in the months that preceded the occurrence, any variation in the
monitored parameters that could lead the plant’s O&M team to conclude that they were
facing a potential failure.

However, due to the continuous monitoring and storage of several process variables
made by the SCADA system, a post-occurrence data analysis could be performed. This
analysis, considered the core contribution of the present work, sought to detect and di-
agnose the possible failure modes that were ongoing in the unit, being carried out by
applying the unsupervised machine learning hybrid method previously developed by the
authors [12].

The remainder of this work is organized as follows: Section 2 is dedicated to Materials
and Methods, presenting both the system and failure descriptions, an overview of the
hybrid method applied to the data analysis, and some results and analyzes previously ob-
tained with the method presented under simulated conditions; in Section 3, the monitored
data analysis with the fault detection and diagnosis is shown; and finally, in Section 4, the
conclusions are presented.

2. Materials and Methods
2.1. System Overview and Failure Description

Hydroelectric generators are equipment whose main function is to transform the
potential and kinetic energy of a flow of water into electrical energy, being dependent on
two key parameters to perform such task: the available water head, i.e., the height that the
water has to fall, and the amount of water flow. These parameters, which are related to the
water source available at the plant’s installation site, define the design and selection of the
turbine for a hydrogenerator [5].

Conventionally, there are two broad categories of hydraulic turbines: impulse turbines,
which include the Pelton, Turgo, and cross-flow designs; and reaction turbines, whose
most widely used designs are, in turn, Francis, Kaplan, and propeller. A third relatively
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new category, which has been increasing in importance recently, is the Very Low Head
(VLH) hydropower turbines, which include the axial flow VLH designs and water current
turbines [19]. The recent application of VLH hydropower turbines is in line with the
development of new technologies and recent efforts to increase and make the operating
range of hydraulic turbines more flexible, in addition to minimizing the environmental
footprint of hydroelectricity. In this path, new concepts have been incorporated into
the traditional use of hydroelectricity, such as variable speed hydropower generation,
underwater and underground pumped-storage hydropower, and the use of pumps as
turbines in water networks [20–25].

Generally speaking, the operating regime of a hydroelectric generator can be classified
as steady-state operation and transient-state operation. When in a steady-state condition,
the unit operates at a constant head, speed, and power output. The forces acting during
this condition tend to be constant in magnitude, direction, and frequency. However, due to
abnormalities such as excess pressure pulsations generated in the inlet tube, cavitation, or
assembly defects such as misalignments, among others, random non-periodic loads may
arise. On the other hand, the operation of a unit during transient conditions occurs when
there is a change in head, output power, or flow. In these conditions, induced vibrations
do not follow a single pattern, changing their magnitude, direction, and frequency as a
function of the water flow in the turbine [6].

Note that the induction of stress in the components of a hydrogenerator can occur
both in a steady-state and in a transient regime and not only during the construction and
assembly of the unit. Such conditions can be aggravated by the presence of other failure
modes, as well as by the constant variation of the generated power, or frequent starts and
stops. Furthermore, some turbine types may be more susceptible to failures due to stress
fluctuations, both due to their design and operating mode or due to a greater number of
elements sensitive to induced vibrations.

Propeller-type turbines, such as Kaplan turbines, fall into this category. Kaplan
turbines are designed to operate with a small head and high-water flow [5]. The heart
of a Kaplan turbine is the drive mechanism for its rotating blades. The rotor of this type
of turbine normally has a rotor hub, in which the rotor blades are coupled, and where
the Kaplan mechanism, responsible for the movement of the blades, is located. In this
way, the rotor blades can be adjusted to an optimal angle of attack for maximum use of
the water flow. This adjustable pitch feature of Kaplan turbines allows efficient operation
of this type of turbine over a wide net head range, which can be very useful in sites
subject to seasonality that influence the dam water level or the river flow, in the case of
run-by-the-river installations such as the one discussed in this work.

Figure 1 presents a schematic representation of a hydrogenerator overview (a) and the
Kaplan turbine mechanism main components (b).

The positioning of the rotor blades is controlled by the Speed Governor (SG) system,
being carried out in conjunction with the opening of the wicket gate (guide vanes), so
that a certain guide vanes’ opening corresponds to a certain inclination value of the rotor
blades. Having as its primary function to control the shaft rotation speed by regulating
the available water flow in the turbine as a function of the generator output power, the
SG is largely responsible for maintaining the synchronism of the hydroelectric generator
to the interconnected power grid. To fulfill this function, the SG continually makes small
adjustments to the opening of the guide vanes and the rotor blades’ pitch angle, even in a
steady-state condition.

In this way, if there is any defect in the wicket gate or turbine blades drive mechanisms,
such as looseness, deformations, excessive friction, or locking of moving parts due to the
presence of residues, the SG will seek to compensate for such issues, and may significantly
increase the loads on its components. In the long run, even small defects of this nature can
become big issues, leading to machine failures or even breakdowns if they are not detected
and repaired in advance.
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Figure 1. Hydrogenerator overview (a) and Kaplan turbine mechanism components (b).

In the case of the unit analyzed in this work, the problem remained as a hidden fault
for at least 5 months, as will be detailed in Section 4, until the unit broke down during a
startup. More precisely, the damaged items that led the unit to its failure were the blade
link and the pin that connects it to the blade leaver. The latter, even with a diameter of
approximately 2 inches, underwent a complete shear in its transverse section.

Figure 2 presents the blade link and the sheared pin front view (a) and back view (b),
in which the pin failure is clear.

Figure 2. Blade link and sheared pin: front view (a) and back view (b).
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According to reports from the HPP engineering team and the SCADA system data, on
21 January 2020, around 7:00 p.m., the unit’s startup operation began. The unit reached 40%
of its maximum power around 9:00 p.m. on the same day and remained in this condition
until 10:00 p.m., when it started to have its power reduced and at 2:00 a.m. on 22 January,
had a complete shutdown.

It should be noted that from 22 December 2019, to 21 January 2020, the analyzed gen-
erating unit remained out of operation for reasons related to the plant’s dispatch schedule,
when other units supplied the energy demand. In the period preceding 22 December 2019,
in which the unit remained in operation, no anomaly was observed, except for a slight
variation in the vibration pattern perceived by the plant’s maintainers team due to the noise
emitted by the machine during November 2019. However, no further action was taken
since such variation was not considered as an indication of any problem and the generating
unit did not have its operation interrupted for this reason at that time. Moreover, as the
vibration measurements of the monitoring and diagnosis system were not fully functional
during this period, no more detailed analysis could be performed.

After the equipment shutdown, the failure could be immediately associated with the
SG system. However, the extent of damage could only be assessed after inspection and
disassembly of the equipment, during which a hot spot, probably caused by a short-circuit
in the rotor core could be additionally verified. Such fault was unrelated to the generating
unit’s SG failure and would be a second failure mode under development in the unit,
which, being in an incipient condition, had not been detected previously either.

In circumstances in which two failure modes were identified in simultaneous develop-
ment in the generating unit, one of which caused the equipment breakdown, a posteriori
analysis of the data collected by the SCADA system proves to be valuable, mainly because
no signal of alert or alarm has been generated during unit operation. In addition, given
the difficulty of obtaining real data that show the variation in the behavior of equipment
such as a hydroelectric generator as a function of a failure mode, the analysis of such data
becomes a great opportunity to verify if an FDD approach based on machine learning
methods would be able to detect and diagnose faults before the machine breaks down. For
a better understanding of the method and the found results, the next subsection presents
the fundamentals of the applied FDD method.

2.2. Fault Detection and Diagnosis Method’s Fundamentals

The method applied in this work was developed from a hybrid framework whose
purpose is to automate the FDD process based on two unsupervised machine learning
techniques: an extension of the Moving Window Principal Component Analysis (MWPCA)
method and the Bayesian Network (BN) [12]. This framework has three main stages: the
system study, the fault detection process, and the fault diagnosis, as presented in Figure 3.

It is proposed that the system study is carried out from a sequence of four tasks
in which the system’s knowledge base, necessary for the method execution, is built. In
this step, the system components that will be analyzed are defined, the failure modes of
each component are identified, which must be correlated with the monitored variables
(establishing the detectability of the failure modes), and the information related to the
failure modes considered must be collected. In this last task, data such as the failure rate
and the moving window necessary to observe the progression of symptoms, intrinsic to
MWPCA and directly related to the observability of failure mode symptoms and how they
are reflected in the monitored parameters, are obtained.

In the framework’s second stage, the fault detection process is carried out. It includes
four scripted tasks designed to automatically run the fault detection process from a com-
puterized system. These tasks are the definition of clusters (composed of a certain number
of monitored variables grouped to allow their combined analysis), the construction of the
MWPCA-based method input data matrices, the execution of the data analysis, and the
categorization of the results obtained from the detection method. At this stage, based on
the system and the characteristics of the failure modes, the first scripted task defines the set
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of monitored variables related to each failure mode. Since an MWPCA-based method is
used for fault detection, it is necessary to define a moving window with a fixed length that
limits the number of samples analyzed and monitors the variation of data over time [26].
Furthermore, it is necessary to define a reference date from which a time window (the
same one used in each cluster) is considered in such a way that the analyzed system is in a
healthy and stable condition.

Figure 3. Fault Detection and Diagnosis Method.

The algorithm of the next two tasks, the construction of the input data matrices, and
the execution of the detection method is detailed by the authors in Melani et al. [12]. The
result of these tasks consists of a vector of eigenvalues with a dimension equal to twice the
number of analyzed variables. Each element of this vector is normalized by the value of
the sum of all elements, being the weight of each principal component regarding the total
variability of the analyzed data, and the three highest values (called PC1, PC2, and PC3)
are considered for the next task.

The last task of this stage, the categorization of the results, is responsible for compiling
the current cluster states as an output data object of this process. The possible states
for each cluster in the script are “true” or “false”, being the input to the fault diagnosis
process. Thus, this task consists of transforming the results of the PCA algorithm into a
Boolean value, which characterizes whether the method detected any significant variation
in the monitored data for each cluster, i.e., the result of the detection process is a Boolean
vector with as many elements as the number of clusters analyzed (being at least the same
number of failure modes considered). This transformation consists of verifying the values
of PC1, PC2, and PC3 using established limits from a historical series in which the system
is within a normal operating condition. If two values, among the three analyzed, exceed
their respective limits, the detection result is “true”, or otherwise, “false”.

The fault diagnosis process starts with the construction of the BN graph based on the
system information acquired in the first stage of the framework. Two types of nodes must
form the graph of the BN: the parent nodes, which represent the failure modes, and the
child nodes, which represent the clusters. As described earlier, the number of clusters is
greater than or equal to the number of failure modes considered, causing the BN to have at
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least twice as many nodes as the number of failure modes under study. Each BN node will
have two states, “true” and “false”. For nodes related to failure modes, the probabilities
of these states indicate the probability of whether the failure has occurred or not. For
nodes referring to clusters, on the other hand, these probabilities indicate the probability
of detecting a variation in the monitored data. In the construction of the BN, it is also
necessary to verify the relationship between the monitored variables, the failure modes,
and the clusters. If the observation of a variable is influenced by a certain failure mode, the
node related to this failure mode must be connected by an arc to each node that represents
a cluster that contains the variable in question. Figure 4 presents an example of a graph of
a BN. In this example, the behavior of variables in Cluster 1 is influenced by Failure Modes
A and B, while variables in Cluster 3 indicate symptoms of Failure Mode C only. On the
other hand, Cluster 2 variables are influenced by the three failure modes simultaneously.

Figure 4. Example of a Bayesian network graph.

The BN inference can be performed by calculating the posterior probability of a failure
mode being true using as input the current clusters’ states. Finally, the process ranks the
most likely failure modes to occur based on the posterior probability. Then the BN inference
can be performed by calculating the posterior probability of a failure mode being true
using the states of the current clusters as input. Finally, the process ranks the most likely
failure modes to occur based on the calculated posterior probability.

2.3. Method Previous Results

Before applying the method presented in this work in a real industrial situation, it was
compared with other similar methods found in the literature from theoretical requirements
and validated from simulated data, as seen in Melani et al. [12].

The comparison of the method to other recent FDD hybrid approaches was performed
based on four selected properties: the modeling approach, the necessary input data, the
method output, and some additional relevant features. In this way, according to its model,
each evaluated method can be classified as supervised data-based (M1), unsupervised
data-based (M2), physics-based (M3), or expert knowledge-based (M4). In turn, concerning
the necessary input data, the methods can be classified as reliability data-based (I1), when
reliability data are used, such as the failure rate of each failure mode; previously labeled
monitoring data-based (I2), when data collected previously with the system under a fault
condition are needed; or current monitoring data-based (I3), when current monitored data
are used. Regarding the model output, the methods can be classified as deterministic (O1),
when the diagnosis is obtained deterministically, i.e., the method only defines whether or
not a certain failure mode is in progress in the analyzed system; or probabilistic (O2), when
the method has as output the likelihood of one or more failure modes being in progress
in the analyzed system. Finally, regarding the additional features, the methods can be
classified according to the ability to track temporal variations of the monitored system
over time (F1) or the ability to detect and diagnose failures not previously observed (F2),
i.e., potential failure modes that may occur in the analyzed system but which were not
necessarily observed in the operational history of the equipment in question.
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On the other hand, in addition to the method applied in this work (MWPCA-BN),
the methods analyzed and compared were: the Non-Linear Auto-Regressive Neural
Network Model with Exogenous Inputs (NARX) [27]; the Naïve Bayes Classifier com-
bined with BN and Event Tree Analysis (NBC-BN-ETA) [28]; the Multivariate Expo-
nentially Weighted Moving Average Principal Component Analysis combined with BN
(MEWMAPCA-BN) [29]; the PCA, BN, and Multiple Likelihood Evidence combination
(PCA-T2-BN with MLE) [30]; the Ensemble Empirical Mode Decomposition combined with
PCA and Cumulative Sum (EEMD-PCA-CUSUM) [31]; the Residual PCA combined with
BN (PCA-R-BN) [32]; the PCA combined with fuzzy theory, data fusion, and BN (PCA-
Fuzzy-BN) [33]; the traditional PCA combined with BN (PCA-BN) [34]; the ICA combined
with BN (ICA-BN) [35]; Control Charts combined with BN (CC with BN) [36]; and the
model-based approach with the Simulation Abnormal Event Management (SimAEM) [37].

The results of this comparative analysis are presented in Table 1.

Table 1. FDD hybrid methods comparison results.

FDD Methods
Approaches Inputs Outputs Features

M1 M2 M3 M4 I1 I2 I3 O1 O2 F1 F2

MWPCA-BN -
√

-
√ √

-
√

-
√ √ √

NARX
√

- -
√

-
√ √ √

- - -
NBC-BN-ETA

√
- -

√
-

√ √
-

√
- -

MEWMAPCA-BN
√

- - - -
√ √

-
√ √

-
PCA-T2-BN with MLE -

√
-

√
- -

√
-

√
-

√

EEMD-PCA-CUSUM
√

- - - -
√ √ √

- - -
PCA-R-BN -

√
- - - -

√ √
- -

√

PCA-Fuzzy-BN -
√

-
√

- -
√

-
√

-
√

PCA-BN -
√

-
√

-
√ √

-
√

- -
ICA-BN -

√
-

√
- -

√
-

√
-

√

CC with BN -
√

- - - -
√ √

- -
√

SimAEM - -
√ √

- -
√

-
√ √

-

It can be seen from the results presented in Table 1 that two-thirds of the methods can
provide a probabilistic diagnosis, which can be especially advantageous for subsequent
decision making by maintenance teams. Half of the methods considered are capable of
diagnosing failure modes that were not previously observed in the analyzed system, and
only a quarter are those capable of handling nonstationary system data, which is a relevant
resource for diagnosing failures in dynamic systems such as hydrogenerators. However,
only the method applied in the present work presents all these properties simultaneously,
making it the most capable method to detect and diagnose different faults in dynamic
engineering systems among the verified approaches.

The ability of the proposed method to detect and diagnose different faults in a dy-
namic engineering system could be verified from simulations previously carried out by
the authors. Considering a simplified model of a hydrogenerator, the framework was
implemented and three different failure modes were considered: “generator shaft excessive
vibration”, “stator premature degradation of copper insulation”, and “temperature sensor
of heat exchanger exit (hot) water does not indicate the actual temperature value”.

To verify the accuracy of the method, 1000 simulations were performed for each of
these three failure modes. In each simulation, 350 hours were considered with the system
modeled in a healthy condition and 650 hours with the system in a fault condition. Two
indices were calculated from such simulations: the Specificity (SPE) and the Sensitivity
(SEN) [38]. While the SPE focuses on observations made with the system in a healthy
condition, checking the number of true negatives (diagnoses performed with the system
in a healthy condition whose result does not indicate any fault in the system), the SEN
refers to observations made under fault conditions, verifying the true positives (diagnostics
performed with the system in a fault condition whose result correctly indicates the presence
of a fault in the system). The higher the SPE and SEN values, the more accurate the method.
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Furthermore, a high value for the SPE also indicates a robust and reliable method, since in
this case, the false alarm rate would be consequently low.

The results obtained indicated a value for the SPE of 0.73, that is, in 73% of the time
the system was in a healthy condition, it was correctly diagnosed. On the other hand, the
SEN value reached values greater than 0.5 for all three simulated failure modes, reaching
a value of 0.85 for the case of the temperature sensor fault. This value would indicate
that in only 15% of the time this failure mode was evolving in the system it would not be
correctly diagnosed.

Despite the positive results obtained from the simulations, the application of the
method under real data conditions was still necessary. Thus, the failure presented in this
work and its analysis became a great opportunity for the validation of the method under
real conditions, as will be presented in the next section.

3. Analysis and Discussion

As previously presented, the first task of the FDD process built from the proposed
framework is the definition of the system components that shall be analyzed. In this
case, considering that the failure of the evaluated unit is associated with the SG and, as
the functionality of this system is directly associated with the turbine and the generator,
the three main systems selected were the turbine, the generator, and the SG. Another
determining factor for establishing the subsystems and components considered in the
analysis was the availability of monitored data. Since it is not possible to carry out the FDD
process of subsystems and components without their monitoring data, only monitored
equipment can be analyzed.

Furthermore, the knowledge of failures that previously occurred in the three main
systems, especially concerning the a priori probability of these failures, used as an input to
the diagnosis process was a determining factor. If any considered failure mode does not
have such information, it must be estimated, which inevitably brings a significant increase
in the uncertainty of the result.

Thus, based on these considered criteria, the following functional tree, shown in
Figure 5, was established.

For the evaluation proposed in this work, a period of one year was considered for the
analysis of monitored data, between 1 January 2019, and 1 January 2020. The choice of this
period is based on the search for the incipient identification of the fault, i.e., it is considered
as a premise that the failure mode presents itself gradually and during the months before
the failure of the unit itself (on 22 January 2020).

Sixty-four measurements were considered as inputs to the fault detection process,
plus the active power signal as a determinant variable of the operating condition of the
generating unit. Only data that were collected when the unit output power was between
50% and 100% of its maximum value were considered, since most of the time that the
unit operated with output power lower than 50% of its maximum value, it was in a
transient regime (generally a unit startup or shutdown). Such unstable conditions could be
mistakenly identified as fault conditions by the FDD method since the detection process
references only data collected in a healthy, stable, and steady-state machine condition [12].
In other words, it is a requirement for the application of the FDD method to use only data
collected with the unit in a steady-state condition.

The 64 monitored variables were organized into 10 clusters, used as input in the fault
detection process. Each cluster was analyzed individually and its results were applied in the
diagnosis process. Furthermore, 8 different failure modes that could affect the functioning
of the chosen subsystems and components were considered. Table A1 in Appendix A
presents the list of 64 measurements and their relationship with the 10 clusters considered.
Table 2 presents the considered failure modes, the components to which such failure modes
are associated, the number of failures observed in such components considering the last
5 years, the prior failure rate of each failure mode, and the clusters associated with each
failure mode.
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Figure 5. Functional tree.

Table 2. Failure modes and clusters relationship.

Components Number of Observed
Component Failures Failure Modes Prior Failure Rate

(Month−1) Cluster-ID

Guide vanes 2 in 5 years Inappropriate guide vanes position 0.0333
Cluster #1
Cluster #8

Rotor Kaplan 1 in 5 years Inappropriate rotor blades position 0.0167
Cluster #1
Cluster #9

Oil reservoir 1 in 5 years Low oil level in SG hydraulic
reservoir tank

0.0167
Cluster #1

Cluster #10

Generator 1 in 5 years
Insufficient heat exchange in

generator cooling system 0.0167 Cluster #2

Generator overheating 0.0083 1 Cluster #4

Combined bearing 2 in 5 years

Insufficient heat exchange in CB
cooling system 0.0167

Cluster #3
Cluster #5

Insufficient lubrication in CB 0.0167
Cluster #3
Cluster #7

Turbine guide bearing 1 in 5 years Insufficient heat exchange in TGB
cooling system 0.0167 Cluster #6

1 Estimated failure rate.
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As presented in Table 2, eight failures were observed in the 5-year period, of which
25% were “guide vanes failures”, 12.5% were “Kaplan rotor failures”, 12.5% were “oil
reservoir failures”, 12.5% were “generator failures”, 25% were “combined bearing failures”,
and 12.5% were “turbine guide bearing failures”. This 5-year period (from the end of 2013
to the end of 2018) was chosen because it contains reliable information about the unit’s
failure history.

Additionally, given the aforementioned difficulty in obtaining failure data for equip-
ment such as hydrogenerators, the failure rate of the “Generator overheating” failure mode
was estimated based on the observation of other units similar to the analyzed one.

For the proposed analysis, the reference date considered is 2 January 2019. Regarding
the analysis windows, a 240 h time span was considered for clusters 1, 8, 9, and 10, and a
360 h time span for the other clusters.

The values for PC1, PC2, and PC3 over time were obtained between 17 January 2019
(due to the reference window needed to assess the normal condition of each cluster within
the defined power output) and 19 December 2019 (the last date on which the unit operated
in the defined operating condition before breakdown). Figure 6 shows the results of each
considered cluster, with the percentage weight of each main component concerning the
total variability of the analyzed data being presented on the ordinate axis and with the
time elapsed (in days) after 17 January 2019 on the abscissa axis.

As mentioned before, in the applied FDD process, the results obtained for the three
evaluated PCis can be compiled as an output data object indicating the state in which each
cluster finds itself being “true” (T) when at least two of the three analyzed PCi exceed the
established limits, or “false” (F) when the opposite occurs and no anomaly is detected.
Such limits, in turn, were obtained considering the values calculated for each PCi during
the first h hours of analysis, with h, in this case, being the analysis window considered for
each cluster. The mean value (PCimean) and standard deviation (PCisd) for each case are
obtained from this historical series and are used to define the lower (PCilower) and upper
(PCiupper) limits of each PCi, as respectively presented in Equations (1) and (2).

PCilower = PCimean − 3·PCisd, (1)

PCiupper = PCimean + 3·PCisd, (2)

Thus, Figure 7 shows the compiled results of the detection process for all analyzed
clusters. Once again, the abscissa axis presents the number of days from 17 January 2019.
It is interesting to note that anomalies were detected in all clusters, except for clusters #8
and #10.

As previously presented, the T and F values of each cluster are the inputs of the BN,
used for the diagnosis process. The BN created from the relationship between failure
modes and clusters, based on Table 2, is shown in Figure 8.

The results of the diagnosis process over time, considering the responses of each
cluster shown in Figure 7, applied in turn to the BN shown in Figure 8, considering the a
priori probability (presented in Table 2) of each failure mode, are shown in Figure 9. As in
Figures 6 and 7, the abscissa axis of the graphs shown in Figure 9 represents the number
of days elapsed after 17 January 2019. Analyzing the results of the diagnosis process, it
is noticed that 6 of the 8 failure modes considered were diagnosed at some point. The
exceptions are failure modes “Inappropriate guide vanes position” and “Low oil level in
SG hydraulic reservoir tank”. Furthermore, between November and December 2019, the
detection of anomalies became more present, leading to a more evident diagnosis (greater
posterior probability) of the failure modes found. Furthermore, note that the diagnosis of
failure modes “Insufficient heat exchange in generator cooling system” and “Generator
overheating” are strongly correlated, as well as that of failure modes “Insufficient heat
exchange in CB cooling system” and “Insufficient lubrication in CB”.
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Figure 6. Cluster analysis results over time. Each graph presents the values of the percentage weight
of each main component in relation to the total variability of the cluster analyzed between 17 January
2019 and 19 December 2019.
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Figure 7. Detection results over time.

Figure 8. Bayesian network.
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Figure 9. Diagnosis results over time.

Concerning the presented results, some points can be highlighted. In the case of
the SG, for example, whose failure led to the unit’s shutdown, only the failure mode
“Inappropriate rotor blade position” was diagnosed during the period considered, and can
therefore be fully associated with the variations detected in the behavior of this system.
Besides, a variation in the a posteriori probability of this failure mode can be observed
over time: from a null probability until the beginning of August 2019, to a probability
of 18.3% between August and October 2019, and a value of 99.9% in November. Such
variation, together with the fact that the diagnosis becomes constant in mid-November,
can be associated with deterioration caused by the presence of the failure mode in the
system, i.e., as the failure mode evolved it became more evident. If these results were
available during the second half of 2019, it would be clear to the plant’s O&M team that
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some potential failure would be in development, and the necessary measures could be
taken to prevent the equipment from breaking down.

Regarding the diagnosis results related to the generator system (“Insufficient heat
exchange in generator cooling system” and “Generator overheating”), it is noted that some
factors would be leading to the generator overheating. A fault in the cooling system, as
indicated in the results, could be the cause, bringing as a possible consequence the loss
of efficiency of the copper insulation and the generation of hot spots due to an electrical
failure. It is worth noting that, despite the evidence presented by the detection and
diagnosis method for these failure modes, the unit’s SCADA system did not indicate any
alarm related to possible issues of this nature. Likewise, when the analyzes presented in
this work were in their initial phase, no information about possible failures in the generator
was available, even leading the authors to question the results obtained. However, when
the unit was disassembled due to the SG failure, evidence of a localized short circuit in the
rotor was found, thus confirming the diagnosis generated by the applied FDD method, as
presented in Figure 10.

Figure 10. Rotor core hot spot.

Regarding the combined bearing, the diagnoses process punctually noticed “Insuffi-
cient heat exchange in CB cooling system” with a low probability during the months of
February and March 2019. Likewise, the same failure mode and the “Insufficient lubrication
in CB” failure mode were diagnosed with a high probability, albeit non-continuously, in
August and September. During the second half of September and the beginning of October,
the failure mode “Insufficient heat exchange in CB cooling system” was diagnosed again,
with a low probability, but continuously. As of November, both failure modes considered
for this system were identified continuously and progressively, demonstrating some further
degradation process related to the lubrication of the combined bearing was in progress.
This evidence can be associated with the change in vibration pattern noted by the plant’s
staff in November 2019.

Finally, concerning the turbine guide bearing, it is noted that during practically the
entire year of 2019 there were sporadic short-lived detections of the considered failure
mode, “Insufficient heat exchange in TGB cooling system”. The non-continuity would
indicate that such a diagnosis would not actually be associated with the progression of a
failure mode, but probably with disturbances in the unit’s behavior. The exception would
be in December when the diagnosis became constant in the second fortnight, which may
be associated with vibration propagation from the turbine to the rest of the equipment
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as a consequence of the ongoing failure mode “Inappropriate rotor blades position”. As
vibration measurements could not be considered in this case study, the diagnosis of failure
modes associated with bearings was compromised due to uncertainties about the observed
causes and effects. Even so, it can be said that the failure modes diagnosed in these pieces
of equipment are consistent with the problems found in the analyzed unit and reported by
the plant’s O&M team.

4. Conclusions

The objective of this work was to verify if a method previously developed by the au-
thors would be able to correctly detect and diagnose faults under real industrial conditions
considering a severe failure in a Kaplan rotor of a hydrogenerator unit that occurred at the
beginning of the year 2020 and that led to a long period of downtime and significant costs
for the unit’s repair. In addition, given the opportunity to better understand the failure
mechanisms in hydrogenerators, a discussion on the development of the failure mode that
occurred was also held.

The failure in question led to the breakdown of components of the Kaplan rotor blade
position regulating system during a unit start up. Evidence collected after disassembly
of the unit demonstrates that a “classic” problem of fatigue in components susceptible
to vibrations from turbine blades as a consequence of eddy currents was the source of
the failure.

Despite the seriousness of the failure, neither the SCADA system nor the monitoring
and diagnostic system installed at the plant detected or indicated any potential ongoing
failures in the unit. It is noteworthy that vibration measurements in the bearings were
not available during the analysis period and could therefore not be considered. However,
even without the contribution of such measurements, an FDD method proposed by the
authors [12] was applied in a post-occurrence analysis and could successfully not only
detect and diagnose the failure mode that led to the unit’s shutdown and breakdown,
but also another failure mode associated with a localized short circuit in the rotor core,
which was in progress in the unit and similarly, had not been evidenced by the plant’s
computational systems. In this second case, only with the disassembly of the generator, the
failure mode could be evidenced by the plant’s O&M team.

The detection and diagnosis process results demonstrate how the evolution of failure
modes took place in the analyzed equipment, presenting results of potential failures far
in advance. For example, the failure mode “Inappropriate rotor blades position”, directly
associated with equipment breakdown, was diagnosed in August 2019, that is, more
than four months in advance of the failure itself, which only occurred in January 2020.
Furthermore, from the end of November 2020, the presence of several failure modes in the
system became evident, being even plausible to associate them, such as the issue related to
vibration in the bearings and the SG failure modes.

The strong correlation between the failure modes diagnosed by the FDD process
and the evidence observed during the operation of the unit, especially considering the
failure that led to its shutdown, makes it clear that the proposed method not only has
great potential but also had its efficiency proven. It is evident that if the developed system
was already available at the plant and the continuous monitoring of the method results
by the O&M team was carried out, the unit shut down due to the SG failure and its more
severe consequences could have been avoided. This finding makes clear the importance
of integrating more modern FDD methods in the daily routine of O&M teams of complex
systems, such as hydro generators, to reduce the risks and costs associated with large-scale
failures such as the one analyzed in this paper.

Author Contributions: Conceptualization, M.A.C.M., A.H.A.M., R.F.d.S. and G.F.M.d.S.; method-
ology, M.A.C.M., A.H.A.M., R.F.d.S. and G.F.M.d.S.; validation, M.A.C.M., A.H.A.M., R.F.d.S.,
G.F.M.d.S. and F.H.H.; formal analysis, M.A.C.M., A.H.A.M., R.F.d.S. and G.F.M.d.S.; investiga-
tion, M.A.C.M., A.H.A.M., R.F.d.S., G.F.M.d.S. and F.H.H.; resources, G.F.M.d.S. and F.H.H.; data
curation, G.F.M.d.S. and F.H.H.; writing—original draft preparation, M.A.C.M., A.H.A.M. and



Energies 2022, 15, 80 18 of 20

R.F.d.S.; writing—review and editing, M.A.C.M., A.H.A.M., R.F.d.S. and G.F.M.d.S.; visualization,
M.A.C.M., A.H.A.M., R.F.d.S., G.F.M.d.S. and F.H.H.; supervision, G.F.M.d.S.; project administration,
G.F.M.d.S. and F.H.H.; funding acquisition, G.F.M.d.S. and F.H.H. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by Fundação para o Desenvolvimento Tecnológico da Engenharia
(FDTE) and EDP Brasil as part of an ANEEL R&D Project (project number PD-02331-0019/2018).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Some of the data that support the findings of this study can be available
from the corresponding author upon reasonable request.

Acknowledgments: The authors thank the support of EDP Brasil.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Table A1. Measurements and clusters relationship.

Measurements Clusters

Guide vanes position
Cluster #1; Cluster #8Wicket gate air/oil accumulator pressure

Wicket gate air/oil accumulator level

Rotor blades position
Rotor air/oil accumulator pressure Cluster #1; Cluster #9

SG hydraulic oil reservoir tank level
SG hydraulic oil reservoir tank temperature Cluster #1; Cluster #10

Stator housing hot air temperature

Cluster #2

Radiator 1 cold air temperature
Radiator 2 cold air temperature
Radiator 3 cold air temperature
Radiator 4 cold air temperature
Radiator 5 cold air temperature
Radiator 6 cold air temperature

Radiator inlet water temperature
Radiator outlet water temperature

Radiator outlet water flow

GGB metal temperature 1

Cluster #3; Cluster #5

GGB metal temperature 2
TB metal temperature 1
TB metal temperature 2
TB metal temperature 3
TB metal temperature 4
TB metal temperature 5
TB metal temperature 6
TB metal temperature 7
TB metal temperature 8
TB metal temperature 9
TB metal temperature 10
CB carter oil temperature
CB inlet oil temperature

CB outlet oil temperature
CB heat exchanger water inlet temperature

CB heat exchanger water outlet temperature
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Table A1. Cont.

Measurements Clusters

CB carter oil level
Cluster #3; Cluster #7CB carter inlet oil flow

Stator groove 90 phase 2 temperature

Cluster #4

Stator groove 112 phase 1 temperature
Stator groove 139 phase 3 temperature
Stator groove 167 phase 2 temperature
Stator groove 189 phase 1 temperature
Stator groove 216 phase 3 temperature
Stator groove 243 phase 2 temperature
Stator groove 265 phase 1 temperature
Stator groove 292 phase 3 temperature
Stator groove 55–56 upper temperature

Stator groove 55–56 intermediate temperature
Stator groove 55–56 lower temperature

Stator groove 103–104 upper temperature
Stator groove 103–104 intermediate temperature

Stator groove 103–104 lower temperature
Stator groove 157–158 upper temperature

Stator groove 157–158 intermediate temperature
Stator groove 157–158 lower temperature

TGB segment 2 temperature

Cluster #6

TGB segment 4 temperature
TGB segment 5 temperature
TGB segment 6 temperature

TGB oil temperature
TGB heat exchanger inlet water temperature

TGB heat exchanger outlet water temperature
TGB heat exchanger inlet oil temperature

TGB heat exchanger outlet oil temperature
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