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Abstract: In this article, we present a numerical analysis of the energy and mass transport behavior
of microrotational flow via Riga plate, considering suction or injection and mixed convection. The
thermal stratified parameters of nanofluid are captured using an interpretation of the well-known
Keller box model, which helps us to determine the characteristic properties of the physical parameters.
The formulated boundary layer equations (nonlinear partial differential equations) are transformed
into coupled ODEs with nonlinearities for the stratified controlled regimes. The impact of embedded
flow and all physical quantities of practical interest, such as velocity, temperature, and concentration
profile, are inspected and presented through tables and graphs. We found that the heat transfer on
the surface decreases for the temperature stratification factor as mass transfer increases. Additionally,
the fluid velocity increases as the modified Hartmann number increases.

Keywords: Riga plate; double stratification; Brownian motion; thermophoresis; mixed convection;
suction or injection

1. Introduction

A large number of examinations on non-Newtonian fluids with applications in many
areas including materials science, fluid mechanics, chemistry, and biology have been
carried out in recent years. Different studies aimed to identify the mixed convection
effects on the squeezed flow of Sutter by fluid in the presence of double stratification. The
double stratification of liquid occurs due to the concentration and temperature differences.
Thermal stratification happens when two kinds of streams come in to contact with different
temperatures. Their temperature distinction makes the colder and heavier water settle at
the lower part of the liquid surface, while permitting the hotter and lighter liquid to drift
over the cold liquid [1]. From a modern perspective, numerous applications use the idea
of double stratification, for example, heat dismissal from climate nuclear power storing
frameworks and sun-based energy as better stratification results in the higher energy
execution. Numerous studies have been performed to explore the numerical analysis
of double stratified convective flow [2–5]. Waqas et al. [6] studied stratified Oldroyd-B
nanofluid flow via the homotopy technique. Daniel et al. [7] considered double stratification
with additional slip effects for nanofluids. Recently, Eswaramoorthi et al. [8] studied double-
stratification impacts on Williamson liquid for Riga surface. Mutuku and Makinde [9]
conducted a numerical study of double-stratification effects for the Buongiorno model.
Aaiza et al. [10] examined energy transfer in a mixed convection MHD flow of nanofluid
containing different shapes of nanoparticles. They considered the fluid a channel filled
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with saturated porous medium. In addition, Hayat et al. [11] investigated nanoliquids over
an extended surface by incorporating stratified impacts.

The poor temperature conductivity of traditional coolants such as water, crude oil,
mineral oil, etc., has limited the cooling capabilities of heat transfer devices. Notably,
metals have somewhat high thermal conductivity compared to liquids. Hence, dissipating
nanometer-sized metallic particles in liquids is perhaps the best method to further develop
heat movement. The concept of nanofluid was introduced by Choi and Eastman [12]
to address most problems of practical interest. Over the past few centuries, engineers
and scientists have successfully investigated nanofluid convective heat transfer [13–17].
Recently, Rafique et al. [18] investigated micropolar nanofluid flow over a slanted surface
and portrayed the inclination effect.

Nowadays, numerous issues in different fields of engineering and industry need
to be addressed due to their significant applications in daily life, such controlling an
engine’s temperature, machine speed, construction, and other scientific uses. The model of
micropolar liquid might be used to develop models of the dust or smoke particles in gas or
the environment. Unfortunately, these issues or models have some complicated nonlinear
terms that are difficult to tackle logically. A few techniques can be utilized to address such
problems: a notable technique is the Keller box technique. Rafique et al. [19] studied the
characteristics of the microrotational effect on heat and mass transport rates via the Keller
box scheme. Recently, Koriko et al. [20] investigated bioconvection flow by considering
nanoparticles and gyrotactic micro-organisms. Mabood et al. [21] examined micropolar
fluid flow for a moving plate and drawn streamlines. In addition, micropolar fluid flow on
a wavy slanted was plate discussed by Srinivasacharya and Ramana [22].

In addition to all the key problems experienced with linear extending sheets, the
available literature also describes the flow produced via an exponential extending surface
as a significant factor in the vast field of engineering and processing. Initially, Magyari
and Keller [23] started the analysis of flow through an exponentially stretching surface.
They studied the energy and mass exchange phenomenon of fluid flow over a surface
that is stretched with an exponential velocity. Later, Elbashbeshy [24] extended their work
for heat transport with the addition of the suction/injection factor. Bidin and Nazar [25]
numerically investigated the exponential extending surface with the influence of radia-
tion. Hayat et al. [26] examined a stretching Riga plate by incorporating variable thick-
ness effects. Shaw et al. [27] investigated an extending Riga surface with variable effects.
Nadeem et al. [28] considered an exponential stretching Riga plate for the nanofluid regime.
Moreover, Eid [29] discussed the extending Riga surface with the impacts of radiation. Re-
cently, Abbas et al. [30] studied nanofluid flow for an exponentially extending Riga surface.
The latest work on a stretching Riga plate was performed by Alotaibi and Rafique [31]
considering mixed convection impacts.

To the best of our knowledge, no previous studies of the micropolar nanofluid flow
generated by exponentially stretching Riga plate for double stratification have been re-
ported. The impact of stratification is a significant aspect in energy and mass exchange
investigations. Double stratification occurs due to different densities, different temper-
atures, and different concentrations of liquids. In the phenomenon of energy and mass
transport, it is important to analyze the impact of double stratification on flow. The study of
mixed convection in a double-stratified medium is a research hotspot due to its significance
in nuclear power, solar ponds, geophysical flows etc. [32]. In this study, we aimed to
address such limitations and develop and provide theoretical support for and to further
develop the study of non-Newtonian fluids with practical applications. The system of
equations was numerically solved using the boundary value problem solver (Keller box),
which is available in MATLAB. A direct comparison with the findings in the literature
for specific conditions confirmed the accuracy of our current work. This study’s findings
will be useful in chemical and biomedical applications, such as breast cancer tumors and
human thermal plumes, and other engineering applications.
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2. Materials and Methods

In this study, we adopted a 2D-steady micropolar nanofluid with an exponentially
stretching sheet, considering double stratification and suction or injection. We assumed
that the velocity of the stretching plate has an exponential form, i.e., uw(x) = u0e

x
l . The

velocities field along the x and y axis are u, and v, respectively. The flow is characterized
by velocity, which is governed by a randomly expanding surface. The fluid elements in
the micropolar nanofluid have a stronger ability to stay in place before colliding with
another fluid molecule, resulting in gyration effects as these molecules spin in the fluid
continuum [33]. The gyration vector in a micropolar nanofluid is an ideal replacement
for exhibiting the conjugate effects of heat and mass transport. The Riga plate structure
presented in Figure 1, while the physical model of current flow presented in Figure 2. The
equations defining the computational domain are provided below.
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The basic equations were developed from [34]:

∂u
∂x

+
∂v
∂y

= 0 (1)
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u
∂u
∂x

+ v
∂u
∂y

=

(
µ + k∗1

ρ

)
∂2u
∂y2 +

(
k∗1

ρ

)
∂N∗

∂y
+ g[βt(T − T∞) + βc(C− C∞)] +

(
π j0M0

8ρ

)
e−

yπ
p (2)

u
∂N∗

∂x
+ v

∂N∗

∂y
=

(
γ∗

j∗ρ

)
∂2N∗

∂y2 −
(

k∗1
j∗ρ

)(
2N∗ +

∂u
∂y

)
(3)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + τ

[
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
]

(4)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 (5)

The suitable boundary conditions for this flow regime are given as

u = uw(x), v = −vw(x), N∗ = −m0
∂u
∂y , T = Tw(x), C = Cw(x) at

y = 0, u→ 0, v→ 0, N∗ → 0, T → T∞(x), C → C∞(x) at y→ ∞
(6)

where

T∞(x) = T0 + ce
x
2l , C∞(x) = C0 + f e

x
2l , Tw(x) = T0 + be

x
2l , Cw(x) = C0 + de

x
2l

Applying

u = u0e
x
l f ′(η), v = −

√
vu0
2l { f (η) + η f ′(η)} e

x
2l , η = y

√
u0
2lv e

x
2l

θ(η) = T−T0
Tw−T0

, φ(η) = C−C0
Cw−C0

N∗ =
( u0

2lν
)
e

3x
2l
√

2lνu0 h (η)
(7)

with the use of Equation (7), Equations (2)–(5) take the above form, and Equation (1) is
identically satisfied.

(1 + K) f ′′′ + f f ′′ − 2 f ′2 + kh′ + Me−mη + (λθ + δφ) = 0 (8)(
1 +

K
2

)
h′′ + h′ f − h f ′ − K( 2h + f ′′ ) = 0 (9)

θ′′ + PrNbφ′θ′ + PrNtθ′2 + Pr
(

f θ′ − f ′θ
)
− St1 f ′ = 0 (10)

φ′′ + Ntbθ′′ + Le
(

f φ′ − f ′φ
)
− St2 f ′ = 0 (11)

In the previous dimensionless equations, the prime emphasizes differentiation with
respect to η, and ρ is the fluid’s kinematic viscosity; M denotes the modified Hartmann

number; Pr is the Prandtl quantity; m = π
p

√
υ
a is the dimensionless parameter; Le is the

Lewis quantity; K is the dimensionless vortex viscosity; λ denotes the local Grashof number
δ denotes the modified Grashof number; Ntb = Nt

Nb , where Nb denotes Brownian motion
and Nt deontes thermophoresis variable; and St1, St2 are stratification parameters.

ν = µ
ρ f

, Pr = ν
α , Nb = τ

DB (Cw−C∞)
V ,NT = τ

DT (Tw−T∞)
VT∞

, K =
k∗1
µ , j∗ = υ

α ,

λ = 2l
Re2 gβt(Tw − T∞), St1 = c

b , St2 = f
d , δ = 2l

Re2 gβc(Cw − C∞), M = lπ J0 M0
4ρuw

2

(12)

The boundary conditions (6) are changed to:

f (η) = S, f ′(η) = 1, h(η) = 0, θ(η) = 1− St1, φ(η) = 1− St2 at η = 0
f ′(η)→ 0, h(η)→ 0, θ(η)→ 0, φ(η)→ 0 as η → ∞

(13)
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We signify the following quantities associated with local Nusselt number, local Sher-
wood number, and skin friction;

Nux =
xqw

k(Tw − T∞)
, qw = −k

∂T
∂y

Shx =
xqm

DB(Cw − C∞)
, qm = −DB

∂C
∂y

C f =
tw

ρuw2 , τw = (µ + k∗1)
∂u
∂y

+ k∗1 N∗

The above relation can also be written in the form:

− θ′(0) =
Nux√

Re

− φ′(0) =
Shx√

Re

C f x = C f
√Rex

The local Reynolds number is Re = uwx
ν .

3. Results

Numerical simulation was performed to obtain the energy and mass exchange charac-
teristics of the flow field against different parameters. The current investigation incorpo-
rated physical parameters such as the Brownian motion parameter Nb; the thermophoresis
parameter Nt, the stratification coefficients St1, St2; the suction parameter S; the Prandtl
number Pr; the material parameter K; the modified Hartmann number M; and the Lewis
number Le. For the approximate solution of ordinary differential equations that are nonlin-
ear Equations (8)–(11) influenced by boundary conditions (13), we performed a numerical
procedure using the Keller box method. Table 1 compares our results with those in the
literature, whereas Table 2 presents the impacts of incorporating parameters of energy and
mass exchange changes. In this study, w aimed to investigate the heat and mass exchange
rates in the presence of double stratification and exponential velocity over a Riga plate.
Figure 3 depicts the behavior of velocity field with respect to η for numerous variations
in the modified Hartmann number M. An acceleration was produced in velocity as we
increased the strength of M. This concurs well with the physics of the problem, because
M > 0 helps the flow phenomenon during flow distribution. The pattern in this figure
shows that with increasing strength of M, the external electric field strengthened. As
a result, the velocity profile increased. In such circumstances, as the magnetic strength
increased, there was an equivalent increase in the electromagnetic field. Moreover, the
Lorentz powers prompted by Riga plate, corresponding to the surface, produced more
surface strain; accordingly, the liquid speed increased. Figure 4 presents the impact of
suction/injection factor S on the velocity field. We found that the boundary layer thickness
decreased with the increase in S > 0, while the opposite behavior was observed in the case
of injection S > 0.

Figures 5 and 6 show that the temperature profiles increased with increasing values
of Nb and Nt respectively. As Brownian motion is the random movement of the fluid
particles, in return, more heat was generated and temperature distribution was enhanced.
If the particles had kinetic energy, this would lead to a collision of particles, because
thermophoresis causes tiny particles to move away from hotspots to cold surfaces. Figure 7
depicts the effects of thermal stratification St1 on the temperature profile, showing that the
temperature profile decreased for increases in St1, since increases in St1 decreased surface
temperature and decreased the thickness of the thermal boundary layer. Figure 8 displays
the behavior of Nb, where the concentration profile declines as the Nb value increases.
Figure 9 shows the effect of Nt: the concentration distribution increases and increase the
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value of Nt. Figure 10 shows the result of the stratified parameter on the concentration
profile, where the concentration profile decreases with the growth in St2. It is clear that
increases in St2 reduce the concentration difference between the liquid and sheet.

Table 1. Comparison of our result with those previously published when Nb = Nt = Le = δ = K =

λ = η = m = S = St1 = St2 = 0.

Pr M
Bidin and Nazar [25] Present Results

−θ′(0) −θ′(0)

1 0 0.9548 0.9548
2 0 1.4714 1.4714
3 0 1.8691 1.8691

Table 2. Values of −θ′(0), −φ′(0), and Cfx(0).

Nb Nt Pr Le M K S St1 St2 m λ δ η −θ′(0) −φ′(0) Cfx(0)

0.1 0.1 6.5 5.0 0.1 1.0 0.1 0.1 0.5 1.0 0.1 1.0 0.1 0.9752 0.3786 0.8619
0.5 0.1 6.5 5.0 0.1 1.0 0.1 0.1 0.5 1.0 0.1 1.0 0.1 0.4772 0.6934 0.9391
0.1 0.5 6.5 5.0 0.1 1.0 0.1 0.1 0.5 1.0 0.1 1.0 0.1 0.4795 0.9095 0.6288
0.1 0.1 10.0 5.0 0.1 1.0 0.1 0.1 0.5 1.0 0.1 1.0 0.1 1.0108 0.3957 0.8560
0.1 0.1 6.5 10.0 0.1 1.0 0.1 0.1 0.5 1.0 0.1 1.0 0.1 0.9090 0.7549 0.9376
0.1 0.1 6.5 5.0 0.5 1.0 0.1 0.1 0.5 1.0 0.1 1.0 0.1 1.0068 0.4239 0.3894
0.1 0.1 6.5 5.0 0.1 3.0 0.1 0.1 0.5 1.0 0.1 1.0 0.1 0.9896 0.3971 1.2545
0.1 0.1 6.5 5.0 0.1 1.0 0.5 0.1 0.5 1.0 0.1 1.0 0.1 0.2550 0.4297 0.6916
0.1 0.1 6.5 5.0 0.1 1.0 0.1 0.5 0.5 1.0 0.1 1.0 0.1 0.5881 0.4757 0.9169
0.1 0.1 6.5 5.0 0.1 1.0 0.1 0.1 0.7 1.0 0.1 1.0 0.1 1.0369 0.0518 0.9238
0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.5 2.0 0.1 1.0 0.1 0.9742 0.3771 0.8749
0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.5 1.0 0.5 1.0 0.1 0.9804 0.3823 0.7440
0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.5 1.0 0.1 1.5 0.1 0.9871 0.3884 0.6191
0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.5 1.0 0.1 1.0 0.5 0.9771 0.3770 0.7896

The bold letters present the variations in involved parameters where remaing parameters are fixed.
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4. Conclusions

In this study, we addressed stratified micropolar nanofluid flow over an exponentially
stretchable Riga surface. The Keller box scheme was applied to obtain the results of the
modeled flow equations. From this analysis, our most important findings are summa-
rized as:

• The thermal stratification factor St1 decreases the energy exchange rate while the
concentration stratification factor St2 increases the mass exchange rate.

• Energy and mass transport rates are directly related to the local and modified Grashof
numbers.

• The dimensionless factor (m) shows and inverse relationship with the energy and
mass exchange rate.

• The temperature profile increases while the concentration profile decreases with
increasing Nb.

• As Nt increases, both temperature and concentration increase.
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Nomenclature

C fluid concentration
C f Skin friction
Cp Specific heat at constant pressure
Cw Surface volume fraction
C∞ Ambient nanoparticle volume fraction
DB Brownian diffusion coefficient
DT Thermophoretic diffusion coefficient
f Similarity function for velocity
g Gravitational acceleration
J∗ Micro inertia per unit mass
K Material parameter
k Thermal conductivity
k∗1 Vertex viscosity
l Reference length
Le Lewis number
M Modified Hartmann number
N∗ Nondimensional angular velocity
Nb Brownian motion parameter
NT Thermophoretic parameter
Nu Nusselt number
Pr Prandtl number
Rex Reynolds number
Sh Sherwood number
St1 Thermal stratification
St2 Concentration stratification
T Fluid temperature
Tw Wall temperature
u Velocity in the x direction
uw Wall Velocity
u∞ Ambient velocity
v Velocity in the y direction
x Cartesian coordinate
α Thermal diffusivity
βc Concentration expansion coefficient
γ∗ Spin gradient viscosity
δ Modified Grashof number
λ Local Grashof number
η Similarity independent variable
ρ Wall velocity
ν Dynamic viscosity
σ Electric conductivity
Θ Dimensionless temperature
∞ Ambient condition
w Condition at the wall
′ Differentiation with respect to η
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