
����������
�������

Citation: Oh, Y.-G.; Choi, W.-Y.;

Kwon, J.-M. Design of a Step-Up

DC–DC Converter for Standalone

Photovoltaic Systems with Battery

Energy Storages. Energies 2022, 15, 44.

https://doi.org/10.3390/en15010044

Academic Editor: Jelena Loncarski

Received: 23 November 2021

Accepted: 20 December 2021

Published: 22 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Design of a Step-Up DC–DC Converter for Standalone
Photovoltaic Systems with Battery Energy Storages

Yun-Gyeong Oh 1, Woo-Young Choi 2 and Jung-Min Kwon 1,*

1 Department of Electrical Engineering, Hanbat National University, Daejeon 34158, Korea; 5yun5@naver.com
2 Division of Electronic Engineering, Jeonbuk National University, Jeonju 54896, Korea; wychoi@jbnu.ac.kr
* Correspondence: jmkwon@hanbat.ac.kr

Abstract: This paper proposes a step-up DC–DC converter for a power electronic circuit for stan-
dalone photovoltaic systems with battery energy storages. The proposed DC–DC converter effectively
converts low DC battery voltage into high DC-link voltage. It operates with soft-switching char-
acteristics, which can reduce switching power losses. The proposed converter operates without
output voltage feedback, which simplifies its control design. The operation principle of the proposed
converter was described, along with the overall system configuration. The experimental results were
discussed for the 500-W prototype system using a 12-V lead-acid battery.

Keywords: photovoltaic; stand-alone; step-up; converter; push-pull converter; resonant voltage
doubler rectifier

1. Introduction

The standalone photovoltaic (PV) systems are widely used in the off-grid areas. In
general, the standalone PV systems consist of photovoltaic panels, a maximum power
point tracking (MPPT) charger, a battery energy storage, and a standalone inverter [1,2]. As
shown in Figure 1, The MPPT charger extracts the maximum power from the PV panels
and charges the battery. The battery stores excess power, which can be stably supplied
to loads. A 12-V lead-acid battery is widely used since the lead-acid battery is relatively
inexpensive and easy to handle. The standalone inverter has the intermediate DC–DC
converter and the single-phase inverter. This inverter converts the low battery voltage into
the sinusoidal AC output voltage.
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Figure 1. Configuration of the Standalone PV Systems.

In a typical standalone inverter, the full-bridge inverter is used with a bulky line-
frequency transformer. However, the line-frequency transformer increases the cost and the
size and lowers the overall power efficiency. In order to cope with these drawbacks, various
types of DC–DC converters utilizing high-frequency transformers have been designed for
the intermediate DC–DC converter [3,4]. These converters provide high power conversion
efficiency along with the advantages of small size and light weight.

The current-fed DC–DC converters are suitable for the intermediate DC–DC converter,
which has low input voltage and high current batteries. It has the advantages such as a
low input current ripple, low conduction loss, high voltage conversion ratio, and reduced
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transformer turns’ ratio [5–8]. However, the current-fed converters have a boost inductor
at the input terminal, which results in large size and high cost. In addition, they have
high voltage spikes for power switches resulting from the stored energy at the boost
inductor. On the other hand, the voltage-fed DC–DC converters have low primary switch
voltage stress, minimal components, and small size [9–21]. The voltage-fed converters
can be classified into the unidirectional core excitation topology and the bidirectional
core excitation topology. The unidirectional core excitation topology such as flyback and
forward converters has low magnetic core utilization since the magnetic flux is unbalanced
and saturated [9]. Therefore, the unidirectional core excitation topology converters are used
at low power level applications. Compared to the unidirectional core excitation converters,
the bidirectional core excitation topology such as push–pull, half-bridge, and full-bridge
converters have higher magnetic core utilization [10–13]. Therefore, the bidirectional core
excitation topology converters are used for higher power level applications.

As a voltage-fed converter, the push–pull converter has desirable features for an in-
termediate DC–DC converter [13,14]. The push–pull converter has two power switches
with a common ground, which can have simple gate-driving circuits. Additionally, it
has a simple structure, galvanic isolation, and high voltage conversion ratio. If the
soft switching is achieved, it has low switching losses, high efficiency, and improved
electromagnetic interference.

Unfortunately, the major drawback of the push–pull converter is that the voltage
stress of the switches is twice the input voltage. To reduce the switching losses, several
topologies are proposed. The active clamp or auxiliary circuits are employed to absorb
voltage spike and achieve soft switching [14,15]. However, it increases the components,
control complexity, size, and cost of the designed converter. The resonant techniques are
employed to suppress voltage spike [16–22], which provides the soft switching operation
of power switches at the primary side. However, the switching power losses should be
considered at the secondary side, where power diodes generate switching power losses
during their switching operations.

This paper proposes a step-up DC–DC converter, which can effectively convert low
battery voltage into high dc-link voltage for the standalone PV systems. As shown in
Figure 2, the proposed step-up DC–DC converter consists of the push–pull converter and
resonant voltage doubler rectifier. The resonant voltage doubler rectifiers provide a higher
voltage conversion ratio and reduce the high turns’ ratio in the transformer [16–22]. It
operates in the discontinuous conduction mode (DCM) to reduce the switching losses
and to remove the reverse-recovery losses for the power diodes at the secondary side.
The primary switches operate under the zero-voltage switching (ZVS) operation. The
diodes are turned off at zero current due to resonance between leakage inductance Llk
and resonant capacitors Cr1 and Cr2. The proposed step-up DC–DC converter can operate
with the open loop condition by removing the auxiliary circuits for the output voltage
feedback control. To show the entire control strategy for the proposed step-up DC–DC
converter, the overall PV standalone system was suggested. The 500-W prototype was
implemented with minimal components. This paper is organized as follows. In Section 2,
the step-up DC–DC converter is analyzed. Its operation principle (2.1) is described for
the steady-state operation condition. Its design guidelines (2.2) are also presented for the
high-frequency transformer and the resonant circuit components. In Section 3, the control
strategy of the DC–DC converter is presented. The overall system configuration (3.1) is
described. The detailed control schemes (3.2) for power electronic circuits are introduced.
In Section 4, the experimental results are discussed for the 500-W prototype system. Twelve-
V lead-acid batteries were utilized for battery energy storages. A step-down DC–DC
converter converted the photovoltaic power into the battery power. Experimental results
verified the effectiveness of the proposed DC–DC converter. Finally, Section 5 gives the
concluding remarks.
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Figure 2. Proposed step-up DC–DC converter. 
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2. Proposed Converter
2.1. Operation Principle

The proposed step-up converter, as shown in Figure 2, consisted of the push–pull
converter and the resonant voltage doubler rectifier. The switches S1 and S2 operated
alternately with 50% duty of the switching cycle. The resonant voltage doubler rectifier
was composed of the diodes D1 and D2 and resonant capacitors Cr1 and Cr2. It was driven
in the DCM to reduce current stress of the switches and achieve zero current turn off the
diodes. The following assumptions were made for simplified analysis.

1. The switches S1 and S2 were ideal except for their body diodes DS1 and DS2, respec-
tively.

2. The high frequency transformer had a turn ratio 1:n and was modeled as the magne-
tizing inductances Lm and leakage inductance Llk.

3. The output voltage of DC link Vd was constant because the DC link capacitor Cd was
sufficiently large.

4. The resonant capacitors Cr1 and Cr2 had the equal capacity to operate symmetrically.

The proposed high step-up DC–DC converter was divided into six operation modes.
Figures 3 and 4 show the three operation modes and their theoretical waveforms, respec-
tively. Prior to Mode 1, the switch S2 was turned on, allowing the current to flow slightly.
The current ilk across the leakage inductance Llk was zero.

Mode 1 [t0, t1]: At t0, the switch S2 was turned off with the current stress reduced.
The voltage across switch S2 was rapidly charged to twice the battery voltage Vbat. The
drain-source current iS1 across switch S1 discharged the drain-source voltage VS1 across
switch S1 to zero and flowed through the body diode DS1. The magnetizing current im
increased linearly as follows:

im(t) = im(t0) +
nVbat(t− t0)

Lm
(1)

Mode 2 [t1, t2]: At t1, the switch S1 was turned on at zero voltage. The power was
transferred to the DC link through the transformer. The inductance Llk and resonant
capacitors Cr1 and Cr2 resonated and the current ilk flowed through the diode D1. The state
equation can be written as follows:

Llk
diLlk(t)

dt
= nVbat − vCr1(t) (2)

Vd = vCr1(t) + vCr2(t) (3)

ilk(t) = Cr1
dvcr1

dt
− Cr2

dvcr2

dt
= Cr

dvcr1

dt
(4)
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where the resonant capacitor Cr is as:

Cr = Cr1 + Cr2 (5)

From Equations (2)–(4), the voltage vcr1 across the resonant capacitor Cr1 is derived as:

vcr1(t) = nVbat − [nVbat − vcr1(t1)]cosωr(t− t1) (6)

Since the initial value of ilk is zero, ilk is obtained as:

ilk(t) =
nVbat − vcr1(t1)

Zr
sinωr(t− t1) = Ilk, peaksinωr(t− t1) (7)

where Ilk,peak is the peak of ilk. The impedance Zr and the angular resonance frequency ωr
are written as follows:

Zr =

√
Llk
Cr

, ωr =
1√

LlkCr
(8)

The voltage across the leakage inductance Llk is obtained as:

Vlk(t) = nVbat − vcr1(t1)cosωr(t− t1) (9)

In the primary side, the voltage of each transformer had Vbat. Thus, the voltage across
the switch S2 was twice Vbat and the im still increased linearly. The total iS1 current is as:

iS1(t) = n(ilk(t) + im(t)) (10)

Mode 3 [t2, t3]: At t2, the current ilk became zero. Thus, the diode D1 was turned off at
zero current and the reverse recovery losses were removed. Then, voltage across leakage
inductance Llk was zero and the voltage across diode D1 became the reverse voltage of the
leakage inductance as follows:

VD1 = Vd − nVbat (11)

The current im continues to increase linearly as follows:

iS1(t) = nim(t) = nim(t2) +
n2Vbat(t− t2)

Lm
(12)

If magnetizing inductance was sufficiently large, the magnetizing current im was
almost zero and the switch S1 could be turned off at zero current.

The analysis of Modes 4, 5, and 6 is omitted since it is symmetrically repeated during
the remaining half switching cycle.

2.2. Design Guidelines

To eliminate the reverse recovery losses of the diode and reduce current stress of the
switches, the current ilk decreased to zero before t3. From Equation (7), ilk is expressed
as follows:

ilk(t2) = Ilk, peaksinωr∆t = 0 (13)

where ∆t is the resonant period as follows:

∆t = 2π
√

Llk·Cr (14)

Since the proposed converter operated in the DCM condition, the resonant period was
shorter than the half of TS. Therefore, the switching frequency fs should be lower than the
resonant frequency fr as follows:

fs < fr =
1

2π
√

Llk·Cr
(15)
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From Equation (15), the resonant capacitors Cr1 and Cr2 can be designed as:

Cr1 + Cr2 = Cr <
1

(2π fs)
2Llk

(16)
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Figure 3. Operation modes: (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; and (f) Mode 6.

In order to reduce the size and the cost of the converter, a high frequency transformer
was used in the proposed converter. Figure 5 shows the winding structure of the proposed
transformer. The transformer was separately coiled around the primary and secondary
windings utilizing a double E core. This method can be used to integrate a resonant inductor
and the transformer. The leakage inductance of the transformer constituted the resonant
inductor. It was possible to remove the passive component and resonant inductor. Based
on the proposed method, the high frequency transformer of the converter was designed.
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3. Control Strategy
3.1. Overall System

Figure 6 shows the overall system diagram of the PV standalone converter with
the simple controller, which included the entire control. It was realized in low power
applications. As shown in Figure 6, the overall system consisted of the synchronous buck
converter, the proposed DC–DC converter, and the conventional full-bridge inverter. The
synchronous buck converter extracted the power from the panels through the conventional
perturb and observe (P&O) MPPT control and charged the battery. The proposed DC–DC
converter boosted the low battery voltage to the sufficient voltage to the inverter operation.
The conventional full-bridge inverter converted the DC voltage into the sinusoidal AC
output voltage.
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3.2. Control Scheme

To design the control system for the overall standalone PV system with the open
loop operation, two independent microcontrollers were used for the primary side and the
secondary side. The primary side microcontroller controlled the buck converter and the
proposed DC–DC converter. The buck converter performed the conventional P&O MPPT
algorithm to extract the maximum power from PV arrays. The proposed DC–DC converter
operated with 50% duty of the switching cycle in open loop control. This operation scheme
effectively provided the sufficient voltage for the inverter operating without sensing the
DC voltage. It had a fast dynamic response and a simple control structure with low-cost
implementation. The secondary side microcontroller controlled the conventional full-bridge
inverter for its standalone operation. Figure 7 shows the control diagram for the full-bridge
inverter. The proposed control design reduced the control complexity and simplified
its associated circuit layouts by eliminating the auxiliary circuits for the output voltage
feedback control.
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4. Experimental Results

To verify the theoretical analysis of the proposed converter for the steady-state con-
dition, the proposed converter was simulated using PSIM 2020a. The major components
and parameters are shown in Table 1. Figure 8 shows simulation waveforms in the half
load. Figure 8a shows the current and voltage waveforms of the switch S1 according to the
on/off switching states of switches in the one switching cycle. It shows that the current
across switch flowed negatively before the on state of the power switch. Thus, the switches
were turned on at the zero voltage. Additionally, it shows that the current across switches
was reduced by the resonance of the leakage inductance and resonant capacitors before
the switch was turned off. Thus, the current stresses across the switches were minimized
when the switches were turned off. Figure 8b shows current and voltage waveforms of the
diode in the one switching cycle. It shows that the current across the diode decreased to
zero. Then, the voltage across leakage inductance became zero and the voltage across the
diode became the reverse voltage of the leakage inductance. Thus, the diodes were turned
off at the zero current, and the reverse recovery losses were removed.

Table 1. Major components and parameters.

Symbol Part and Parameters Value

Vbat Battery voltage 12 V
vac AC output voltage 220 Vrms
fS,dc Switching frequency (DC–DC converter) 52 kHz
fS,inv Switching frequency (inverter) 17 kHz
1:n Transformer turns’ ratio 1:16
Llk Leakage inductance 112 µH
Lm Magnetizing inductance 1.6 mH
Lo Output inductance 5 mH

Cr1, Cr2 Resonant capacitors 47 nF
S1, S2 Primary switches (MOSFETs) IRF2804S

MOSFET Driver MIC4427
D1, D2 Secondary diodes 16CTU04S,

Transformer core EER4950
MCU Microcontroller dsPIC33CK32MC105
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To validate the performance of the proposed converter, a 500-W prototype was devel-
oped. Figure 9 shows the picture for the experimental step up of the prototype converter.
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Figure 10 shows the experimental waveforms of the proposed prototype converter. Fig-
ure 10a shows the measured current and voltage waveforms of the switch. The switches
were turned off with soft switching at zero voltage and turned on at the minimized current.
Figure 10b shows the measured current and voltage waveforms of the diode. Before the
diode D1 was reversely biased, the diode current iD1 reached zero and achieved the zero-
current turn-off of the diode. After the diode current reached zero, there were parasitic
voltage oscillations due to the resonance between stray inductance and capacitance. Fig-
ure 11 shows the output current io and the output voltage vo where vo and io are sinusoidal
with 60 Hz. Figure 12 shows the power efficiency of the proposed converter at half-load
condition according to the battery voltage. The efficiency was 93.1% at battery voltage 12 V.
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This paper proposed a step-up DC–DC converter for a power electronic circuit for
standalone photovoltaic systems with battery energy storages. The proposed converter
operates with soft-switching characteristics in the DCM. The primary switches achieved
zero voltage turn on without active clamp circuit or auxiliary circuit to suppress the voltage
spike. The secondary diodes achieved zero current turn off. Additionally, the resonant
voltage doubler rectifier provided high voltage conversion capability and reduced the high
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were turned on. Thus, the efficiency increased at minimal components. The control
without output voltage control was suggested by using two independent controllers, which
simplifies its control design. The overall system configuration and its operation principle
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