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Abstract: The main goal of this research was to propose a new method of polarimetric SAR data
decomposition that will extract additional polarimetric information from the Synthetic Aperture
Radar (SAR) images compared to other existing decomposition methods. Most of the current
decomposition methods are based on scattering, covariance or coherence matrices describing the
radar wave-scattering phenomenon represented in a single pixel of an SAR image. A lot of different
decomposition methods have been proposed up to now, but the problem is still open since it has
no unique solution. In this research, a new polarimetric decomposition method is proposed that is
based on polarimetric signature matrices. Such matrices may be used to reveal hidden information
about the image target. Since polarimetric signatures (size 18 × 9) are much larger than scattering
(size 2 × 2), covariance (size 3× 3 or 4× 4) or coherence (size 3× 3 or 4× 4) matrices, it was essential
to use appropriate computational tools to calculate the results of the proposed decomposition method
within an acceptable time frame. In order to estimate the effectiveness of the presented method,
the obtained results were compared with the outcomes of another method of decomposition (Arii
decomposition). The conducted research showed that the proposed solution, compared with Arii
decomposition, does not overestimate the volume-scattering component in built-up areas and clearly
separates objects within the mixed-up areas, where both building, vegetation and surfaces occur.

Keywords: simulated annealing; SIRT; GPU; radar polarimetry; polarimetric decomposition; polarimetric
signature

1. Introduction

Nowadays, satellite data are one of the main sources of information about Earth’s
surface and processes that occur in the environment. A multitude of environmental phe-
nomena that can be studied from above is ensured thanks to a broad spectrum of different
kinds of devices and systems that are placed on satellites. One of those systems is synthetic
aperture radar (SAR) [1]. SAR emits its own electromagnetic radiation toward Earth’s
surface and records the signal that is backscattered by objects located on the ground. SAR
saves information about the amplitude (Am) and the phase (φ) of the returning signal for
each pixel of generated radar image. Those parameters are used in the most widely known
methods of SAR data processing: InSAR (interferometry SAR) [2], DInSAR (differential
interferometry SAR) [2] and PSI (permanent/persistent scatterers interferometry) [3]. The
first mentioned method, InSAR, is used to generate digital elevation models (DEMs), and
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the second and third allow for determination of the values of vertical ground deformations
with millimetre accuracy. Since 1979, when the Seasat satellite equipped with the first SAR
system was launched, enormous progress has been made associated with satellite radar
imaging. During these almost 40 years, many new SAR systems have been constructed and
exploited, among them, those placed on ERS-1, ERS-2, ENVISAT and Sentinel-1 satellites
belonging to the European Space Agency (ESA), TerraSAR-X and TanDEM-X (German
Space Agency-DLR), Radarsat-1 and Radarsat-2 (Canadian Space Agency - CSA), ALOS-1
and ALOS-2 (Japanese Space Agency - JAXA) or in the constellation of COSMO-SkyMed
satellites that belong to the Italian Space Agency (ASI). Some of those systems have already
completed their missions (ERS-1, ERS-2, ENVISAT, ALOS-1, Radarsat-1), and some of them
(e.g., ALOS-2, Sentinel-1) are at the beginning of their missions. The images gathered by the
currently operating SAR systems are characterized by impressive spatial resolution (even
less than 1 m) and much shorter revisit time (i.e., better temporal resolution). Additionally,
extra information about polarization of transmitted and received waves is gathered, which
constitutes the science of SAR polarimetry (PolSAR) [4]. All these improvements make
current SAR systems a source of more complete and accurate information about imaged
targets or phenomena on the Earth’s surface, which make it very important in geosciences.
However, the amount and the high quality of provided data pose a challenge in terms
of optimal processing. In this context, optimal processing needs to be understood as an
extraction of as much information as possible about the Earth’s surface from satellite data
in reasonable time. This means that new, more advanced processing algorithms need to
be developed, and the most recent achievements in computer science should be exploited.
This mentioned challenge constitutes the incentive to undertake the research described in
this paper.

The analysis presented in this work focuses on the problem of polarimetric SAR data
decomposition procedures [4]. Decomposition is one of the most important steps of polari-
metric SAR radar data processing because it directly determines the amount of information
that can be extracted from the data. Its goal is to assess the amounts of each so-called canon-
ical scattering mechanism in the received radar response corresponding to a single pixel of
a SAR image. There has been a number of different polarimetric-decomposition methods
already proposed in the literature. The most commonly used are Pauli [5], Freeman and
Duren [6], Yamaguchi [7], Touzi [8], H/A/alpha [5] and Arii [9] decompositions. All of
them are based on the scattering matrix or coherence/covariance matrix representing the
received radar signal in each pixel of a SAR image. The scattering matrix has a size of
2 × 2, while coherence and covariance matrices have a size of 3 × 3 or 4 × 4. All of them
are complex matrices. Despite the presence of many different decomposition methods, the
problem of polarimetric data decomposition remains open since no unique solution for
this issue exists. Different decomposition methods realize different approaches and are
based on different assumptions, resulting in diverse outcomes. Usually, the results can be
compared and assessed only in a relative manner.

In this work, a new method of polarimetric decomposition is proposed. It is not directly
based on the analysis of scattering, coherence or covariance matrices but on polarimetric
signatures. A polarimetric signature is a matrix 180 × 90 in size characterizing the radar
wave-scattering process. It is computed based on the scattering matrix. Polarimetric
signatures do not contain additional information comparing to scattering matrix, but they
allow one to distinguish the subtle changes in scattering characteristics [10]. Analysis of
polarimetric signatures may help to reveal some hidden information that can be used for
a more unique description of the target [11]. In order to apply polarimetric signatures
to decomposition, a specific method of solving the decomposition’s equations set also
needs to be proposed. In this work, iterative methods were chosen due to the possibility
of implementing complex constraints on the solution. Those assumptions led the authors
to the following scientific question: does the application of polarimetric signatures in
decomposition procedures, together with the proposed iterative methods for solving the
decomposition equation set, provide additional information in the decomposition results
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in comparison to the methods based on scattering, coherence or covariance matrices? The
search for the answer to this question was the main goal of the reported work.

In this work, two different iterative are proposed and tested to solve the decomposition
problem using polarimetric signatures: simultaneous iterative reconstruction (SIRT) and
simulated annealing (SA). Both methods start from a random, initial solution, but SIRT
calculates corrections in each iteration in a deterministic way. For the SA algorithm, a
correction vector is generated randomly and can be projected in a probabilistic way. The
latter approach is more time-consuming but can be helpful for avoiding local minima of
evaluation functions.

In order to speed up SIRT and SA calculations, the proposed approach makes use of
the graphical processing unit (GPU) [12]. GPU is a specialized electronic circuit designed to
rapidly manipulate and alter memory to accelerate the creation of images in a frame buffer
intended for output to a display. GPUs are very often used for accelerating computations
in specific applications.

The proposed approach to polarimetric decomposition has an innovative character
due to the fact that it is based on polarimetric signatures (not scattering, covariance or
coherence matrices), it makes use of mathematical methods—simulated annealing and
SIRT—that have not yet been used in the polarimetric decomposition procedure, and finally,
it utilizes a GPU card to accelerate the computations. The basic advantage of our approach
is the decrease in volume overestimation in urban areas, together with a significant decrease
in computational time.

The remainder of this paper is organized as follows. Section 2 contains the introduction
to satellite radar polarimetry, polarimetric decomposition and the concept of polarimetric
signatures. In Section 3, the new method of quad-polarimetric SAR data decomposition
using simulated annealing and SIRT methods is proposed. The validation of developed
decomposition using the synthetic and selected real input data, as well as analysis of
obtained results, are presented and described in Section 4. Next, in Section 5, use of GPU to
support decomposition optimization analysis is described. Section 6 describes the results
of the tests for a real SAR scene. Finally, Section 7 summarizes and concludes this paper.

2. Polarimetric SAR

Radar polarimetry (PolSAR) is a relatively recent development in the field of active
remote sensing systems [4]. Its aim is to gather information about physical properties of
imaged surfaces based on analysis of polarization information of transmitted and backscat-
tered waves. Such analysis allows for attainment of knowledge about the geometrical
structure, orientation and physical properties of the scatterers. SAR systems can work in
single-polarization (single-pol), dual-polarization (dual-pol) or quad-polarization (quad-
pol) mode. In the first case, the transmitted radar wave is polarized in one way (vertically
or horizontally), and the same polarization component of the returning wave is received
by the system. Analogously, in dual-pol mode, one polarization is transmitted, and two
orthogonal polarizations are received. The full polarimetric information about scatterers
is gathered in the case of quad-pol SAR systems; when two orthogonal polarizations are
transmitted, the same two are received. Since the presented work is related to the quad-pol
mode, further descriptions are focused on this case.

For each pixel of radar image, the polarimetric information gathered by quad-polarimetric
SAR systems is saved in the form of a 2 × 2 scattering matrix (S) with STrR elements
(Equation (1)).

S =

[
Shh Shv
Svh Svv

]
(1)

where Tr denotes transmitted polarization and R denotes received polarization. In the
most popular linear basis, the vertically (v) and horizontally (h) polarized waves are used.
Following this, for example, the Shh element of the scattering matrix represents backscatter
response of the target for the case when the transmitted wave is horizontally polarized,
and the horizontal component of the returning wave is recorded. The scattering matrix is a
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starting point for all further polarimetric analysis. In the case of pure or isolated scatterers,
the polarimetric information can be directly extracted from the scattering matrix. However,
in the case of distributed targets, the second-order statistics of the scattering matrix, i.e.,
covariance (Cov) (Equation (2)) or coherence matrix (Coh) (Equation (3)), need to be used.
In Equations (2) and (3), * is used to denote conjugation, and 〈 〉 means averaging in spatial
window (e.g., 7 × 7 pixels).

〈[Cov]〉 =

 ShhS∗hh

√
2ShhS∗hv ShhS∗vv√

2ShvS∗hh 2ShhShv
√

2ShvS∗vv
SvvS∗hh

√
2SvvS∗hv SvvS∗vv

 (2)

〈[Coh]〉 =

 |Shh + Svv|2 (Shh + Svv)(Shh − Svv)
∗ 2(Shh + Svv)S∗hv

(Shh − Svv)
∗ |Shh − Svv|2 2(Shh − Svv)S∗hv

2Shv(Shh + Svv)
∗ 2Shv(Shh − Svv)

∗ 4|Shv|2

 (3)

Radar backscattering can also be described by Kennaugh (K) or Mueller (M) matrices.
Similarly to the scattering matrix, they also represent the relation between the transmitted
and scattered radar wave. The Kennaugh matrix is given by Equation (4), while the Mueller
matrix is given by Equation (5).

K =


A0 + B0 C H F

C A0 + B0 E G
H E A0 − B0 D
F G D −A0 + B0

 (4)

where A0 = |SHH + SVV |2/4, B0 = |SHH−SVV |2
4 + |SHV |2, C = |SHH−SVV |2

4 − |SHV |2, D =
Im
{

SVVS∗HV
}

, E = Re
{

S∗HV(SHH−SVV)
}

, F = Im
{

S∗HV(SHH − SVV)
}

,
G = Im

{
S∗HV(SHH + SVV)

}
and H = Re

{
S∗HV(SHH + SVV)

}
.

M =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

K (5)

Polarimetric SAR data have found numerous applications in geoscience. Data can be
used to study, among other things, surface roughness [13], soil moisture [14] and land-cover
classes [11]. In oceanography, polarimetric SAR images are used to analyse surface currents
and wind field [15]. On the other hand, in forestry, they are used to estimate tree height [16].
Radar polarimetry also plays a crucial role in disaster monitoring, e.g., for oil spills [17] or
fire detection [18].

2.1. Polarimetric Decomposition

In most cases, the single pixel of a SAR image represents the response from many indi-
vidual scatterers that are located within a single corresponding resolution cell. Therefore,
the measured scattering matrix and the derived covariance and coherence matrices are
actually sums of corresponding matrices representing individual scatterers located within
this resolution cell. In order to retrieve the information about those individual scatterers
from the measured scattering/covariance/coherence matrix, the decomposition procedure
is exploited. Polarimetric decomposition is one of the key steps of polarimetric SAR data
processing since it directly affects the amount of information that can be extracted. The
polarimetric decomposition procedure can generally be described as a representation of
the measured scattering matrix or coherence/covariance matrix as a linear combination of
simple components [4]. These components represent the scattering types: single-bounce
(or even-bounce), double-bounce (or odd-bounce), helix scattering and volume scattering
(Figure 1). The single-bounce scattering mechanism is characteristic for different kinds of
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surfaces, e.g., surfaces of lakes, roads, rivers, flat roofs or bare soils. The double-bounce
scattering mechanism is, in turn, typical for vertical objects, e.g., building walls, lanterns,
poles and other upright elements of engineering objects. The helix scattering mechanism
occurs in the case of complex shapes of man-made objects, and finally, volume scattering
can be used to identify different kinds of vegetation.
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A number of different decomposition methods have been proposed in the literature.
They are divided into coherent and incoherent decompositions. Coherent decompositions
are based on the scattering matrix, while incoherent decompositions use second-order statis-
tics, coherence or covariance matrices. The most widely used decompositions are freeman
and Durden’s decomposition [6], Yamaguchi’s decomposition [7], H/A/alpha decomposi-
tion [5], Touzi’s decomposition [8] or Arii decomposition [9]. All of them have their pros
and cons, making their usefulness dependent mainly upon the types of targets being im-
aged [5]. Coherent decomposition presents good-quality single-bounce and double-bounce
scattering identification [19]. Recognition of volume-scattering components by coherent
decomposition is most inaccurate and sometimes overestimated in urban areas [20]. Inco-
herent decompositions, as with Freeman or Yamaguchi, are usually characterized by more
accurate assessment of each scattering mechanism in the analyzed pixels. However, the
problem of volume scattering overestimation in rotated built-up areas is present [21]. The
same problems occur in the case of H/A/alpha decomposition [22]. In turn, H/A/alpha
decomposition has the possibility of recognizing areas with mixed scattering mechanism
by means of an HA image (product of entropy (H) and anisotropy (A)) [4]. Arii developed
an adaptive-model-based decomposition method that could estimate both the mean ori-
entation angle and a degree of randomness for the canopy scattering for each pixel in an
SAR image. However, the problem of volume-scattering overestimation seems to still be
present in the results, which are proved in Section 6. Since Arii’s decomposition is one of
the most recent methods, built on top of the previous ones, it was chosen in this work to be
compared with the proposed method based on polarimetric signatures.

The mentioned weaknesses of existing decomposition methods were the motivation
to develop a new method that overcomes or at least decreases the following limitations:
overestimation of volume scattering in built-up areas and problems with recognition of
mixed areas.
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2.2. Polarimetric Signatures

The concept of a polarimetric signature was introduced in 1978 by van Zyl et al. [10]
as a tool for graphical representation of polarimetric information of the scatterer. The
signature allows for full description of the polarimetric properties of imaged objects based
on the measured scattering matrix by presenting the backscatter response at all possible
combinations of transmitted and received polarizations. In order to facilitate the interpreta-
tion of this comprehensive information, the polarimetric signature is usually represented
in two channels: co-polarized and cross-polarized. In the former case, the transmitted
and received waves have the same polarization, and in the latter case, the polarizations
are orthogonal.

In the polarimetric signature, which can be visualised as a 3D surface or saved in
the form of a two dimensional matrix, the wave intensities are computed for all possible
polarization states and parameterized by the polarization ellipse orientation angle (χ) and
ellipticity angle (ψ) [10] (Equation (6)).

σ(χt, ψt, χr, ψr) =
4π

k2


1

cos 2χr cos 2ψr
cos 2χr sin 2ψr

sin 2χr

 ·
(

N

∑
n=1

[M(n)]

)
1

cos 2χt cos 2ψt
cos 2χt sin 2ψt

sin 2χt

 (6)

where σ represents the polarimetric signature, k denotes the wavenumber, N is the number
of pixels in the averaging window and M is the Muller matrix.

The polarimetric signature does not contain any additional polarimetric information
that is not included in the scattering matrix. However, analysis of different polariza-
tion bases may reveal some hidden information and subtle changes that allow for better
characterization of different scattering types [11].

Polarimetric signatures representing basic scattering mechanisms are well known
and characterized in the literature [4]. They are modelled using selected canonical objects.
Thus, the polarimetric signature of a single-bounce scattering mechanism is modelled
using scattering from trihedral (Figure 2). The polarimetric signature of a double-bounce
scattering mechanism is modelled by scattering from dihedral (Figure 3), and helix is used
as a model to generate signature of helix scattering (Figure 4). To model the polarimetric
signature of volume scattering, the cloud of randomly oriented thin dipoles is usually used
(Figure 5). However, it needs to be highlighted that this model does not cover all existing
volume-scattering types. Since there are many vegetation categories, it is impossible to
reflect all potential generated volume-scattering mechanisms using only one model. In the
literature, additional models, like those proposed by Yamaguchi [7] or Arii et al. [9], are
recommended to model volume scattering more precisely.
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As can be seen in Figures 2–5, the polarimetric signatures of different scattering types
differ in one or even in both polarimetric channels. Those differences can be used to
distinguish these scattering mechanisms and, consequently, to categorize objects that are
represented by those signatures.

Despite the fact that polarimetric signatures were originally developed as a tool for
visual inspection of polarimetric properties of the scatterers, they have found numerous
applications in the advanced processing and interpretation of polarimetric SAR data.
In [23,24], polarimetric signatures were used for identification of coherent scatterers. Jafari
et al. [11] exploited signatures for land-cover classification. In turn, Nunziata et al. [17]
revealed a potential application of polarimetric signatures in oil-slick observation.

2.3. Polarimetric Signature-Based Decomposition

The concept of polarimetric signature-based decomposition proposed in this work is
established based on the fact that the observed signature (calculated for a pixel of an SAR
image) is actually a sum of polarimetric signatures of all objects located within the area



Energies 2022, 15, 72 8 of 22

represented in this pixel. It leads to the formula (Equation (7)). The observed signature
(σobs) can be expressed as a weighted sum of polarimetric signatures of canonical objects
(σcan) that represent basic scattering-mechanism types.

σobs =
Ns

∑
i=1

σcan_iβi (7)

In Equation (7), Ns denotes the number of scattering mechanisms that are included in
the analysis, and βi represent the weighting factor (i.e., amount) of particular scattering
mechanism in the observed signature. Originally, all polarimetric signatures (σobs and σcan)
have the size of 180 × 90. However, in order to accelerate the computations, they were
resized to the 18 × 9 matrix, which fully preserves all the information contained in the
original form but allows for a reduction in the computational time. The reduction of the
polarimetric signature was done using Matlab function imresize with the nearest-neighbour
interpolation method. Afterwards, this matrix was reshaped to the vertical vector (162 × 1).
Equation (7) can be rewritten in a matrix form as Equation (8):

Aβ = σobs (8)

where A is a rectangular matrix with consecutive canonical [σcan_1, σcan_2, ..., σcan_N]
columns. In this approach, it is assumed that the weighting factors saved in vector β
sum up to 1 and that they have nonnegative values. This last requirement is necessary to
avoid the problem described in [25] related to the nonphysical results of some decomposi-
tion procedures showing negative powers. A solution based on Matlab function lsqnonneg
was used in order to enforce the non-negative results.

3. Polarimetric Signature-Based Decomposition Using SIRT and Simulated
Annealing Methods

Systems of linear equations, as in Equation (8), can be solved using several methods.
If matrix A is well-conditioned, the matrix-decomposition method can be used to obtain
the value of vector β (i.e., LU or SVD decompositions). When significant noise is present or
A is a sparse matrix, iterative methods can provide a more stable solution. In real polari-
metric signatures, noise is usually present; therefore, iterative methods can be beneficial.
Moreover, those methods are more flexible in the implementation of a boundary condition
for the solution.

Iterative methods in every step calculate corrections, which are added to the previous
solution. There are two approaches to obtain those corrections: deterministic (i.e., con-
jugate gradients, ART/SIRT methods) or random (i.e., Metropolis algorithm, simulated
annealing, genetic algorithms). In both cases, calculations are stopped when a number
of iterations reach an assumed level or a value of an evaluation function is less than the
assumed threshold.

In this work, two methods were adopted to solve the given system of linear equations
(Equation (8)): simulated annealing and SIRT (simultaneous iterative reconstruction tech-
nique). Simulated annealing [26] is a probabilistic technique used for approximation of
the global optimum of a given function in a large search space. It has found numerous
applications in remote sensing [21,27,28] and in computational geosciences [29,30] but not
yet in the polarimetric decomposition problem. The SIRT [31] is a very suitable technique
for inverting large, sparse linear systems since it is iterative and does not need the whole
matrix to be stored in the internal computer memory. It was designed for medical tomogra-
phy but is nowadays used in different applications. However, up to now, its utilization in
remote sensing has been limited. Both selected methods are effective for multidimensional
optimization [32,33].
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The main aim of application of the selected methods in polarimetric decomposition is
to find the vector, β, which minimizes the evaluation function given by Equation (9).

eval(β) =

√
(Aβ− σobs)

T(Aβ− σobs)

length(σobs)
(9)

where T denotes transposition, and length() is a length of vector σobs.
The maximum number of iterations was chosen as a stop condition for both algorithms.

An equal number of algorithm iterations for all pixels of a polarimetric image caused almost
equal time of calculations for each pixel. This assumption makes parallelization of the
algorithm easier to implement and more effective.

The SIRT algorithm, in each iteration, calculates corrections of vector ∆βj and adds it
to the current solution. This vector is calculated using Equation (10) [34].

∆β j =
1

wj

length(σobs)

∑
i=1

Aij
σobs

i − Ai,: · β
N
∑

k=1
A2

ik

(10)

where Ai,: is the i-th row of matrix A and w is the vector of weights of the same length as β,
which contains the number of non-zero elements in the corresponding column of matrix A.

The simulated annealing algorithm uses a probabilistic method to update the current
solution. In each iteration, first, vector of corrections is drawn from normal distribution
with mean equal to zero and a given standard deviation (std) and is then added to the
previous solution. If the new solution has better evaluation than previous one, the new
solution is accepted. In the case of a worse evaluation function value, the probability of
acceptance is calculated using the Boltzmann distribution given in Equation (11).

P(best_eval, eval, Tem) = 0.25 · exp
(

best_eval − eval
Tem · best_eval

)
(11)

where:

best_eval—the best value of evaluation function β obtained during calculation;
eval—value of evaluation function for current solution β;
Tem—temperature, decreases in each iteration: Temi+1 = Temi/dt (where dt > 1, usually close
to 1).

During iterations, temperature decreases and probability of acceptance of a worse so-
lution also decreases. Acceptance of worse solution is necessary to abandon local minimum.
The solution with the lowest value of evaluation function during the whole calculation is
returned as a final result.

In both approaches—simulated annealing and SIRT—no constant background level was
included as an additional component in the polarimetric signature. Polarimetric signatures
can be characterized by a pedestal that arises when multiple scattering mechanisms occur in
a given pixel. However, this effect was not included directly in the recognition in order to pre-
serve the algorithm’s capacity to distinguish between single-bounce and volume-scattering
signatures, which are similar but differ by the pedestal in the volume-scattering signature.

4. Validation of the Proposed SA- and SIRT-Based Decompositions Using
Synthetic Data

Application and validation of the proposed SA- and SIRT-based polarimetric decom-
positions were performed both for synthetic data and real quad-pol SAR data acquired
from TerraSAR-X satellite. After that, the results of the more effective method were com-
pared with the outcomes of Arii decomposition, as well as with the optical image of the
studied region.
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In both the proposed SA- and SIRT-based decomposition procedures, four scattering
mechanisms were taken into consideration: single-bounce (SB), double-bounce (DB), helix
scattering (HX) and volume scattering (VOL). In such cases Equation (7) takes the form of
(Equation (12)).

σobs = β1SB + β2DB + β3HX + β4VOL (12)

For each of the included scattering mechanisms, the polarimetric signatures were
calculated using appropriate models. The volume-scattering mechanism was modelled
using a cloud of randomly oriented dipoles.

4.1. Validation of the SA- and SIRT-Based Decompositions for Synthetic Signatures without and
with Added Noise

In the first step, the SA- and SIRT-based polarimetric decompositions were tested for
recognition of synthetic signatures of selected canonical objects. The tests were performed
for synthetic signatures without (σn0) and with added noise (σn1, σn2). Two kinds of noise
were considered: white (n1) and (n2) colored. The level of noise, for both cases, was set
at 19 dB, which corresponds to the noise level of TerraSAR-X satellite [35]. The amounts,
βi, of each scattering mechanism in recognized signatures were determined and saved
in precents.

The results of SA-based decomposition for recognition of synthetic polarimetric signa-
tures are gathered in Table 1.

Table 1. Results of SA-based decomposition for synthetic polarimetric signatures (co- and cross-
polarized channels). Recognized signatures are specified in percentage.

Co-Pol Channel Cross-Pol Channel

β1 SB β2 DB β3 HX β4 VOL β1 SB β2 DB β3 HX β4 VOL

Synthetic signature without noise—σn0

σn0_SB 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%
σn0_DB 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%
σn0_HX 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 0.00%
σn0_VOL 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00%

Synthetic signatures with white noise (−19 dB)—σn1

σn1_SB 70.21% 0.00% 29.79% 0.00% 100.00% 0.00% 0.00% 0.00%
σn1_DB 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%
σn1_HX 0.00% 14.13% 85.87% 0.00% 0.00% 0.00% 100.00% 0.00%
σn1_VOL 14.75% 31.15% 0.00% 54.10% 41.03% 3.85% 41.03% 14.10%

Synthetic signature with colored noise (−19 dB)—σn2

σn2_SB 94.44% 0.00% 0.00% 5.56% 100.00% 0.00% 0.00% 0.00%
σn2_DB 0.00% 85.19% 11.11% 3.70% 0.00% 100.00% 0.00% 0.00%
σn2_HX 0.00% 0.00% 100.00% 0.00% 0.00% 1.01% 98.99% 0.00%
σn2_VOL 43.40% 32.08% 7.55% 16.98% 10.71% 0.00% 0.00% 89.29%

From Table 1, it can be seen that the SA-based method recognizes the synthetic polari-
metric signatures very well without added noise. For this case, all signatures, both in co-
and cross-polarized channels, were recognized precisely. Good results were also obtained
for synthetic polarimetric signatures with added white noise. However, the in co-polarized
channel, noised signature of SB was recognized as a combination of SB and HX polarimetric
signatures. Additionally, the noised helix signature was recognized as a combination of
DB and HX signatures. Nonetheless, it has to be noted that for both mentioned noised
signatures, the proper component was recognized as dominant. The worst results were
obtained in case of σn1_VOL. This signature was recognized with high error in the case of
the co-polarized channel and almost completely wrong in the case of the cross-polarized
channel. The SA-based decomposition method derived very good results in recognition
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in the cross-polarized channels, as well as for the synthetic signatures with added colored
noise. Small imprecision occurred only for noised signatures of helix and volume scattering.
In the co-polarized channel, the worst results were obtained for σn2_VOL. For this case, the
volume scattering was mistakenly identified as a combination of all scattering mechanisms,
with domination of SB and DB.

In Table 2, the results obtained for recognition of synthetic signatures using the SA-
based decomposition method are summarized in the context of revealed inaccuracies.
For each considered synthetic signature, the average difference, understood as an error,
between the expected and calculated amount of the scattering mechanism were determined.
These errors were calculated separately for the co-pol channel (εco) and cross-pol channel
(εcross). Additionally, for each group of tested data (σn0, σn1, σn2), the average errors of
recognition were determined (ε) for both polarimetric channels.

Table 2. Inaccuracies for SA-based decomposition method revealed for synthetic-signature recogni-
tion. Recognized signatures are specified in percentage.

Synthetic Signature without
Noise—σn0

Synthetic Signatures with white Noise
(−19 dB)—σn1

Synthetic Signatures with Colored
Noise (−19 dB)—σn2

εco εcross εco εcross εco εcross

σn0_SB 0.00% 0.00% σn1_SB 14.90% 0.00% σn2_SB 2.80% 0.00%
σn0_DB 0.00% 0.00% σn1_DB 0.00% 0.00% σn2_DB 7.40% 0.00%
σn0_HX 0.00% 0.00% σn1_HX 7.10% 0.00% σn2_HX 0.00% 0.50%
σn0_VOL 0.00% 0.00% σn1_VOL 23.00% 43.00% σn2_VOL 41.50% 5.40%

εn0 0.00% 0.00% εn1 11.20% 10.70% εn2 12.90% 1.50%

It can be seen in Table 2 that SA-based recognition of synthetic signatures without
added noise is not burdened by any error. In the case of signatures with added white
noise, the worst results were obtained for the noised volume-scattering signature, where the
average difference between expected and obtained percentage of scattering components was
equal 23% for the co-pol channel and 43% for the cross-pol channel. In the case of signatures
with colored noise, the worst results were obtained for the co-pol channel for σn0_VOL, where
the inaccuracy of recognition is at a level of 41%. However, for the cross-polarized channel,
the average inaccuracy of all signature recognition is very low, equal to 1.5%.

In Table 3, the results of SIRT-based decomposition for synthetic polarimetric signa-
tures are gathered.

The results presented in Table 3 reveal that the SIRT-based method derived worse
results in recognition of signatures without noise than the SA-based method. For the
cross-pol channel, the SIRT method incorrectly identifies σn0_VOL as a combination of all
considered scattering mechanisms. Problems also occur in the case of the co-pol channel
and signatures with added white noise. Those signatures are recognized with high error,
especially for σn1_VOL and σn1_DB. For the cross-pol channel, the results are better. However,
the noised signature of volume scattering is recognized as a signature of the SB mechanism.
The results for signatures with colored noise are better for the co-pol channel than in the case
of signatures with white noise and are exactly the same for the cross-pol channel. The values
presented in Table 4, analogous to those in Table 2, summarize the results of the SIRT-based
method for synthetic signature recognition in the context of revealed inaccuracies.
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Table 3. Results of SIRT-based decomposition for synthetic polarimetric signatures (co- and cross-
polarized channels). Recognized signatures are specified in percentage.

Co-Pol Channel Cross-Pol Channel

β1 SB β2 DB β3 HX β4 VOL β1 SB β2 DB β3 HX β4 VOL

Synthetic signature without noise—σn0

σn0_SB 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%
σn0_DB 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%
σn0_HX 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 0.00%
σn0_VOL 0.00% 0.00% 0.00% 100.00% 37.50% 13.64% 27.27% 21.59%

Synthetic signatures with white noise (−19 dB)—σn1

σn1_SB 62.50% 0.00% 37.50% 0.00% 100.00% 0.00% 0.00% 0.00%
σn1_DB 1.35% 45.95% 37.84% 14.86% 0.00% 100.00% 0.00% 0.00%
σn1_HX 1.71% 0.00% 94.87% 3.42% 0.00% 10.11% 89.89% 0.00%
σn1_VOL 36.07% 0.00% 31.15% 32.79% 100.00% 0.00% 0.00% 0.00%

Synthetic signature with colored noise (−19 dB)—σn2

σn2_SB 98.04% 1.96% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%
σn2_DB 2.00% 94.00% 0.00% 4.00% 0.00% 100.00% 0.00% 0.00%
σn2_HX 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 0.00%
σn2_VOL 40.82% 18.37% 16.33% 24.49% 100.00% 0.00% 0.00% 0.00%

Table 4. Inaccuracies for the SIRT-based decomposition method revealed for synthetic signature
recognition. Recognized signatures are specified in percentage.

Synthetic Signature without
Noise—σn0

Synthetic Signatures with White Noise
(−19 dB)—σn1

Synthetic Signatures with Colored
Noise (−19 dB)—σn2

εco εcross εco εcross εco εcross

σn0_SB 0.00% 0.00% σn1_SB 18.75% 0.00% σn2_SB 0.98% 0.00%
σn0_DB 0.00% 0.00% σn1_DB 27.03% 0.00% σn2_DB 3.00% 0.00%
σn0_HX 0.00% 0.00% σn1_HX 2.57% 5.06% σn2_HX 0.00% 0.00%
σn0_VOL 0.00% 39.21% σn1_VOL 33.61% 50.00% σn2_VOL 37.76% 50.00%

εn0 0.00% 9.80% εn1 20.49% 13.76% εn2 10.43% 12.50%

Comparing average values presented in Tables 2 and 4, it can be seen that the SIRT-
based method provides less accurate results of synthetic signature recognition than the
SA-based method. For the SIRT-based method, the most significant problems occur in the
case of σn0_VOL recognition. What is more, the results for recognition of synthetic signatures
with white noise are also not very accurate, especially for the co-pol channel, for which
εn1= 20.49%.

4.2. Validation of the SA- and SIRT-Based Decomposition Methods for Linear Combinations of
Synthetic Signatures

In this step, the proposed SA- and SIRT-based methods were tested for decompo-
sition of linear combinations of canonical polarimetric signatures. In order to do that,
eight polarimetric signatures were prepared (σ1−σ8). Each of them was generated as a
linear combination of polarimetric signatures of selected canonical objects representing
considered scattering mechanisms (Table 5). For each of them, the decomposition was
applied separately for the co- and cross-polarized channel. Like in the previous section, the
amount (βi) of a particular scattering mechanism in a considered signature was determined
and saved as a percentage of recognized polarimetric signatures. The results obtained for
SA-based decomposition are gathered in Table 5.
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Table 5. Results of SA-based decomposition for linear combinations of synthetic signatures (co- and
cross-polarized channels). Recognized signatures are specified in percentage.

Co-Pol Channel Cross-Pol Channel

β1 SB β2 DB β3 HX β4 VOL β1 SB β2 DB β3 HX β4 VOL

σ1 = SB + DB 50.00% 50.00% 0.00% 0.00% 50.00% 50.00% 0.00% 0.00%
σ2 = SB + HX 50.00% 0.00% 50.00% 0.00% 32.68% 1.96% 0.00% 65.36%

σ3 = SB + VOL 50.00% 0.00% 0.00% 50.00% 50.00% 0.00% 1.50% 48.50%
σ4 = DB + VOL 0.00% 50.00% 0.00% 50.00% 19.26% 39.75% 40.98% 0.00%
σ5 = DB + HX 0.00% 50.00% 50.00% 0.00% 0.00% 50.00% 50.00% 0.00%

σ6 = HX + VOL 0.00% 0.00% 50.00% 50.00% 0.00% 81.82% 9.09% 9.09%
σ7 = SB + DB + HX 33.33% 33.33% 33.33% 0.00% 31.51% 34.25% 28.77% 5.48%
σ8 = 2 × SB + DB 66.67% 33.33% 0.00% 0.00% 66.67% 33.33% 0.00% 0.00%

The obtained results reveal that the simulated annealing method works well in the
recognition of the amount of polarimetric signatures in the linear combination of them.
For the co-polarized channel, the proposed method properly recognized the amount of
polarimetric signatures in all studied examples. In the cross-polarized channel, the results
of the SA-based method are less accurate. In the cross-pol channel, the helix scattering
mechanism is mistaken with the scattering mechanism of the volume horizontal model.
The worst results were obtained for the cross-pol channel for the linear combination (σ6) of
volume and helix scattering. In this case, the algorithm underestimated those mechanisms
and improperly recognized a double-bounce scattering mechanism.

The SIRT-based decomposition results obtained for a linear combination of signatures
are presented in Table 6.

Table 6. Results of SIRT-based decomposition for linear combinations of synthetic signatures (co- and
cross-polarized channels). Recognized signatures are specified in percentage.

Co-Pol Channel Cross-Pol Channel

β1 SB β2 DB β3 HX β4 VOL β1 SB β2 DB β3 HX β4 VOL

σ1 = SB + DB 50.00% 50.00% 0.00% 0.00% 50.00% 50.00% 0.00% 0.00%
σ2 = SB + HX 50.00% 0.00% 50.00% 0.00% 41.28% 1.16% 21.51% 36.05%

σ3 = SB + VOL 50.00% 0.00% 0.00% 50.00% 50.00% 0.00% 0.00% 50.00%
σ4 = DB + VOL 0.00% 50.00% 0.00% 50.00% 10.62% 34.07% 36.63% 18.68%
σ5 = DB + HX 0.00% 50.00% 50.00% 0.00% 0.00% 50.00% 50.00% 0.00%

σ6 = HX + VOL 0.00% 0.00% 50.00% 50.00% 0.00% 0.00% 50.00% 50.00%
σ7 = SB + DB + HX 33.33% 33.33% 33.33% 0.00% 20.07% 28.62% 22.04% 29.28%
σ8 = 2 × SB + DB 66.67% 33.33% 0.00% 0.00% 66.67% 33.33% 0.00% 0.00%

Analysis of the obtained results reveals that the proposed SIRT-based method rec-
ognizes linear combination of polarimetric signatures very well. The accuracy is very
high, especially for the co-polarized channel, where tested synthetic data were properly
recognized in 100% of instances. The results obtained for cross-polarized channel are less
accurate but still promising. For the cross-polarized channel, from eight analyzed linear
combinations of polarimetric signatures, five of them were correctly recognized. The worst
results were obtained for σ2 and σ4.

In Table 7, the values of error revealed for SA- and SIRT-based methods in recognition
of linear combinations of signatures are compared.

Analysis of the values presented in Table 7 reveal that for the co-polarized channel,
both SA- and SIRT-based methods precisely recognized all tested combinations of po-
larimetric signatures. However for the cross-pol channel, the results obtained using the
SIRT-based method are almost two times better than those obtained using the SA-based
method. The most significant differences in accuracy of the results occur in the case of σ2,
σ3 and σ6.
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Table 7. Inaccuracies for SA- and SIRT-based decompositions revealed for linear combinations of
polarimetric signatures. Recognized signatures are specified in percentage.

SA-Based Method SIRT-Based Method

εco εcross εco εcross

σ1 = SB + DB 0% 0.0% 0% 0.0%
σ2 = SB + HX 0% 33.7% 0% 18.6%

σ3 = SB + VOL 0% 0.8% 0% 0.0%
σ4 = DB + VOL 0% 30.1% 0% 23.6%
σ5 = DB + HX 0% 0.0% 0% 0.0%

σ6 = HX + VOL 0% 40.9% 0% 0.0%
σ7 = SB + DB + HX 0% 3.2% 0% 14.6%
σ8 = 2 × SB + DB 0% 0.0% 0% 0.0%

ε 0% 13.6% 0% 7.1%

4.3. Validation of the SA- and SIRT-Based Polarimetric Decompositions Results for Real SAR Data

Validation of the SA- and SIRT-based polarimetric decomposition results was also
performed for real satellite SAR data gathered by TerraSAR-X satellite. The radar image
used for this purpose covers the area the town of Mahlow, located south of Berlin. The
spatial resolution of the image is 1.7 m × 6.5 m. The Pauli color composition map of
polarimetric channels and the optical image of the studied region are presented in Figure 6.

Energies 2022, 14, x FOR PEER REVIEW 14 of 22 
 

 

Table 7. Inaccuracies for SA- and SIRT-based decompositions revealed for linear combinations of 
polarimetric signatures. Recognized signatures are specified in percentage. 

 
SA-Based Method SIRT-Based Method 
εco εcross εco εcross 

σ1 = SB + DB 0% 0.0% 0% 0.0% 
σ2 = SB + HX 0% 33.7% 0% 18.6% 
σ3 = SB + VOL 0% 0.8% 0% 0.0% 
σ4 = DB + VOL 0% 30.1% 0% 23.6% 
σ5 = DB + HX 0% 0.0% 0% 0.0% 
σ6 = HX + VOL 0% 40.9% 0% 0.0% 

σ7  = SB + DB + HX 0% 3.2% 0% 14.6% 
σ8 = 2 × SB + DB 0% 0.0% 0% 0.0% 

ε  0% 13.6% 0% 7.1% 

Analysis of the values presented in Table 7 reveal that for the co-polarized channel, 
both SA- and SIRT-based methods precisely recognized all tested combinations of polari-
metric signatures. However for the cross-pol channel, the results obtained using the SIRT-
based method are almost two times better than those obtained using the SA-based 
method. The most significant differences in accuracy of the results occur in the case of σ2, 
σ3 and σ6. 

4.3. Validation of the SA- and SIRT-Based Polarimetric Decompositions Results for Real SAR 
Data 

Validation of the SA- and SIRT-based polarimetric decomposition results was also 
performed for real satellite SAR data gathered by TerraSAR-X satellite. The radar image 
used for this purpose covers the area the town of Mahlow, located south of Berlin. The 
spatial resolution of the image is 1.7 m × 6.5 m. The Pauli color composition map of polar-
imetric channels and the optical image of the studied region are presented in Figure 6. 

  
(a) (b) 

Figure 6. (a): Pauli-coded color composition of polarimetric channels (red: |hh-vv|, green: |hv|, blue: |hh+vv|). (b): opti-
cal image of studied region (source: Google Earth). 

As can be seen in Figure 6a, different terrain types are present in the studied region, 
which is advantageous for the validation process. Part of the region is covered by built-
up areas. There are also agricultural fields with bare soil and low vegetation, as well as 
some forested areas. 

Figure 6. (a): Pauli-coded color composition of polarimetric channels (red: |hh-vv|, green: |hv|,
blue: |hh+vv|). (b): optical image of studied region (source: Google Earth).

As can be seen in Figure 6a, different terrain types are present in the studied region,
which is advantageous for the validation process. Part of the region is covered by built-up
areas. There are also agricultural fields with bare soil and low vegetation, as well as some
forested areas.

In order to perform the test for real data, the pixels that best represent four considered
scattering mechanisms were selected from the analyzed image. The selection was done
based on the Yamaguchi decomposition and mean alpha angle (α) from H/A/alpha decom-
position. Both mentioned decompositions belong to the most widely used methods of SAR
image processing since they are characterized by relatively high accuracy. Based on the
four-component Yamaguchi decomposition [7], the values of four scattering mechanisms
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(SB, DB, HX, VOL) in each pixel can be estimated. To model volume scattering, Yamaguchi
exploits three models, which are selected based on (Equation (13)).

µ = 10 log(
〈
|Svv|2

〉
/
〈
|Shh|2

〉
) (13)

If the ratio is smaller than −2 dB, the volume scattering is modelled by a cloud of
randomly oriented, very thin, horizontal cylinder-like scatterers. For µ between −2 dB and
2 dB, the volume scattering is represented by a cloud of randomly oriented dipoles with
a uniform probability function for the orientation angle [4]. If the µ is higher than 2 dB,
a cloud of randomly oriented, very thin, vertical cylinder-like scatterers is used as a model.

In this work, in order to select appropriate real signatures, the power of each scattering
mechanism recognized using Yamaguchi decomposition was divided by the sum of powers
of all scattering mechanisms in a given pixel. This gave the relative power (Prel) of all
scattering mechanisms in all pixels. The pixels for which this relative power was the
highest were selected as a representative. Since none of the decompositions provide
unambiguous results and there are always some errors in the outcomes, the selection
of representative pixels was additionally strengthened by use of mean alpha angle from
H/A/alpha decomposition. The values of this parameter are related to three scattering
mechanisms (SB, DB, VOL). Values of σ between 0◦ and approximately 40◦ are characteristic
for surface scattering, values between 40◦ and 50◦ occur in the case of volume diffusion and
the values between 50◦ and 90◦ correspond to a double-bounce scattering mechanism. The
alpha angle does not provide information about the helix scattering mechanism; therefore,
identification of this mechanism suffers from the occurrence of the greatest error. The
thresholds for both parameters (Yamaguchi decomposition parameters and alpha angle)
are given in Table 8.

Table 8. Thresholds for the Yamaguchi parameters and alpha angle.

Single-
Bounce

Double-
Bounce

Helix
Scattering

Volume
Scattering

Yamaguchi decomposition
results-(Prel)

>0.97 >0.97 >0.2 >0.45

Alpha angle (α) <5.0 >80.0 — >40.0 & <50.0

Number of obtained pixels 101 50 47 975

The obtained results of the validation procedure of SA-based decomposition are
gathered in Table 9. Each row presents the averaged accuracies for all selected pixels
dominated by each scattering mechanism.

Table 9. Results of SA-based decomposition for real data (co- and cross-polarized channels). Recog-
nized signatures are specified in percentage.

Co-Pol Channel Cross-Pol Channel

β1 SB β2 DB β3 HX β4 VOL β1 SB β2 DB β3 HX β4 VOL

Real polarimetric
signature of SB (σSB) 94.75% 0.23% 0.46% 4.56% 98.79% 0.64% 0.19% 0.39%

Real polarimetric
signature of DB (σDB) 0.32% 94.36% 2.50% 2.82% 0.49% 99.02% 0.27% 0.22%

Real polarimetric
signature of HX (σHX) 15.09% 1.89% 53.77% 29.25% 10.00% 30.00% 31.43% 28.57%

Real polarimetric
signature of VOL (σVOL) 0.00% 46.43% 42.86% 10.71% 0.00% 47.37% 42.11% 10.53%
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The obtained results reveal that the proposed simulated annealing method derives
promising results. Its accuracy is very high in recognizing real polarimetric signatures
of trihedral and dihedral (in both co- and cross-polarized channels). Good results were
also obtained in the co-polarized channel in recognizing real polarimetric signatures of
helix. The results of the SA-based method in recognizing real polarimetric signatures of
volume scattering are not so clear. However, since the chosen real signatures cannot be
treated as a pure representation of considered mechanisms, especially in case of helix and
volume scattering, the obtained outcomes are not surprising. The discrepancies can also be
associated with the models that were used in the proposed polarimetric signature-based
solution and in Yamaguchi decomposition to represent volume scattering.

The validation results obtained for SIRT-based decomposition applied to real SAR
data are presented in Table 10.

Table 10. Results of SIRT-based decomposition for real data (co- and cross-polarized channels).
Recognized signatures are specified in percentage.

Co-Pol Channel Cross-Pol Channel

β1 SB β2 DB β3 HX β4 VOL β1 SB β2 DB β3 HX β4 VOL

Real polarimetric
signature of SB (σSB) 95.51% 0.36% 0.58% 3.56% 98.82% 0.56% 0.09% 0.53%

Real polarimetric
signature of DB (σDB) 0.25% 94.07% 2.84% 2.84% 0.36% 98.96% 0.42% 0.26%

Real polarimetric
signature of HX (σHX) 2.06% 2.06% 65.98% 29.90% 17.46% 26.98% 33.33% 22.22%

Real polarimetric
signature of VOL (σVOL) 47.38% 52.33% 0.14% 0.14% 31.02% 33.34% 15.80% 19.84%

The results obtained using the SIRT method are very similar to those obtained using
the simulated annealing approach. The worst results were obtained for real signatures
of helix and volume scattering. However, for those cases, slightly better outcomes were
obtained in the case of the SIRT method.

In Table 11, the values of error revealed for SA- and SIRT-based methods in recognition
of real polarimetric signatures are compared.

Table 11. Inaccuracies for SA- and SIRT-based decompositions for real polarimetric signatures.
Recognized signatures are specified in percentage.

SA-Based Method SIRT-Based Method

εco εcross εco εcross

Real polarimetric
signature of SB (σSB) 2.6% 0.6% 2.2% 0.6%

Real polarimetric
signature of DB (σDB) 2.8% 0.5% 3.0% 0.5%

Real polarimetric
signature of HX (σHX) 23.1% 34.3% 17.0% 33.3%

Real polarimetric
signature of VOL (σVOL) 44.6% 44.7% 49.9% 40.1%

ε 18.3% 20.0% 18.0% 18.6%

It can be seen in Table 11 that for the co-polarized channel, both considered meth-
ods are characterized by inaccuracies in almost the same way (about 18%). However,
for the cross-polarized channel, the SIRT-based decomposition method works slightly
better in recognition of real polarimetric signatures. The improvement relates mainly to
σVOL recognition.
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To facilitate easier comparison of SA- and SIRT-based methods, the values from
Tables 2, 4, 7 and 11 are gathered in Table 12.

Table 12. Values of average errors for SA- and SIRT-based methods for each tested data set. Recog-
nized signatures are specified in percentage.

Synthetic
Signature
without
Noise

Synthetic
Signature

with White
Noise

Synthetic
Signature

with Colored
Noise

Linear Com-
bination of
Signatures

Real
Signature

Co-polarized channel

SA 0.00% 11.20% 12.90% 0.00% 18.30%
SIRT 0.00% 20.49% 10.43% 0.00% 18.00%

Cross-polarized channel

SA 0.00% 10.70% 1.50% 13.60% 20.00%
SIRT 9.80% 13.76% 12.50% 7.10% 18.60%

It can be seen in Table 12 that in the recognition of synthetic signatures of canonical
objects, the SA-based method derived better or almost the same results as the SIRT-based
approach. For tests performed for linear combinations of signatures, the SA-based method
in the cross-pol channel gave worse results than the SIRT method. In turn, the accuracy of
real signature recognition is almost the same for both tested approaches. However, taking
into account only the co-polarized channel, it can be stated that SA-based decomposition
allows for attainment of more accurate results. Therefore, this method and the co-polarized
channel were chosen for further testing.

5. GPU Processing

Application of polarimetric signatures in the decomposition procedure is associated
with the long computational time of this procedure. This is not a desirable effect. In order
to ensure reasonable computational time of the proposed decomposition, processing was
performed using graphic processing units (GPU). This approach delivers the possibility of
significantly increasing computation speed; however, it requires more programming skill.

Graphic processing units are built using different architecture than in the case of
regular computing processing units (CPU). GPUs consist of multiple arithmetic-logic units
(ALU), while CPUs are usually built using four cores nowadays. Graphic memory is
reorganized and logically portioned to provide for better utilization. Despite pointed
advantages, from the programmer’s point of view, GPU units are more difficult to use.
They require knowledge of a specific language (like CUDA or OpenCL) and compliance
with a sophisticated multithreaded approach. The programmer writes two codes: the first
is responsible for CPU-GPU communications and is called the host code (as it is executed
by host machine, a CPU), and the second is executed in a function called a “kernel” on the
GPU (referred as “device”).

In this work, CUDA language was chosen to increase computation speed of the pro-
posed decomposition using GPU. The main requirement was to use an NVidia graphic card,
the only hardware capable of using CUDA. Programs were compiled using CUDA 6.5 [36].

The simulated annealing algorithm is based on the synchronous solution presented
in [37]. However, the “synchronous” part was also moved to the kernel, which will be
explained later. This solution was chosen because it prevents the operating system from
rising watchdog limit and terminating long CUDA kernel executions (the program was
extended with real-time results visualization, so display context was required). Moreover,
Ferreiro et al. [37] noticed smaller errors using this approach.

Simulated annealing in the parallel approach starts with random coefficient initial-
ization in vector β0. The kernel, running in hundreds of threads in parallel, evaluates
one value of that vector per thread and, using evaluation formula, adjusts it in several



Energies 2022, 15, 72 18 of 22

steps. The results and the error are stored for further calculation. Then, using reduction
on the GPU, the best result (smallest error) is searched for, and the outcome is set as a
new input vector for the kernel. Then, the host loop performs the next kernel call, and the
process repeats.

In CUDA, every kernel call is asynchronous. The Ferreiro et al. [37] approach required
synchronization before reduction and temperature change because it was performed on
the host. The proposed method does not require synchronization until the last copying of
results. Reduction and temperature change were moved into the GPU.

What is more, to utilize the GPU more efficiently, texture memory was used. It might
be considerably faster because of the caching algorithm. Additionally, the values that
are known to be constant for whole execution of the program are kept in the GPU’s
constant memory.

Another significant improvement of the algorithm is the application of CUDA streams.
This technique allows the user to run multiple streams of command calls in parallel, hence
providing more results in a similar time [38]. In this application, the streams are used to
simultaneously calculate multiple values.

The idea of the implemented solution is presented in Lisitngs 1 and 2 below.

Listing 1. Simulated annealing host pseudocode.

Allocation of memory and textures
Random vector initialization (GPU)
Constant memory population
for desired number of steps do {

for each stream{
kernel_SA

}
for each stream{

kernel_reduction
}

}
Copy results to host

Listing 2. Simulated annealing kernel.

Select new best point as a starting point
Adjust temperature
Evaluation
for desired number of steps{

New random point
Evaluation
Update point if better

}
Save result

6. SA-Based Decomposition of Real SAR Images

The SA-based method, selected in the previous section the better model, was applied
for decomposition of the whole SAR image presented in Figure 6. The resulting images
presenting the scattering power of a particular scattering mechanism in each pixel are
presented in Figure 7. In order to facilitate the interpretation of the results, the powers of
double-bounce and helix scattering mechanisms are summed and presented in one image
(Figure 7). Both mechanisms occur in the case of man-made objects usually located within
urban areas.
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Decomposition is executed with the following input parameters for simulated an-
nealing and CUDA configuration of kernels and loop iterations. The simulated annealing
parameters were set to: T0 = 1000.0, dt = 1.0025, standard deviation std = 0.005 and maxi-
mum number of iterations = 500,000. The search space for all the elements of vector β was
set to 0–1000.

Comparison of the execution times on CPU and GPU was possible by adjusting the
number of iterations to the parallel environment of the GPU. Therefore, the number of
iterations performed on the CPU differs from the number of iterations of kernel execution
on the GPU. The calculations are performed in parallel (number of threads are multiplied
by number of blocks created), and every kernel evaluates the equation in loop, several times.
Hence, the number of kernel calls is significantly lower than the number of iterations in the
CPU version of the algorithm. For example, executing a CPU version of the algorithm in
500,000 steps would be equivalent to about 20 calls of CUDA kernels, running in 128 threads
on 32 blocks, with six iterations in each kernel. Average execution times of the SA procedure
measured for a single pixel performed using CPU and GPU are presented in Figure 7.

The results of the proposed SA-based polarimetric decomposition method were com-
pared to those obtained using Arii decomposition (Figure 8). Arii et al. [9] extend the
idea of model-based decompositions by creating an adaptive decomposition technique,
allowing for estimation of both the mean orientation angle and a degree of randomness
for the canopy scattering for each pixel in an image. No scattering-reflection symmetry
assumption is required to determine the volume contribution.

In general, the single-bounce mechanism is dominant in the case of surfaces like roads,
rivers, lakes, agriculture fields, etc. By comparing the image of power of the single-bounce
scattering mechanism obtained using the SA-based method with the corresponding image
of Arii decomposition (Figure 8a), it can be concluded that the latter seems to overestimate
single-bounce scattering for almost all terrain types. In contrast, the SA-based decomposi-
tion shows underestimation of this mechanism within agricultural fields. Both methods
correctly recognized the flat, elongated roofs of garages in the NE part of built-up area.
The assessed amount of the double-bounce mechanism, which is characteristic of vertical
structures, like walls of buildings, is more plausible in the case of the SA-based method.
The structure of the city is visible and very clear. The locations of individual buildings are
well recognized. There is no overestimation of double-bounce scattering within agricultural
fields and forests, which seems to take place in the case of Arii decomposition results
(Figure 8b). Both considered methods deal well with the recognition of buildings that are
rotated toward the radar line of sight. The reliability of the volume-scattering identification
is higher in the case of the SA-based method (Figure 8c). The power of volume scattering
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should be the highest for vegetated areas. Arii decomposition significantly overestimates
volume-scattering within built-up areas (Figure 8c). This is demonstrated for the NE part
of the built-up area, where the highest powers of the volume-scattering mechanism are
decomposed for buildings.
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Comparison of the decomposition results obtained using Arii and SA-based methods
shows that the newly proposed solution has a number of advantages. The most important
is the decrease in volume overestimation in the case of urban areas. This results in an easier
interpretation of results, especially for areas with buildings rotated around the radar line of
sight. In addition, the SA-based method identifies more volume-scattering mechanisms
within forests and does not overestimate single- and double-bounce within such regions,
as is in the case of Arii decomposition. The disadvantage of the proposed decomposition is
some underestimation of single-bounce scattering mechanisms within agriculture fields.

7. Summary and Conclusions

Application of the polarimetric signatures for decomposing the received radar signal
into basic scattering mechanisms is a new approach to the polarimetric decomposition
problem. The proposed decomposition method provides robust and high-quality results.
It was shown that the proposed method does not overestimate the volume-scattering
component in built-up areas and clearly separates objects within the mixed-up areas, where
both buildings and vegetation surfaces occur.

Two different approaches to the decomposition of polarimetric signatures were tested:
simulated annealing and SIRT methods. The simulated annealing algorithm was chosen
to search for the optimal solution of decomposition of real polarimetric signature into
canonical signatures.

The following answer to the question posed at the beginning can be given. Application
of polarimetric signatures, together with iterative methods for solving the system of linear
equations in decomposition, can provide additional information about the studied area.
Despite the fact that polarimetric signatures are calculated based on a scattering matrix
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and, theoretically, do not contain additional information, their utilization in decomposition
can be beneficial.

The proposed approach was very time-consuming; therefore, it was parallelized using
CUDA technology to be executed on graphical processing units. A special simulated
annealing algorithm was designed for execution on GPU. This resulted in a speeding up of
175 times compared to the regular CPU version. However, the time of the decomposition
of the 1500 × 1500 pixel a SAR image is still relatively long, which will require further
developments either of the decomposition algorithm itself or of its parallelized version.
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