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Abstract: With the rise of the electric vehicle market share, many logistic companies have started
to use electric vehicles for goods delivery. Compared to the vehicles with an internal combustion
engine, electric vehicles are considered as a cleaner mode of transport that can reduce greenhouse
gas emissions. As electric vehicles have a shorter driving range and have to visit charging stations
to replenish their energy, the efficient routing plan is harder to achieve. In this paper, the Electric
Vehicle Routing Problem with Time Windows (EVRPTW), which deals with the routing of electric
vehicles for the purpose of goods delivery, is observed. Two recharge policies are considered: full
recharge and partial recharge. To solve the problem, an Adaptive Large Neighborhood Search (ALNS)
metaheuristic based on the ruin-recreate strategy is coupled with a new initial solution heuristic, local
search, route removal, and exact procedure for optimal charging station placement. The procedure
for the O(1) evaluation in EVRPTW with partial and full recharge strategies is presented. The ALNS
was able to find 38 new best solutions on benchmark EVRPTW instances. The results also indicate the
benefits and drawbacks of using a partial recharge strategy compared to the full recharge strategy.

Keywords: electric vehicle; goods delivery; vehicle routing problem; metaheuristics; charging station;
electromobility

1. Introduction

The Electric Vehicle Routing Problem (EVRP) aims to determine a set of least-cost
electric delivery routes from a depot to a set of geographically scattered customers, subject
to side constraints [1]. The problem is a special case of the well-known Vehicle Routing
Problem (VRP), in which the delivery is performed by the conventional Internal Com-
bustion Engine Vehicles (ICEVs). The application of VRP in several real-life optimization
problems has led to the definition of many problem variants over the years [2,3]. As the
EU tends to decrease Greenhouse Gas (GHG) emissions in the transport sector by 40%
by 2030, [4], new actions and regulations related to the use of cleaner transport modes
have been proclaimed [5]. Here, Electric Vehicles (EVs) come to the fore, as compared
to ICEVS, they have several advantages: (i) they do not have local GHG emissions; (ii)
produce minimal noise; (iii) can be powered from renewable energy sources; and (iv) are
independent of fluctuating oil prices [6–8]. In this paper, the focus will be on the Battery
Electric Vehicles (BEVs), which have batteries mounted inside the vehicle. Compared to
ICEVSs, delivery BEVs also have a significant drawback: limited driving range, usually
in 160–240 km range [9]. To achieve a similar driving range as ICEVs (480–650 km [10]),
BEVs have to visit a Charging Station (CS) to replenish their energy. Another drawback of
BEVs is a relatively high purchase price, which can lead to a significant loss of value of the
car in the first years of its use [11]. As consumer heterogeneity and differences in ambient
temperature influence the cost-effective BEV range, Plug-in Hybrid EVs (PHEVs) could
come to the fore as they are suitable for drivers with a high average daily traveled distance
or large variance in the traveled distance [12].
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In the delivery process, visits to CSs have to be accounted for within two aspects: (i)
distance, time, and energy needed to travel to and from the CS, and (ii) recharging time at
CS. The basic variant of the EVRP problem is the Electric Vehicle Routing Problem with
Time Windows and Full Recharge at CSs (EVRPTW-FR) [1], which considers the following
constraints and assumptions: (i) vehicles have equal load capacities; (ii) vehicles have
equal battery capacities; (iii) energy level never drops below zero; (iv) each customer
has to be visited within its time window (only once); (v) each customer has a demand
(the amount of goods) and service time; (vi) linear recharging time at CS up to the full
battery capacity; and (vii) linear relation between energy consumed, distance traveled, and
travel time. The bi-objective function consists of the minimization of the total number of
vehicles (primary objective) and the minimization of the total routing costs (secondary
objective), which are usually expressed as total traveled distance, total energy consumed,
total travel time, total time, GHG emissions, recharging costs, and so forth [1,13–16]. Such
an objective function is contradictory, as with fewer vehicles, the secondary routing costs
increase, and vice versa.

Depending on the additional constraints added to the problem, several EVRP variants
emerged. As most of today’s vehicle fleets include only ICEVs, the BEVs are gradually
integrated into the existing fleet because the transition to a solely BEV fleet is a challenging
economic task. Therefore, the most natural extension of the problem is the mixed-fleet
EVRPTW [17–19], where a fleet of different vehicle types (BEVs, ICEVs, and hybrid EVs)
with varying load and battery capacities is used for the delivery. Another important variant
of the problem is the EVRPTW with Partial Recharge (EVRPTW-PR) [20–22], which instead
of the Full Recharge (FR), considers Partial Recharge (PR) at CSs. Using the PR strategy
could improve the solution quality, as less time could be spent on recharging, and most of
the energy could be replenished during the lower energy network load. As today, multiple
charging technologies are present: (i) battery swap stations, (ii) slow, (iii) fast, and (iv)
rapid charging, variants of the EVRPTW that consider different charger types and CSs
have also been introduced [16,23,24]. The other important variants of the problem consider
nonlinear charging function [25,26], simultaneous CS placement and routing [21,27–29],
waiting times at CSs [30,31], and so forth.

The EVRP is an Non-deterministic Polynomial (NP) hard problem, meaning that it
currently cannot be solved in polynomial time, but it can be verified. Therefore, the exact
procedures are capable of solving only small-sized problem instances (up to 50 customers),
with a relatively long execution time [22]. To efficiently solve the problem, a great number
of heuristic, metaheuristic, and hybrid procedures were proposed [7,32]. Usually, for each
variant of the problem, a metaheuristic with specially defined heuristic procedures is
proposed. Most researchers apply some form of the ALNS metaheuristic to solve the
problem [7,16–18,20,21,33]. The ALNS method is based on the ruin-recreate principle,
where throughout the search, the destroy-and-repair operators are applied based on their
previous performance values [34]. The use of versatile destroy-and-repair operators helps to
diversify the search and escape the local optima. The other applied metaheuristic methods
include a genetic algorithm [19], tabu search [1,35], variable neighborhood search [1,24,28],
simulated annealing [1,20,23], and so forth. To intensify the search, commonly, the Local
Search (LS) operators are used within the metaheuristic [1,21,36], as well as exact procedures
to determine the optimal CS placement [16,21].

One important aspect of the search method is the search strategy in terms of feasibility.
This refers to the strategy of searching in the infeasible or feasible solution space. The fea-
sible solution space represents solutions that satisfy all problem constraints. In recent
literature reviews [7,32] it was noted that the best known solutions (BKSs) to EVRPTW
problems on benchmark instances are mostly achieved by methods including an infeasible
search strategy [1,17–19,21]. The reason lies in the fact that in problems with narrow feasible
solution space, escaping local optima requires a large jump in the solution space, while in
the infeasible solution space, this jump can be expressed as a couple of small moves that
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lead to the same feasible solution. Appropriately, the secondary objective function with the
infeasible search strategy should include penalties for constraint violations [21].

The other important aspect of any method used to solve a VRP is the move evaluation.
Most of the methods during the search change the current solution, which can be interpreted
as moves in the solution space. These moves often occur in LS, and destroy-and-repair
phases. As such moves are typically applied very often during the search, the evaluation of
moves should be as fast as possible, in the best case, in constant time O(1). The evaluation
of the move represents the change of the value in the objective function, by which the good
moves can be distinguished from bad ones. Regarding the efficient evaluation of the move,
the problem is not the load capacity change, but rather, the change of the travel time; more
precisely, the change in the start times at each customer or CS (henceforth, both are referred
to as the user), which are nonlinear due to the fixed time windows. In related Vehicle
Routing Problems with Time Windows (VRPTW), for most of the basic operators, the move
evaluation in O(1) can be done by using the technique of traveling back in time to the
latest feasible point when a violation occurs, and specially defined concatenation operators
based on both the forward and backward user variables [37,38]. In EVRPTW, this efficient
evaluation is even harder to do, as the charging amount at preceding CSs, also affects start
times for users further down the route. Schneider et al. [1], for the move evaluation in
EVRPTW-FR, proposed a similar technique as the one for the VRPTW problem with the
O(B) complexity, where B is the number of users between the route change position and
the last CS in the route. Goeke et al. [17], for EVRPTW-FR, proposed the use of surrogate
functions to evaluate changes in the solution with O(1) complexity (for basic operators)
and latter exact evaluation of best ε moves with O(n) complexity. Schiffer and Walhter [21]
proposed forward and backward variables and concatenation operators for the Electric
Location Routing Problem with Time Windows and Partial Recharging (ELRPTW-PR) with
an evaluation done in O(1).

In this paper, the EVRPTW-FR and EVRPTW-PR variants are addressed. The ALNS
proposed by the Ref. [21] for ELRPTW-PR is modified and applied to solve both observed
problems. The contributions of the paper are the following:

(i) New BKSs on several benchmark instances for both EVRPTW-FR and EVRPTW-PR;
(ii) new heuristic for the creation of the feasible initial EVRPTW-FR solution;
(iii) slightly modified forward and backward variables of Schiffer and Walther [21] for

EVRPTW-PR that also include determination of charging amounts at CSs;
(iv) new forward variables for EVRPTW-FR; and
(v) comparison between FR and PR strategy in goods delivery performed by BEVs.

The rest of the paper is organized into 5 sections. In Section 2, the description of
mathematical models for both EVRPTW-FR and EVRPTW-PR is given, together with the
description of benchmark instances. In Section 3, the ALNS metaheuristic used to solve
both problems is presented, while in Section 4 the results of the ALNS on benchmark
instances are presented. In Section 5, a short discussion about differences between PR and
FR strategy is given, while in Section 6, concluding remarks are given.

2. Model and Materials

In this section, EVRPTW-FR and EVRPTW-PR problems are mathematically modeled
as Mixed Integer Linear Programs (MILPs) on the complete directed graph. At the end of
the section, the benchmark test instances used for the comparison to the other methods
from the literature are described.

2.1. EVRPTW-FR

The EVRPTW-FR problem can be modeled as a MILP program on the complete
directed graph G, where customers are modeled as graph vertices, and paths between
customers are modeled as graph arcs [1,20,39]. Let V = {1, . . . , N} be a set of geograph-
ically scattered customers that need to be served, and let F be a set of CSs. In order
to allow multiple visits to the same CS, a virtual set of CSs F′ is defined, where β rep-
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resents the maximal number of virtual CSs (visits) to a single CS. Vertices 0 and N + 1
denote the depot instances, and every route begins at vertex 0, and ends at vertex N + 1
(V0,N+1 = V ∪ {0} ∪ {N + 1}). Graph G is defined as G = (V0,N+1 ∪ F′, A), where A is
the set of arcs A = {(i, j)|i, j ∈ V0,N+1 ∪ F′, i 6= j}. The binary variable xij ∈ {0, 1}
(Equation (1)) is equal to 1 if arc (i, j) is traversed in the solution, and 0 otherwise. The arc
value dij represents the arc distance, tij represents the time needed to traverse the arc,
and eij represents the energy consumption on the arc. The distance matrix representing
the shortest path between each vertex (user) is computed in advance in the preprocessing
step. The hierarchical objective function consists, first of vehicle number minimization
(Equation (2)), and then the total traveled distance minimization (Equation (3)). Each BEV
has a load capacity of C and battery capacity of Q. Recharge time is computed as a linear
function value of recharged capacity with an inverse recharge rate of g. The energy con-
sumption on the arc is computed as a linear function value of arc distance, eij = rdij, where
r is the energy consumption rate. Each vertex i has a service time si, load demand qi and
time window [ei, li]. CSs and depots have the time window [e0, l0], that is, working hours.
Beside the xij decision variable, three more decision variables are used: τi—start time of
service, zi—remaining load capacity, and yi—remaining battery capacity. Equations (4)–(6)
ensure arc connectivity and only one visit to each customer, Equations (7)–(9) ensure travel
time and time window feasibility, and Equations (10)–(13) ensure arc load and battery
constraints. For a detailed description, the reader is referred to Schneider et al. [1].

xij ∈ {0, 1}, ∀i ∈ V0 ∪ F′, j ∈ VN+1 ∪ F′, i 6= j (1)

min ∑
j∈V∪F′

x0j (2)

min ∑
i∈V0∪F′

∑
j∈VN+1∪F′ ,i 6=j

dijxij (3)

∑
j∈VN+1∪F′ ,i 6=j

xij = 1, i ∈ V (4)

∑
j∈VN+1∪F′ ,i 6=j

xij ≤ 1, i ∈ F′ (5)

∑
i∈VN+1∪F′ ,i 6=j

xji − ∑
i∈V0∪F′ ,i 6=j

xij = 0, j ∈ V ∪ F′ (6)

τi + (tij + si)xij − l0 · (1− xij) ≤ τj, ∀i ∈ V0, ∀j ∈ VN+1 ∪ F′, i 6= j (7)

τi + g(Q− yi) + xijtij − (l0 + gQ)(1− xij) ≤ τj, ∀i ∈ F′, ∀j ∈ VN+1 ∪ F′, i 6= j (8)

ej ≤ τj ≤ lj, ∀j ∈ V0,N+1 ∪ F′ (9)

0 ≤ zj ≤ zi − xij(qi + C) + C, ∀i ∈ V0 ∪ F′, ∀j ∈ VN+1 ∪ F′, i 6= j (10)

z0 = C, y0 = Q (11)

0 ≤ yj ≤ yi − (eij + Q)xij + Q, ∀j ∈ VN+1 ∪ F′, ∀i ∈ V, i 6= j (12)

0 ≤ yj ≤ Q− eijxij, ∀j ∈ VN+1 ∪ F′, ∀i ∈ 0∪ F′, i 6= j (13)

2.2. EVRPTW-PR
The EVRPTW-PR can be modeled as an extension of the MILP for the EVRPTW-FR [20].

Here, only the differences are highlighted. First of all, a new decision variable Yi is added,
which represents the remaining battery capacity on the departure from CS i, given by
Equation (14). The remaining battery capacity after recharging Yi is somewhere in between
the remaining battery capacity with charging at previous CSs yi and full battery capacity Q.
The equations that changed are the ones for the ensurance of CSs’ exit arcs travel time and
remaining battery capacity (15) and (16). The only change is that instead of charging to full
capacity, Q, the vehicle is charged up to the decision variable, Yi.

yi ≤ Yi ≤ Q, ∀i ∈ 0∪ F′, (14)

τi + g(Yi − yi) + xijtij − (l0 + gQ)(1− xij) ≤ τj, ∀i ∈ 0∪ F′, ∀j ∈ VN+1 ∪ F′, i 6= j (15)
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0 ≤ yj ≤ Yi − (eij + Q)xij + Q, ∀i ∈ 0∪ F′, ∀j ∈ VN+1 ∪ F′, i 6= j (16)

2.3. Materials

The materials include EVRPTW benchmark instances which consist of: (i) 56 large
instances, each with 100 customers and 21 CSs, and (ii) 36 small instances, with 5, 10, and
15 customers per instance. The example of three instances is presented in Figure 1, where
each customer is presented as a filled circle with two attributes: (i) size, which represents
the demand of a customer—the greater the demand, the larger the circle, and (ii) color,
from red to green, with red representing customers that close sooner (need to be visited
sooner) and green representing customers that close later. The depot is represented with
the purple rectangle, while the CSs are represented with blue triangles. In all instances,
the Euclidean distance is used for distance computation. Each customer in an instance is
directly reachable from the depot regarding the time windows, while regarding the energy,
at maximum, two CSs are needed to visit each customer. Depending on the geographical
distribution of the customers, instances are divided into three groups: clustered customer
distribution (C) (example in Figure 1a), random customer distribution (R) (example in
Figure 1b), and a mixture of both (RC) (example in Figure 1c). Additionally, the instances
are divided into two groups based on the scheduling horizon: short scheduling horizon
with narrow time windows (1) (examples in Figure 1a,c), and long scheduling horizon with
wide time windows (2) (example in Figure 1b). For example, in instance named R201, R
stands for random customer distribution, 2 for wide time windows, and 01 represents the
instance number.

(a) C101 (b) R201

(c) RC101

Figure 1. Examples of EVRPTW instances.

Vehicle battery capacity Q, vehicle load capacity C, energy consumption rate r,
and recharge rate g per instance group are presented in Table 1. It can be seen that instance
groups with wider time windows have larger vehicle load and battery capacities, which
consequently results in a lower number of vehicles per instance.
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Table 1. EVRPTW instances—group values.

C1 C2 R1 R2 RC1 RC2

Q 79.69 [117.66, 118.31] [62.14, 67.15] [181.23, 267.18] 79.69 [159.68, 273.13]
C 200 700 200 1000 200 1000
r 1 1 1 1 1 1
g 3.39 [2.28, 2.29] [0.45, 0.48] [0.11, 0.17] 0.38 [0.11, 0.19]

3. Methodology

In this section, the ALNS metaheuristic is coupled with an exact procedure to solve
the EVRPTW problems. Most of the algorithm framework is adopted from Schiffer and
Walther [21] for the ELRPTW-PR and given by Algorithm 1. The basic idea of the method
is to allow for searching in the infeasible search space. Therefore, the secondary objective
function for solution s is given by Equation (17), as the sum of vehicle costs and penalties.
fcost(v) represents the total cost of the vehicle v; Pload(v), Ptw(v), and Pbatt(v) represent
penalty (violation) values, respectively, load capacity, time windows, and battery capacity;
and α, β and γ represent penalty coefficients [1,21].

f (s) = ∑
v∈s

( fcost(v) + αPload(v) + βPtw(v) + γPbatt(v)) (17)

Due to the infeasible search strategy, three solution instances were tracked during the
search: (i) Temporal solution stemp that stores good solution found in previous iterations
(can be infeasible), (ii) the best solution sbest that stores the best solution so far (can be
infeasible), and (iii) the best feasible solution sbest_ f eas so far. In each iteration, the current
solution s is destroyed and repaired with selected operators. If the cost function of a
new solution s is within ∆ls percentage of the f (sbest), the LS procedure is performed.
Additionally, if the cost function of new solution s after the LS procedure is within an
∆exact percentage of the f (sbest), the exact procedure that determines optimal CS positions
is performed. Afterwards, an update of the solution instances occurs: (i) if a new solution
s is better than the current temporal solution stemp, s is set as stemp; (ii) if a new solution s
is better than the best solution sbest, s is set as sbest; (iii) if a new solution s is feasible and
better than the best feasible solution so far sbest_ f eas, s is set as sbest_ f eas. During the search,
several criteria were checked: (i) The criterion for the application of the route removal
algorithm (line 4) (not used in the original ALNS for ELRPTW-PR [21]), (ii) criterion for the
update of values related to the used destroy-and-repair operators (line 24), (iii) criterion for
the update of penalty coefficients (line 27), and (iv) overall method finish criterion (line 3).
All criteria are expressed as the reached number of iterations. To intensify the search, LS
and exact procedure are used, while to diversify the search, the destroy-repair strategy is
used. The scoring and selection mechanisms for destroy-and-repair operators are adapted
from Keskin et al. [20]. The control of intensification and diversification phases is done by
the adaptive update of penalty coefficients: multiplied by ζ if in the last µupw iterations, a
penalty in best solution sbest occurred, or divided by ζ if in the last µupw iterations, a penalty
in the best solution sbest did not occur.
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Algorithm 1 Adaptive large neighborhood search method.

1: Generate initial solution s
2: Copy instance s to instances stemp, sbest, sbest_ f eas
3: while finish criterion not met do
4: if route removal criterion met then
5: Perform route removal on s
6: end if
7: Perform destroy-and-repair operators on s
8: if f (s)− f (sbest) < ∆ls f (sbest) then
9: Perform LS on s

10: if f (s)− f (sbest) < ∆exact f (sbest) then
11: Perform exact CS placement procedure on s
12: end if
13: end if
14: if f (s) < f (stemp) then
15: Set s as stemp
16: if f (s) < f (sbest) then
17: Set s as sbest
18: if s is feasible and f (s) < f (sbest_ f eas) then
19: Set s as sbest_ f eas
20: end if
21: end if
22: end if
23: Update scores of selected destroy-and-repair operators
24: if destroy-and-repair update criterion met then
25: Update destroy-and-repair operators scores, weights and probabilities
26: end if
27: if penalty coefficients update criterion met then
28: Update penalty coefficients
29: end if
30: Set stemp as s
31: end while

3.1. Initial Solution

The initial solution is constructed by a new Greedy Time-Oriented Nearest Neighbor
Heuristic (GTONNH) given by Algorithm 2. Vehicle routes are constructed in a serial
way by adding customers, one by one, that satisfy all problem constraints: vehicle load
capacity, customer time window, depot time window, and vehicle battery capacity. If none
of the unserved customers could be added to the current vehicle route, the current vehicle
route is closed, added to the solution s, and a new vehicle route is opened. The proposed
procedure is based on the procedure of Felipe et al. [23], but it has two different parts.
First, instead of adding the nearest CS when a vehicle cannot visit a customer due to the
violation of battery capacity, a Multiple Best CS Insertion (MBCSI) procedure is performed
to insert multiple CSs in the route to make it completely feasible (including the last visit
to the depot). The MBCSI is based on the Best Station Insertion (BSI) method [20] with a
FR strategy at each CS, but it additionally takes multiple CSs insertions into account to
make the solution completely feasible. Second, in each iteration, the best customer with
possible CS insertions (move M) is determined. The cost of a move C(M) is computed by
Equation (18) [40], which takes into account an insertion distance increase (Mdist), total
time increase Mtot, and spare time Mst (time between the arrival time at customer and late
time window) with δ1, δ2 and δ3 coefficients controlling the ratios between them. The result
of the GTONNH heuristic is, if possible, is a completely feasible EVRPTW-FR solution.

C(M) = δ1 Mdist + δ2 Mtot + δ3 Mst (18)

The example of the initial solution on instance C101 produced by GTONNH is pre-
sented in Figure 2. Each vehicle route is represented with different line colors. In total,
24 vehicles were produced, with a total traveled distance of 2964.86.
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Algorithm 2 Greedy time-oriented nearest neighbor heuristic.

1: Create empty solution s
2: Open a new vehicle v
3: Set depot as the last visited user i
4: while all customers are not served do
5: Set the best move Mbest as empty and set C(Mbest) to maximum value
6: for each unserved customer j do
7: if vehicle v has enough rest load capacity to accept j and j is reachable from i regarding time

window and the depot is reachable from j regarding time window then
8: if j is reachable from i regarding the energy and the depot is reachable from j regarding

the energy then
9: Set move containing only customer j as Mnew

10: if C(Mnew) < C(Mbest) then
11: Set move Mnew as the best move Mbest, and set j as i
12: end if
13: else
14: Add depot to vehicle v
15: Perform MBCSI on vehicle v
16: if v is feasible then
17: Set move containing customer j and appropriate CS insertions as Mnew
18: if C(Mnew) < C(Mbest) then
19: Set move Mnew as the best move Mbest and set customer j (or succeeding CS) as i
20: end if
21: end if
22: Remove the last depot from vehicle v
23: end if
24: end if
25: end for
26: if Mbest is empty then
27: Close the current vehicle v and add it to the solution s
28: Open a new vehicle v
29: Set depot as the last visited user i
30: else
31: Perform move Mbest together with possible CSs insertions on the current vehicle v
32: Set customer in move Mbest as served
33: Set customer (or succeeding CS) in move Mbest as i
34: end if
35: end while

Figure 2. GTONNH—Initial solution on instance C101.
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3.2. Penalty Functions

As already mentioned, the penalties of the solution s are computed as the sum of
penalties per each vehicle v in the solution s. Changes (moves) in the solution are frequently
performed during the LS and destroy-repair phases, that is, to remove one customer from
one place in the solution to another. The evaluation of these changes should be as fast as
possible. The strategy of using concatenation operators for evaluation [41] is based on the
principle that any route can be represented as the sum of its partial routes, meaning that a
new route can be evaluated as the sum of two partial routes and a change of a customer
schedule between them.

The load penalty is the easiest to compute, as it does not depend on the start time or the
charging amount. If a vehicle route v is represented as a sequence of users
v = (u0, . . . , uN+1), the vehicle load penalty LO(v) can be computed by Equation (19)
as the amount of total vehicle overload. The evaluation of load penalty between partial
routes φ1 = (u0, u1, . . . , x) and φ2 = (y, . . . , uN+1) can be done in O(1) for most of the
basic move operators [42], given by the Equation (20). This requires tracking two forward
variables for each user in route: rest load capacity zi (without over-penalization) and load
violation

−→
LO.

LO(v) = max

(
∑
u∈v

qu − C, 0

)
(19)

LO(φ1 ⊗ φ2) =
−→
LO(φ1) + max(zy − zN+1 + qy − zx, 0) (20)

In this paper, concatenation operators and variables regarding time windows and
battery capacity are presented for EVRPTW-FR and EVRPTW-PR, based on the ones for
ELRPTW-PR [21]. As EVRPTW-PR can be considered as a special case of the ELRPTW-
PR, only small changes in the variables for EVRPTW-PR were needed, that is, that do
not consider charging while serving the customer, while for EVRPTW-FR, new forward
variables were proposed. Additionally, variables to determine charging schedules in both
variants were added. As the proposed original approach is complex and hard to follow,
in this paper, an additional description is given to ease the understanding.

3.2.1. EVRPTW-PR

The first important aspect of the approach presented by Schiffer and Walther [21] is to
express all variables in the unit of time [22]. The energy consumed on a path is expressed as
time hij needed to recharge the consumed energy. The battery capacity Q is also expressed
as the time H = gQ needed to fully charge the battery. The second important aspect is the
so-called shifting rules [37]—traveling back in time to the latest feasible point in time when
a violation occurs. This helps to not over-penalize violations. The description of forward
variables is given in Table 2 with corresponding expression given by Equations (21)–(27).

First of all, variables are propagated in forward fashion from the first depot in route to
the last depot in route, that is, from user i to user j. The two basic variables are tracked:
amin

j and amax
j , representing the earliest start time at user j by charging the minimum

and maximum amount at preceding CSs. The shifted variants used to not over-penalize
violations are expressed as ãmin

j and ãmax
j . The goal is to, whenever possible, use slack

(spare) time asl
ij for charging at previous CS. The spare time occurs when the vehicle arrives

at a customer before the early time window and has to wait. The art
j represents the time

needed to charge the battery to the fullest with the assumption that minimum charging and
spare charging was already performed. Sometimes, the whole amount of the spare time
cannot be used for charging, because it would mean charging over the battery capacity Q.
Therefore, the spare time is limited by the difference in time between charging minimum
and maximum ãmax

j − ãmin
j . The next important variable is the minimum charging time

aadd
ij that has to be added at previous CS to be able to reach user j without the battery

capacity (fuel) violation. This is perhaps the most important variable that allows the
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evaluation of basic moves in O(1). If all spare times are used for recharging, then the
additional charging that needs to be performed will linearly increase the start time at user j.
Of course, if this additional amount exceeds the vehicle battery capacity Q at some point,
the violation will be accounted for, but still, the start time at the user will need to increase
by the corresponding additional recharging time.

The variable aadd
ij represents the minimum additional amount that has to be added at

previous CSs, but it does not determine the charging amount at each CS. If the partial route
up to j is feasible, this means that multiple feasible CS schedules can possibly be determined,
which would produce the same arrival time at user j. To know the exact charging amount,
at each CS, the original approach is improved with variables that track the charging amount
at CSs, given by Equations (28)–(32). The charging time at CS is computed as the sum
of spare time asl

ij and additional charging time aadd
ij . By storing these values in the latest

CS before user j, jCSbe f , as slack charging time asl_ct
jCSbe f

and additional charging time aadd_ct
jCSbe f

,

the exact charging schedule can be determined. Consequently, the cumulative charging
in CSs acct

j and the cumulative recharging time corresponding to the used fuel amount
(energy consumed) acrt

j can also be computed. In some cases, where large spare times occur
as vehicles have to wait for the start of the service, the vehicle could charge more than what
is needed for traversing the route with the smallest charging amount possible. This occurs
when condition H + acct

N+1 > acrt
N+1 is satisfied, as the sum of the full battery capacity and

recharge amount at CSs is larger than the charging amount needed for traversing the route.
On such occasions, if needed, a post-optimization procedure could be applied to determine
a different charging schedule that decreases the charging amount at CSs.

The computation of forward time window violation is given by Equation (33), as the
amount of time after the late time window. The computation of fuel violation is given
by Equation (34) as the difference between amin

j and amax
j . The violation occurs when the

sum of additional charging time aadd
ij added to the latest CS in route is greater than the

maximum possible charging time at the latest CS.
Initial values of all forward variables at the depot are set to 0, art

0 = amin
0 = amax

0 =
ãmin

0 = ãmax
0 = acct

0 = acrt
0 = 0.

Table 2. Forward variables—EVRPTW-PR.

Symbol Description

amin
j Earliest start time at user j by charging the smallest amount possible before j

amax
j Earliest start time at user j by charging the maximum amount possible at

preceding CS with the assumption that minimum charging was performed
before preceding CS

art
j Time needed to charge to maximum at user j with the assumption that mini-

mum charging was performed before j
asl

ij Slack time at user j
aadd

ij Additional charging time at user j that has to be added at preceding CS
ãmin

j Shifted earliest start time at user j when violation occurs by charging the
smallest time possible before j

ãmax
j Shifted earliest start time at user j with charging maximum amount possible

at preceding CS with an assumption that minimum charging was performed
before preceding CS

jCSbe f An instance of the latest CS before user j
asl_ct

jCSbe f
Slack charging time at latest CS before user j

aadd_ct
jCSbe f

Additional charging time at latest CS before user j

acct
j Cumulative charging time at CSs at user j

acrt
j Cumulative recharge time at user j corresponding to the used fuel amount
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asl
ij = max (0, ej − ãmin

i − tij − si) (21)

art
j =

{
min (H, max (0, art

i − asl
ij ) + hij) i ∈ F′

min (H, max (0, art
i −min (asl

ij , ãmax
j − ãmin

j )) + hij) else
(22)

aadd
ij =

{
max (0, max (0, art

i − asl
ij ) + hij − H) i ∈ F′

max (0, max (0, art
i −min (asl

ij , ãmax
j − ãmin

j )) + hij − H) else
(23)

amin
j = max (ej, ãmin

i + tij + si) + aadd
ij (24)

amax
j =

{
max (ej, ãmin

i + art
i + tij) i ∈ F′

max (ej, ãmax
i + tij + si) else

(25)

ãmin
j = min(amin

j , amax
j , lj) (26)

ãmax
j = min(lj, amax

j ) (27)

jCSbe f =


None i = 0

i i ∈ F′

iCSbe f else

(28)

asl_ct
jCSbe f

=


0 jCSbe f = None

min(asl
ij , art

i ) i ∈ F′

asl_ct
jCSbe f

+ min(asl
ij , ãmax

j − ãmin
j ) else

(29)

aadd_ct
jCSbe f

=


0 jCSbe f = None

aadd
ij i ∈ F′

aadd_ct
jCSbe f

+ aadd
ij else

(30)

acct
j =

{
acct

i + min(asl
ij , art

i ) + aadd
ij i ∈ F′

acct
i + min(asl

ij , ãmax
j − ãmin

j ) + aadd
ij else

(31)

acrt
j = acrt

i + hij (32)
−→
TW(φ) = ∑

u∈φ

max (min (amin
u , amax

u )− lu, 0) (33)

−→
FL(φ) = ∑

u∈φ

max (amin
u − amax

u , 0) (34)

To have an efficient move evaluation, beside the forward variables, the backward
variables and penalties also have to be determined. The backward variables are presented
in the Appendix A. The minimum functions are replaced by maximum functions, and ei is
swapped by li. The main idea is to propagate variables backwards, from the last depot in
route to the first depot in route, that is, from user j to user i.

Concatenation operators for EVRPTW-PR are given by Equations (35)–(37). As these
operators are not adequately described in the original paper, here, a more detailed ex-
planation is given. For the concatenation of two partial routes φ1 = (u0, u1, . . . , x) and
φ2 = (y, . . . , uN+1), first, the forward variables are propagated to user y, based on the
forward variables of user x. Then, the time window of concatenated routes TW(φ1 ⊗ φ2)

is computed by Equation (35) as the sum of forward time window violation
−→
TW(φ1) of

partial route φ1, backward time window violation
←−
TW(φ2) of partial route φ2, and an

additional two parts, noted with brackets (1) and (2). The first bracket (1) in Equation (35)
represents the forward time window violation at user y consisting of the time window
violation due to the late arrival at user y (bracket 1.1 in Equation (35)) reduced by the
over-penalization value equal to the forward fuel penalty at user y (bracket 1.2 in Equa-
tion (35)). The second bracket (2) in Equation (35) represents the violation of the latest
arrival time at user y, computed as the difference between the earliest feasible begin time
(bracket 2.1 in Equation (35)) and the latest arrival time with minimum charging amount
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bmin
y , further reduced by the over-penalization value equal to the backward fuel penalty at

user y (bracket 2.2 in Equation (35)). As it can be seen, the general idea is to compute the
time window violation in a typical way but to reduce it by both forward and backward
fuel violations, to reduce the time window over-penalization.

The fuel violation is computed by Equation (36) as the sum of forward fuel violation
−→
FL(φ1) of route φ1, backward fuel violation

←−
FL(φ2) of route φ2, forward fuel violation

at user y and additional value representing a case when the total route energy exceeds
overall battery capacity. The value in bracket (3) in Equation (36) represents the additional
charging time at user y if maximum charging is performed in both forward and backward
directions. The value of D helps to reduce the over-penalization and differs depending
on whether the user y is a CS, or not. In case the user y is not a CS, the overall difference
is further reduced by possible spare charging time (bracket 4 in Equation (37)) at user y.
The spare time for charging is computed as the sum of the time between amax

y and amin
y and

the time between bmin
y and bmax

y (bracket 4.2 in Equation (37)), and limited by the total spare
time between the latest minimum start time bmin

y and the earliest minimum start time amin
y

at user y (bracket 4.1 in Equation (37)). The computed spare time cannot be larger than
H if user y is not a CS. If user y is a CS, then the spare time (bracket 5 in Equation (37))
that can be used for charging cannot be larger than the maximum charging time art

y or the
time violation between minimum forward and backward charging amin

y − bmin
y (bracket 6

in Equation (37)). The spare value (bracket 5 in Equation (37)) is computed as spare time
between bmin

y and amin
y reduced by the time window violation between maximum forward

and backward charging amax
y − bmax

y .
Although not discussed by Schiffer and Walther [21], it is important to note that the

used procedure does not compute an exact value of the violation, but rather it approximates
the sum of the time window and fuel violations. The approximated fuel and time window
values can differ significantly from the corresponding exact values, but their sum is close
to the exact value. The reason is that it is hard to distinguish whether the time window
violation is caused by the travel time or too much charging at CS. The important part of the
procedure is that it never underestimates evaluation, especially for feasible moves.

TW(φ1 ⊗ φ2) =
−→
TW(φ1) +

←−
TW(φ2) +

(1)︷ ︸︸ ︷
max (0, amin

y − ly︸ ︷︷ ︸
(1.1)

−max(0, amin
y − amax

y )︸ ︷︷ ︸
(1.2)

) +

(2)︷ ︸︸ ︷
max (0, min (ly, max (ey, amin

y ))︸ ︷︷ ︸
(2.1)

−bmin
y −max (bmax

y − bmin
y , 0)︸ ︷︷ ︸

(2.2)

) (35)

FL(φ1 ⊗ φ2) =
−→
FL(φ1) +

←−
FL(φ2) + max (0, amin

y − amax
y ) + max(0,

(3)︷ ︸︸ ︷
art

y + brt
y − H−D) (36)

D =



(4)︷ ︸︸ ︷
min(H, min(max(0, bmin

y − amin
y )︸ ︷︷ ︸

(4.1)

, max (0, amax
y − amin

y ) + max (0, bmin
y − bmax

y )︸ ︷︷ ︸
(4.2)

))) y 6∈ F′

min(art
y , max(0, bmin

y − amin
y −max (0, amax

y − bmax
y ))︸ ︷︷ ︸

(5)

, max (0, amin
y − bmin

y )︸ ︷︷ ︸
(6)

)) else

(37)
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3.2.2. EVRPTW-FR

For EVRPTW-FR, a similar approach as in EVRPTW-PR is applied. All the variable
names are similar to the ones for the EVRPTW-PR, but instead of PR, the FR at each CS is
considered, that is, the whole value of art

j is used. The new forward variables are computed

by Equations (38)–(42). The aadd
ij variable accounts for the additional recharging time, which

here directly corresponds to the fuel violation. The slack times are always zero, as there is
no spare time to charge the vehicle any further. The forward shifted variables, time window
penalties and fuel penalties remain the same as in EVRPTW-PR, as well as all backward
variables and penalties. The backward variables remain the same because the solution to
the FR strategy in the second partial route φ2, is somewhere in between, the backward latest
minimum and maximum arrival time [bmin

y , bmax
y ], depending on the charging amount in

the forward direction. The time window concatenation operator remains the same, while
the fuel concatenation operator is given by the Equation (43) without the value of D that
helps to reduce the over-penalization in the PR variant. These equations represent the
idea of concatenating two partial routes, the first one with the forward FR strategy and the
second one with the backward PR strategy.

art
j =

{
min (H, hij) i ∈ F′

min (H, art
i + hij) else

(38)

aadd
ij =

{
max (0, hij − H) i ∈ F′

max (0, art
i + hij − H) else

(39)

amin
j =

{
max (ej, ãmin

i + art
i + tij) + aadd

ij i ∈ F′

max (ej, ãmin
i + tij + si) + aadd

ij else
(40)

amax
j =

{
max (ej, ãmin

i + art
i + tij) i ∈ F′

max (ej, ãmin
i + tij + si) else

(41)

acct
j =

{
acct

i + art
i i ∈ F′

acct
i else

(42)

FL(φ1 ⊗ φ2) =
−→
FL(φ1) +

←−
FL(φ2) + max (0, amin

y − amax
y ) + max(0, art

y + brt
y − H) (43)

As in EVRPTW-FR, the latest start time for FR strategy is somewhere in between
[bmin

y , bmax
y ], the approximated violation can significantly differ from the exact one, but it

still gives a good representation value to differ bad from good moves. Therefore, in this
paper, we use a restricted move list that stores nls

RCL best moves during the search phase of
each LS operator. At the end of each LS operator, nls

RCL moves are evaluated exactly with
O(n) complexity, and the best one is selected.

3.3. Destroy-and-Repair Operators

The used destroy operators are the following: Worst removal [34], Related removal [43],
Shaw removal [44], and CS vicinity [17]. The Related removal and Shaw removal operators
consider removing customers that are close in some sense, while the Worst removal operator
removes customers that incur the highest costs. CS vicinity operator removes a CS and all
customers in a defined radial vicinity form it. The number of removed customers is selected
at random in the [µlow|N|, µhigh|N|] interval, where |N| is the number of customers in
instance, and µlow and µhigh are threshold percentage values. For the repair of the solution
the Last-In First-Out (LIFO) strategy is used, meaning that the customers are inserted back
in the solution based on their removal order [18,21]. In each iteration, four insertions are
evaluated: (i) customer-only insertion; (ii) customer with preceding CS; (iii) customer with
succeeding CS; and (iv) customer with both preceding and succeeding CS.
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Additionally, a route removal algorithm is applied at certain points during the search.
The algorithm removes one route at random and applies a similar ALNS framework as
in Algorithm 1 to find a solution with a lower number of vehicles. The criteria for route
removal tends to apply the route removal procedure more frequently at the beginning of
the search and then gradually reduce its calls towards the end of the search.

3.4. Local Search and Optimal CS Placement

To improve the solution generated by destroy-and-repair operators, the following local
search operators are used: Intra relocate, Intra exchange, Or-opt, Intra station in, Intra station
out, Inter relocate, Inter exchange, Inter cross exchange (k = 3), and Inter 2-Opt* [7,45–48].

As CS configuration significantly influences the solution quality, after the local search,
sometimes the optimal CS placement is performed. The applied algorithm is based on
the forward labeling algorithms for the elementary shortest path problem with resource
constraints for both the FR and PR strategy [22]. The used variables and equations are
presented by Desaulniers et al. [22]. The basic idea is to remove CS visits in the route and
then generate a limited search tree by extending the fixed route with CSs (paths). To reduce
the search space, the dominance rules are applied between paths to discard paths that are
always worse than other paths (dominated by other paths). For the evaluation of paths and
dominance comparison, the labeling technique is used.

3.5. Example of a Search Process

The example of a cost function during the search process when solving EVRPTW-FR
on instance R101 is presented in Figure 3. The values of penalty coefficient α are plotted
with black color and presented on the right y axis. On the left y axis are the values of the
cost function f (s) for the best solution sbest (blue line for the feasible part and red line for
the infeasible part), and best feasible solution sbest_ f eas (green line). The first occurrence of
the best overall feasible solution smin

best_ f eas is represented with a green circle. The update
value of penalties is ζ = 1.2, and the penalties are updated every µupw = 20 iterations.
The cost value of the initial solution is 2680.61. It can be seen that the feasible solution
is rapidly improved at the beginning of the search, with occasional spikes. These spikes
represent that the feasible solution with a lower number of vehicles is found and that it
is accepted although it has a worse cost function value. When the best solution sbest is
infeasible but accepted due to the acceptance criteria (red lines), the penalty coefficient α
increases, while the opposite occurs when the best solution sbest is feasible. In the zoomed
part, it can be seen that allowing infeasible solutions can lead to better feasible solutions.
Additionally, as the minimum best feasible solution smin

best_ f eas is relatively quickly found
(i = 880), in the rest of the search, the infeasible solutions are accepted, and penalties are
updated to perhaps find a better solution.

Figure 3. Cost function in search process—R101—EVRPTW-FR.
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The example of applied destroy-and-repair operators on instance C101, together with
the example of operators selection probabilities are presented in Appendix B.

4. Results

In this section, the proposed ALNS method is run on benchmark EVRPTW instances
and compared to the BKSs from the literature. The ALNS is implemented as a single-thread
code in the C# programming language. All tests were performed on a machine with an Intel
E5 processor and 32 GB of RAM. The floating-point precision used for the comparison was
set to 10−6. Most of the ALNS parameters are similar to the one of Schiffer and Walther [21],
except the following: (i) coefficients controlling ratios in GTONNH—δ1 = 0.5, δ2 = 0.4,
δ3 = 0.1, (ii) total number of iterations µmax = 10,000, (iii) number of restricted LS moves
nls

RCL = 20, and (iv) lower and upper percentage threshold for the number of customers
removed [µlow, µhigh] = [0.1, 0.4]. The text files containing results of ALNS on benchmark
EVRPTW instances are available https://www.fpz.unizg.hr/zits/?page_id=1424 (accessed
on 9 December 2021).

4.1. EVRPTW-PR

The results of distance minimization in EVRPTW-PR are presented in Table 3. The ALNS
was run 10 times on each instance. The results are compared to the BKSs of Hierman et al. [19]
(HIER), Keskin et al. [20] (KESK) and Schiffer and Walther [21] (SCHI). Here, we have
to note that some BKSs reported by SCHI have a possibly wrong number of vehicles.
The authors stated that they compared their results to the results of KESK [20] but did
not use the BKS values presented in the paper; rather, they used some different reference
values which are not available in the literature. Therefore, we tried to correct the number of
vehicles reported by SCHI to make the comparison reliable. Further on, three columns are
used to represent BKSs values: name N, vehicle number K, and total traveled distance d.
For the ALNS, the following columns are presented: average vehicle number K, best vehicle
number Kbest, the difference in best vehicle number ∆K between BKS and ALNS, average
total traveled distance d, best total traveled distance dbest, total traveled distance relative
difference ∆d and percentage relative difference ∆pd between BKS and ALNS, total time
of the best solution totbest, recharging amount of the best solution reabest, number of CSs
in the best solution m, and average execution time te in minutes. The relative percentage
difference was computed as ∆pd = dbest−dBKS

dBKS
· 100. It is important to note that in relative

distance computation, ∆d and ∆pd, only the solutions in which the ALNS produced the
minimum number of vehicles were considered, because otherwise, with a higher number
of vehicles, the total traveled distance decreases which then produces a wrong comparison.
Lastly, the initial solution values produced by GTONNH are presented in the last two
columns: initial vehicle number Kini, and initial total traveled distance dini. The summary
of the results is presented in the last two rows as averaged and summed values. All rows
in which the ALNS produced a better solution regarding the vehicle number or the total
traveled distance are bolded.

In 29 out of 56 instances, the ALNS found a better solution, with in total 9 vehicle less,
and 0.52 average relative percentage difference in the total traveled distance, meaning that
even if the lower number of vehicles is found, the ALNS finds a good user configuration in
terms of distance minimization. The average value of the average vehicle number K has
a lower value than the average of the BKSs vehicle number, indicating the good average
performance of the ALNS. The sum of the total time in all instances consists of: travel
time—20.48%, service time—67.02%, waiting times—7.21% and charging time—5.29%.
As it can be seen, most of the total time is spent on service, while the least time is spent
on charging and waiting. On average, 10 CSs are visited per instance and 1.31 per vehicle
route. Additionally, on average, vehicle leaves the CS with the rest battery capacity equal to
72.26% of full battery capacity. In terms of an average execution time, the ALNS execution
time of 8.93 min is comparable to HIER (9.96 min) and KESK (11.14 min), but worse than
SCHI (4.13 min).

https://www.fpz.unizg.hr/zits/?page_id=1424
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Table 3. EVRPTW-PR distance—results.

Inst.
BKS ALNS GTONNH

N K d K Kbest ∆K d dbest ∆d ∆pd totbest reabest m te Kini dini

C101 SCHI 12 1043.38 12.00 12 0 1043.38 1043.38 0.00 0.00 12,647.62 177.34 8 3.67 24 2964.86
C102 SCHI 11 1029.44 10.30 10 −1 1079.12 1058.67 29.23 2.84 11,619.45 295.44 12 3.17 20 2334.54
C103 SCHI 10 971.86 10.00 10 0 971.88 971.19 −0.67 −0.07 11,411.29 207.20 9 4.14 18 2423.24
C104 SCHI 10 884.38 10.00 10 0 884.63 884.38 0.00 0.00 11,057.74 134.83 7 7.57 14 1827.17
C105 KESK 11 1037.78 10.10 10 −1 1081.23 1064.66 26.88 2.59 11,436.30 296.02 11 2.39 21 2715.04
C106 SCHI 11 1010.56 10.10 10 −1 1070.88 1061.61 51.05 5.05 11,376.02 275.31 11 2.53 20 2546.45
C107 SCHI 10 1010.91 10.00 10 0 1064.94 1046.50 35.59 3.52 11,254.18 283.82 12 2.64 19 2377.63
C108 SCHI 10 1031.85 10.00 10 0 1025.16 1022.93 −8.92 −0.86 11,017.02 238.14 12 4.58 16 2157.54
C109 SCHI 10 940.38 10.00 10 0 945.49 940.38 0.00 0.00 10,744.74 164.42 9 4.48 15 1802.63
C201 KESK 4 629.95 4.00 4 0 629.95 629.95 0.00 0.00 10,125.99 168.26 3 0.82 8 2197.72
C202 KESK 4 629.95 4.00 4 0 629.95 629.95 0.00 0.00 10,125.99 168.26 3 2.32 8 2135.94
C203 KESK 4 629.95 4.00 4 0 629.95 629.95 0.00 0.00 10,074.33 168.50 3 2.59 6 2042.13
C204 SCHI 4 628.91 4.00 4 0 628.91 628.91 0.00 0.00 10,343.46 168.92 3 5.17 5 1407.93
C205 KESK 4 629.95 4.00 4 0 629.95 629.95 0.00 0.00 10,020.61 169.85 3 1.06 7 1538.23
C206 KESK 4 629.95 4.00 4 0 629.95 629.95 0.00 0.00 10,021.16 170.09 3 1.29 6 1414.65
C207 KESK 4 629.95 4.00 4 0 629.95 629.95 0.00 0.00 10,021.43 170.21 3 1.61 7 2143.92
C208 KESK 4 629.95 4.00 4 0 629.95 629.95 0.00 0.00 10,021.43 170.21 3 1.31 6 1534.82
R101 SCHI 18 1615.50 17.10 17 −1 1648.68 1624.89 9.39 0.58 3587.38 662.79 27 6.19 29 2680.61
R102 HIER 15 1521.32 15.00 15 0 1456.53 1454.53 −66.79 −4.39 3123.33 580.99 25 7.36 29 2609.90
R103 SCHI 13 1244.15 12.90 12 −1 1223.24 1304.24 60.09 4.83 2650.75 571.49 23 8.28 22 2164.09
R104 SCHI 11 1056.87 11.00 11 0 1055.36 1051.41 −5.46 −0.52 2386.27 345.83 12 11.77 18 1866.25
R105 SCHI 14 1347.80 14.00 14 0 1347.80 1347.80 0.00 0.00 2903.37 509.99 21 5.40 24 2361.51
R106 SCHI 13 1268.25 13.00 13 0 1265.18 1263.13 −5.12 −0.40 2722.36 481.85 19 8.50 22 2256.61
R107 SCHI 12 1110.95 11.00 11 −1 1106.56 1104.51 −6.44 −0.58 2391.69 391.89 17 10.59 19 2030.87
R108 SCHI 11 1020.52 10.60 10 −1 1030.40 1030.44 9.92 0.97 2239.85 389.84 16 11.60 17 1737.33
R109 SCHI 12 1186.99 12.00 12 0 1182.84 1176.69 −10.30 −0.87 2569.17 401.95 16 8.38 19 2048.53
R110 SCHI 11 1070.99 11.00 11 0 1070.49 1067.11 −3.88 −0.36 2395.60 340.31 15 8.25 18 1911.75
R111 HIER 11 1147.22 11.00 11 0 1085.18 1076.15 −71.07 −6.20 2338.33 355.71 14 8.15 19 1981.17
R112 SCHI 11 1001.79 11.00 11 0 1001.79 1001.79 0.00 0.00 2322.52 303.04 13 7.47 16 1712.88
R201 SCHI 3 1255.81 3.00 3 0 1258.40 1255.81 0.00 0.00 2892.61 804.33 7 10.45 5 1985.37
R202 HIER 3 1051.46 3.00 3 0 1053.13 1052.52 1.06 0.10 2936.01 356.91 4 11.43 6 2155.57
R203 KESK 3 895.54 3.00 3 0 897.20 895.54 0.00 0.00 2930.01 500.04 4 19.07 4 1588.31
R204 SCHI 2 779.49 2.00 2 0 780.72 779.49 0.00 0.00 1987.21 314.15 3 22.09 5 1448.01
R205 KESK 3 987.36 3.00 3 0 989.69 987.22 −0.14 −0.01 2718.76 449.59 4 9.31 4 1772.33
R206 KESK 3 922.70 3.00 3 0 929.39 922.08 −0.62 −0.07 2763.95 445.56 5 11.69 4 1658.96
R207 SCHI 2 843.20 2.00 2 0 850.56 845.19 1.99 0.24 1993.88 372.47 3 16.01 4 1502.64
R208 KESK 2 736.12 2.00 2 0 743.32 736.46 0.34 0.05 1911.93 338.01 2 23.94 4 1489.43
R209 SCHI 3 863.36 3.00 3 0 876.87 863.17 −0.19 −0.02 2726.92 425.69 4 11.14 4 1654.15
R210 KESK 3 843.36 3.00 3 0 848.53 844.71 1.35 0.16 2785.50 416.14 5 13.92 4 1699.56
R211 SCHI 2 827.29 2.00 2 0 831.66 825.25 −2.04 −0.25 1892.85 313.56 3 19.41 3 1550.22

RC101 HIER 15 1725.73 15.00 15 0 1677.28 1661.53 −64.20 −3.72 3193.93 529.16 22 5.88 28 3024.76
RC102 KESK 14 1155.50 14.00 14 0 1517.43 1510.16 354.66 30.69 2951.51 436.57 19 7.69 23 2757.49
RC103 HIER 12 1388.72 12.40 12 0 1353.28 1359.34 −29.38 −2.12 2705.80 432.85 15 7.59 20 2459.65
RC104 SCHI 11 1175.06 11.00 11 0 1179.20 1174.32 −0.74 −0.06 2416.92 362.04 13 9.59 17 2081.58
RC105 SCHI 14 1450.82 13.30 13 −1 1470.81 1471.80 20.98 1.45 2861.33 449.56 19 4.49 23 2679.28
RC106 SCHI 13 1385.96 13.00 13 0 1397.63 1391.23 5.27 0.38 2832.90 374.79 16 5.56 23 2732.83
RC107 SCHI 12 1250.30 11.20 11 −1 1255.91 1244.37 −5.93 −0.47 2448.38 386.12 15 6.14 19 2192.62
RC108 SCHI 11 1154.14 11.00 11 0 1161.86 1154.14 0.00 0.00 2391.45 298.08 12 9.02 20 2347.57
RC201 SCHI 4 1445.17 4.00 4 0 1446.60 1433.57 −11.60 −0.80 3650.43 653.52 7 7.90 6 2398.56
RC202 SCHI 3 1408.08 3.00 3 0 1413.90 1403.67 −4.41 −0.31 2838.67 590.55 6 14.14 6 2415.52
RC203 SCHI 3 1060.32 3.00 3 0 1062.00 1054.91 −5.41 −0.51 2708.69 492.39 7 21.07 5 2008.21
RC204 SCHI 3 884.75 3.00 3 0 889.39 884.75 0.00 0.00 2679.15 458.49 5 20.62 5 1758.81
RC205 SCHI 3 1259.69 3.00 3 0 1264.52 1238.46 −21.23 −1.69 2661.49 744.49 10 16.04 5 2118.31
RC206 SCHI 3 1189.11 3.00 3 0 1207.98 1197.60 8.49 0.71 2693.07 558.52 6 10.66 5 1998.35
RC207 HIER 3 985.67 3.00 3 0 1002.83 978.30 −7.37 −0.75 2515.67 342.55 5 14.87 4 1957.30
RC208 SCHI 3 833.12 3.00 3 0 842.78 833.12 0.00 0.00 2425.03 336.23 6 16.90 4 1586.20

AVG 7.77 1041.95 7.66 7.61 −0.16 1051.47 1047.03 5.08 0.52 5115.42 374.02 10.00 8.93 13.07 2070.49
SUM 435 58,349.28 429.00 426 −9.00 58,882.22 58,633.65 284.37 29.13 286,463.42 20,944.92 560 499.91 732 115,947.54

As expected, GTONNH produced feasible initial solutions that are far from the best
ones, as an initial feasible solution is hard to achieve. In the total sum of vehicle number,
GTONNH produced 71.83% vehicle more, with also an increase in the total traveled
distance by 97.75%.
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The results also differ depending on the instance group. It can be seen that on instance
groups with shorter time windows (C1, R1 and RC1), which also have a lower battery
capacity Q, a larger number of vehicles is produced. The RC, and especially R instances, are
harder to solve than C instances due to the larger feasible solution space. This is especially
the case in R2 and RC2 instance groups, where the execution time significantly increases
due to the larger number of customers per route and frequent application of LS and exact
CS placement procedure.

To see the influence of integrating BEVs in the goods delivery, the results are com-
pared to the BKSs on Solomon VRPTW instances, downloaded from https://www.sintef.
no/projectweb/top/vrptw/solomon-benchmark/ page (accessed on 9 December 2021).
In total, the BKSs on VRPTW instances contain 405 vehicles and produce the total trav-
eled distance of 57,186.88. Although the direct comparison is not entirely correct as some
customers in VRPTW instances have relaxed time windows in EVRPTW instances [1],
still some general conclusion could be drawn, that even with the relaxed time windows,
the EVRPTW-PR produced 5.18% more vehicles and increased total traveled distance by
2.53%.

The example of BKS on EVRPTW-PR C101 instance is presented in Figure 4a. In total,
12 vehicles are presented, each with different color, with the total traveled distance of
1043.38. To compare the recharge strategies, additionally user IDs are added above circles
in the Figure 4.

4.2. EVRPTW-FR

The results of distance minimization in EVRPTW-FR are presented in Table 4. The ALNS
was again run 10 times, and the same columns as in the EVRPTW-PR variant are used,
except the columns for GTONNH, as it has the same values per instance as in the PR variant.
The results are compared to the BKSs of: Schneider et al. [1] (SCHN), Goeke et al. [17]
(GOEK), Hierman et al. [18] (HIE1), Hierman et al. [19] (HIE2), Keskin et al. [20] (KESK)
and Schiffer et al. [21] (SCHI). It can be seen that ALNS was not able to reduce the number
of vehicles on four instances: R105, R106, R110 and RC102. Nevertheless, nine new BKSs
(bold font) are found for instances: C109, R104, R108, R211, RC105, RC107, RC201, RC205
and RC206. The total traveled distance is lower than in BKSs, due to the higher number
of vehicles.

Compared to the FR strategy, it can be seen that PR strategy produced 18 vehicles
less, with also decrease in the sum of the total traveled distance dbest (1.82%) and the sum
of the total time totbest (5.60%). As a result, a PR strategy uses 48 CSs more, but actually
charges less, as a recharge amount is 30.39% lower than the one for the FR. The total time
in all instances consists of the following percentages: travel time—19.75%, service time—
63.46%, waiting times—8.24% and charging time—8.55%. Here again, it can be seen that the
charging time with the FR strategy is greater than the charging time with the PR strategy.
The average execution time te for FR strategy is 11.61 min. The produced time is slightly
higher than the one in the PR strategy due to the additional evaluation of nLS best moves
exactly in the LS. Compared to the BKSs of VRPTW instances, the ALNS in EVRPTW-FR
produced 39 vehicles more (9.63%) and increased total traveled distance by 4.43%.

The example of BKS on EVRPTW-FR C101 instance is presented in Figure 4b, with in
total 12 vehicles and total traveled distance of 1053.83.

https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/
https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/
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Table 4. EVRPTW-FR distance—results.

Inst.
BKS ALNS

N K d K Kbest ∆K d dbest ∆d ∆pd totbest reabest m te

C101 SCHN 12 1053.83 12.00 12 0 1053.83 1053.83 0.00 0.00 129,04.61 396.61 8 2.65
C102 GOEK 11 1051.38 11.00 11 0 1055.18 1051.38 0.00 0.00 12,832.67 392.70 8 5.13
C103 GOEK 10 1034.86 10.00 10 0 1076.39 1034.86 0.00 0.00 11,818.14 397.53 9 3.55
C104 KESK 10 951.57 10.00 10 0 955.45 951.57 0.00 0.00 11,575.87 339.48 7 6.38
C105 SCHN 11 1075.37 11.00 11 0 1075.37 1075.37 0.00 0.00 12,039.54 459.49 9 3.73
C106 GOEK 11 1057.65 11.00 11 0 1057.65 1057.65 0.00 0.00 12,181.07 441.68 9 3.39
C107 SCHN 11 1031.56 11.00 11 0 1031.56 1031.56 0.00 0.00 12,167.43 444.15 9 5.07
C108 GOEK 10 1095.66 10.90 10 0 1026.70 1125.95 30.29 2.76 11,899.76 516.96 11 4.17
C109 GOEK 10 1033.67 10.00 10 0 1032.55 1027.10 −6.57 −0.64 11,781.58 452.53 9 4.77
C201 SCHN 4 645.16 4.00 4 0 645.16 645.16 0.00 0.00 10,288.23 258.90 4 2.13
C202 SCHN 4 645.16 4.00 4 0 645.16 645.16 0.00 0.00 10,288.23 258.90 4 7.57
C203 SCHN 4 644.98 4.00 4 0 644.98 644.98 0.00 0.00 11,114.16 293.99 4 6.11
C204 SCHN 4 636.43 4.00 4 0 636.43 636.43 0.00 0.00 10,770.32 291.50 4 12.12
C205 SCHN 4 641.13 4.00 4 0 641.13 641.13 0.00 0.00 10,289.50 282.39 3 2.81
C206 SCHN 4 638.17 4.00 4 0 638.17 638.17 0.00 0.00 11,506.96 352.47 4 3.48
C207 SCHN 4 638.17 4.00 4 0 638.17 638.17 0.00 0.00 11,360.96 352.47 4 4.17
C208 SCHN 4 638.17 4.00 4 0 638.17 638.17 0.00 0.00 11,382.96 352.47 4 3.61
R101 HIE2 18 1663.04 18.00 18 0 1667.72 1663.04 0.00 0.00 3820.37 839.73 22 7.00
R102 HIE2 16 1484.57 16.50 16 0 1489.33 1490.40 5.83 0.39 3301.68 811.83 23 11.55
R103 HIE2 13 1268.88 13.20 13 0 1297.50 1279.53 10.65 0.84 2817.76 669.64 18 10.90
R104 SCHN 11 1088.43 11.00 11 0 1093.11 1088.09 −0.34 −0.03 2429.12 492.75 13 12.89
R105 GOEK 14 1442.35 15.00 15 1 1390.84 1383.29 −59.06 −4.09 3109.09 700.23 19 6.35
R106 GOEK 13 1324.10 14.00 14 1 1283.53 1280.14 −43.96 −3.32 2812.46 639.57 17 11.96
R107 HIE2 12 1148.38 12.00 12 0 1152.32 1148.38 0.00 0.00 2610.63 628.05 14 10.87
R108 HIE2 11 1049.12 11.00 11 0 1046.54 1042.63 −6.49 −0.62 2388.86 565.50 15 18.80
R109 GOEK 12 1261.31 12.90 12 0 1228.20 1281.07 19.76 1.57 2634.99 618.87 18 10.61
R110 GOEK 11 1119.50 12.00 12 1 1098.36 1094.35 −25.15 −2.25 2610.55 575.46 14 14.07
R111 HIE2 12 1099.53 12.00 12 0 1107.58 1102.18 2.65 0.24 2618.52 577.83 15 12.24
R112 GOEK 11 1016.63 11.00 11 0 1017.42 1016.63 0.00 0.00 2411.74 497.44 13 11.05
R201 SCHI 3 1264.32 3.00 3 0 1268.08 1264.37 0.05 0.00 2912.47 865.41 7 7.78
R202 SCHN 3 1052.32 3.00 3 0 1053.59 1052.32 0.00 0.00 2882.20 497.94 3 11.98
R203 GOEK 3 895.54 3.00 3 0 896.08 895.54 0.00 0.00 2930.01 500.04 4 22.22
R204 GOEK 2 779.49 2.00 2 0 781.05 779.49 0.00 0.00 1988.76 327.10 3 30.69
R205 GOEK 3 987.36 3.00 3 0 994.05 989.03 1.67 0.17 2695.55 611.30 4 11.86
R206 GOEK 3 922.19 3.00 3 0 927.26 922.19 0.00 0.00 2782.55 554.32 4 19.39
R207 SCHI 2 843.20 2.00 2 0 858.15 848.67 5.47 0.65 1986.82 408.39 2 15.51
R208 GOEK 2 736.12 2.00 2 0 740.59 736.12 0.00 0.00 1875.73 306.38 2 21.78
R209 GOEK 3 867.05 3.00 3 0 876.72 871.23 4.18 0.48 2584.27 389.07 3 9.35
R210 KESK 3 843.65 3.00 3 0 850.29 845.83 2.18 0.26 2788.83 534.42 5 9.79
R211 GOEK 2 827.89 2.00 2 0 846.00 827.29 −0.60 −0.07 1901.20 322.57 3 15.83

RC101 HIE2 16 1723.79 16.00 16 0 1730.84 1723.79 0.00 0.00 3445.33 816.58 17 6.50
RC102 HIE1 14 1659.53 15.00 15 1 1553.86 1552.55 −106.98 −6.45 3243.74 858.32 16 12.65
RC103 GOEK 13 1350.09 13.00 13 0 1351.01 1350.55 0.46 0.03 2821.98 521.02 14 16.47
RC104 GOEK 11 1227.25 11.70 11 0 1229.92 1228.69 1.44 0.12 2495.46 517.94 13 14.70
RC105 HIE2 14 1473.24 14.00 14 0 1474.24 1471.87 −1.37 −0.09 3078.57 814.57 16 6.00
RC106 HIE2 13 1423.27 13.00 13 0 1433.94 1423.27 0.00 0.00 2906.45 795.31 16 7.33
RC107 HIE2 12 1274.41 12.00 12 0 1276.14 1274.25 −0.16 −0.01 2691.41 673.54 13 12.84
RC108 HIE2 11 1197.41 11.00 11 0 1200.34 1197.41 0.00 0.00 2507.67 670.42 14 12.38
RC201 SCHN 4 1444.94 4.00 4 0 1446.08 1441.47 −3.47 −0.24 3649.46 695.66 5 7.84
RC202 SCHI 3 1408.16 3.00 3 0 1420.07 1414.97 6.81 0.48 2830.46 694.64 5 18.63
RC203 GOEK 3 1055.19 3.00 3 0 1059.59 1055.19 0.00 0.00 2728.63 659.24 5 25.51
RC204 SCHI 3 884.53 3.00 3 0 888.61 884.75 0.22 0.03 2679.81 461.96 5 36.27
RC205 SCHI 3 1262.38 3.00 3 0 1267.20 1256.09 −6.29 −0.50 2701.78 951.80 9 21.37
RC206 GOEK 3 1188.63 3.00 3 0 1197.83 1187.72 −0.91 −0.08 2605.25 626.11 4 11.90
RC207 GOEK 3 985.03 3.00 3 0 998.64 985.03 0.00 0.00 2572.44 551.65 4 21.33
RC208 GOEK 3 836.29 3.00 3 0 836.95 836.29 0.00 0.00 2456.21 560.86 5 23.29

AVG 7.86 1069.50 7.99 7.93 0.07 1068.24 1066.47 −3.03 −0.19 5401.98 537.28 9.14 11.61
SUM 440 59,892.03 447.20 444 4.00 59,821.63 59,722.33 −169.70 −10.36 302,510.77 30,087.68 512 650.31

To show the difference between the FR and PR strategies, one route is selected for the
comparison. It is important to note, that the optimization procedure in most of the cases
produces different customer and CS schedules for routes in different EVRPTW variants, which
makes the direct comparison between routes non applicable. But here, there are some routes
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that have similar customer schedule but differ in CS schedule. This happened as routes
with FR and PR strategies on clustered instances overlap in grater extent than, for example,
routes on random instances. The comparison is conducted for route 1—dark green route
in EVRPTW-PR (Figure 4a) and black route in EVRPTW-FR (Figure 4b). The following
rows are presented in Tables 5 and 6: user ID (ID), time window (TW), service time (ST),
remaining load capacity (RL), arrival distance (AD), arrival time (AT), start time of service
(BT), remaining battery capacity (RB), charging time (CT) and recharged capacity (RC).
Color of the user’s ID matches the color of the user’s circle in Figure 4. It can be seen that
the PR strategy has two visits to the CS 16, while the FR strategy has only one visit to CS
17. The fuel and time related variables differ between the variants, while the remaining
load capacity variable has the same values. The arrival distance at the depot (vehicle total
traveled distance) is lower for PR than for the FR strategy, as well as the total recharge
amount (19.03 + 3.22 < 61.71). Although less time is spent on charging, the arrival time
at the depot (vehicle total time) is actually higher for the PR strategy than the FR strategy.
Usually, this is not the case, but here it happened as vehicle visits a CS immediately before
the depot. To further show the difference PR and FR strategies, the route with the PR
strategy is evaluated as a route with a FR strategy. The rows are presented at the end of the
Table 6. It can be seen that there is no change at the first CS, as the vehicle is recharged to
full capacity in both strategies. The only difference is in the second visited CS, where in
the PR strategy, the vehicle is recharged by only a small amount needed to finish the route,
while in the FR strategy, the vehicle is recharged to the fullest (80.17% of the full battery
capacity), resulting in an infeasible arrival time at the depot (violation of the depot late
time window). The evaluation of a route with a FR strategy as a route with PR strategy
would produce the same solution as the FR strategy, as the almost whole spare time at CS
17 (810− (543.21 + 6.08) = 260.71 > 209.19) can be used for charging to the fullest.

Table 5. Values in route 1—FR.

ID 0 80 81 79 77 74 17 75 76 78 0

TW [0, 1236] [66, 124] [167, 223] [256, 320] [350, 410] [437, 511] [0, 1236] [810, 868] [905, 963] [989, 1063] [0, 1236]
ST 0 90 90 90 90 90 0 90 90 90 0
RL 200 190 170 140 110 90 90 50 40 0 0
AD 0 35.06 45.50 48.50 50.50 54.50 61.71 67.79 72.79 74.79 109.79
AT 0 35.06 166.44 260.00 352.00 446.00 543.21 758.49 905.00 997.00 1122.00
BT 0 66.00 167.00 260.00 352.00 446.00 543.21 810.00 905.00 997.00 1122.00
RB 79.69 44.63 34.19 31.19 29.19 25.19 17.98 73.61 68.61 66.61 31.61
CT − − − − − − 209.19 − − − −
RC − − − − − − 61.71 − − − −

Table 6. Values in route 1—PR.

ID 0 16 80 81 79 77 74 75 76 78 16 0

TW [0, 1236] [0, 1236] [66, 124] [167, 223] [256, 320] [350, 410] [437, 511] [810, 868] [905, 963] [989, 1063] [0, 1236] [0, 1236]
ST 0 0 90 90 90 90 90 90 90 90 0 0
RL 200 200 190 170 140 110 90 50 40 0 0 0
AD 0 19.03 35.06 45.50 48.50 50.50 54.50 59.88 64.88 66.88 82.91 101.94
AT 0 19.03 99.56 200.00 293.00 385.00 479.00 574.38 905.00 997.00 1103.03 1132.99
BT 0 19.03 99.56 200.00 293.00 385.00 479.00 810.00 905.00 997.00 1103.03 1132.99
RB 79.69 60.66 63.66 53.22 50.22 48.22 44.22 38.83 33.83 31.83 15.80 0.00
CT − 64.50 − − − − − − − − 10.93 −
RC − 19.03 − − − − − − − − 3.22 −

Evaluated as FR

AT 0 19.03 99.56 200.00 293.00 385.00 479.00 574.38 905.00 997.00 1103.03 1338.64
BT 0 19.03 99.56 200.00 293.00 385.00 479.00 810.00 905.00 997.00 1103.03 1338.64
RB 79.69 60.66 63.66 53.22 50.22 48.22 44.22 38.83 33.83 31.83 15.80 60.66
CT − 64.50 − − − − − − − − 216.58 −
RC − 19.03 − − − − − − − − 63.89 −
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(a) EVRPTW-PR

(b) EVRPTW-FR

Figure 4. C101: BKSs.

4.3. Evaluation Test

As already highlighted, the evaluation of a change in the route with FR and PR
strategy can be done in O(1) for most of the basic operators, but FR requires additional
exact evaluation. As in the original research for ELRPTW-PR, the difference between exact
and approximated violation values was not reported; here, a small test was conducted.

To validate the evaluation variables and operators, the testing was performed on
instance R107 [20] with the total number of iterations set to µmax = 500. The results are
presented in Table 7 as a difference between approximated O(1) evaluation and exact
O(n) evaluation. The positive values represent an overestimation of penalties, while
the negative values represent underestimation. Column Feas/Infeas represents either a
completely feasible move or an infeasible move (evaluated exactly). It can be seen that
operators for the PR strategy never underestimate violations as column Min in Total is zero
in all cases. Although the time window and fuel by itself can be underestimated, their
sum is not, meaning that the underestimation of time windows is compensated with fuel
violation. On average, the penalty violations are overestimated by the value of 3.01, even
for the completely feasible moves where the value is 1.56.

For the FR strategy, the mean total violations are even lower than in PR strategy,
with the value of 1.89. For completely feasible moves, there was not an underestimation of
total violation, and the mean value of violation is 2.69. As it can be seen, in the FR strategy,
the underestimation of total violations occur up to −30.28, and also the overestimation
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values are greater, almost doubled compared to the PR strategy. This is the main reason why
the latter exact evaluation of the nLS best moves was used in the LS procedure. Interestingly,
the fuel violation is never underestimated.

Table 7. Evaluation.

Strategy Feas/Infeas
Total Time Window Fuel

Mean Min Max Mean Min Max Mean Min Max

PR
Both 3.01 0.00 144.35 −0.25 −41.52 136.89 3.26 −25.43 48.24
Feas 1.56 0.00 39.58 0.00 0.00 23.41 1.56 0.00 39.58

Infeas 3.35 0.00 144.35 −0.31 −41.52 136.89 3.66 −25.43 48.25

FR
Both 1.89 −30.28 253.25 −4.44 −65.99 238.05 6.34 0.00 71.82
Feas 2.69 0.00 55.16 0.20 0.00 32.35 2.49 0.00 42.21

Infeas 1.78 −30.28 253.25 −5.09 −65.99 238.05 6.87 0.00 71.82

5. Discussion

The selection of the recharging strategy depends on the delivery problem characteris-
tics and decision-makers. In the following paragraphs, the results of the paper regarding
the used recharging strategy are summarized.

• With the PR strategy, greater savings can be achieved, but in real-life application,
it is harder to implement as drivers need to visit CSs more frequently and perform
time-precise charging with a high possibility of leaving a CS without a fully charged
battery.

• Maintaining the energy reserve in the PR strategy to overcome the so-called range
anxiety [15,49]—a fear that the vehicle range will not be enough to complete the
designated route. The reason is that the amount of the energy recharged at the CS
is usually only enough to reach the next CS or depot, which is not flexible enough
for the application in real-life where the travel time is time-dependent [50], as well as
waiting times that can occur at CSs which prolong delivery time [30].

• On the other hand, significant savings can be achieved by the PR strategy, as the total
number of vehicles decreased by 4.05% and the total traveled distance decreased by
1.82% compared to the FR strategy. Additional savings could also be achieved by PR
strategy as the amount of energy recharged during the day at public or private CSs
is almost 30% less than the amount of energy recharged with the FR strategy. In the
PR strategy, the minimal amount of energy could be recharged during the day when
electricity costs are higher, and the rest of the energy could be recharged during the
night.

• The PR strategy also helps to reduce the battery degradation and to prolong the battery
life [51] as it escapes charging at a CSs with high SoC values (in numerical tests, it
was shown that on average, the vehicle leaves a CS with the SoC value of 72.26%.
Additionally, if a more realistic non-linear charging process that prolongs charging
time after approx. 80% of the SoC value is considered [25], the FR strategy would lead
to a higher number of infeasible solutions than the PR strategy.

• Comparison between BKSs on VRPTW instances and the best ALNS solutions for FR
and PR variants indicates that integration of BEVs in the delivery processes increases
the total vehicle number by at least 5.18% and the total traveled distance by at least
2.53%. Additional analysis should be conducted to validate if the reduction of trans-
portation costs by BEVs can compensate for the increase in the vehicle number and
total traveled distance.

There are several research directions left for future research. First, the evaluation of
moves in the EVRPTW-FR could perhaps be done in O(1) without the need for additional
O(n) evaluation, by the use of a bidirectional exact procedure [22]. The second direction is
the extension of the proposed methodology on the EVRPTW problem with different charger
types at CSs [16]. The third direction is the consideration of dynamic traffic conditions
on the road network in terms of the time-dependent travel time [52], as well as different
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secondary objectives: total time, travel time, recharging costs, recharging amount, and so
forth.

6. Conclusions

In this paper, the delivery of goods with electric vehicles was observed through the
solution of the EVRPTW problem, which aims to determine the minimum number of
vehicles and the minimum total distance traveled needed to perform the delivery. Two
recharging strategies were considered: FR and PR. For the creation of the initial solution,
a new GTONNH heuristic is proposed, which produces a feasible solution with a relatively
high number of vehicles due to the narrow feasible solution space. The route removal,
local search and exact procedures were integrated within the ALNS framework to further
intensify the search and lead to better solutions. The proposed ALNS metaheuristic uses
the approximation of changes in the solution, which results in O(1) evaluation of moves
for the PR strategy. The FR strategy also uses O(1) evaluation of moves, but additional
exact O(n) evaluation is performed on nLS best moves.

On 56 benchmark EVRPTW instances, the proposed ALNS metaheuristic was able to
find 29 new BKSs for EVRPTW-PR and 9 BKSs for EVRPTW-FR. The PR strategy was able
to reduce the total vehicle number, total distance traveled, total time and total recharging
amount compared to the FR strategy, at the expense of the increase in the number visited
CSs. The PR strategy turned out to be more robust regarding the battery degradation costs,
non-linear charging function, and daily charging costs, but it has to have a high compliance
rate to be efficient in the real-life application. Compared to the BKSs on VRPTW instances,
which do not consider delivery with BEVs, the total number of vehicles increased by at
least 5% in EVRPTW problems, and the additional cost-effectiveness of BEVs application
for goods delivery should be investigated.
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Abbreviations
The following abbreviations are used in this manuscript:

BEV Battery electric vehicle
BKS Best known solution
BSI Best station insertion
CS Charging station
ELRPTW-PR Electric location routing problem with time windows and partial recharging
EV Electric vehicle
EVRP Electric vehicle routing problem
EVRPTW Electric vehicle routing problem with time windows
EVRPTW-FR Electric vehicle routing problem with time windows and full recharge
EVRPTW-PR Electric vehicle routing problem with time windows and partial recharge
FR Full recharge
GHG Greenhouse gas
GTONNH Greedy time-oriented nearest neighbor heuristic
ICEV Internal combustion engine vehicle
LIFO Last-in first-out
LS Local search
MBCSI Multiple best charging station insertion
MILP Mixed integer linear program
NP Non-deterministic polynomial
PHEV Plug-in hybrid electric vehicle
PR Partial recharge
SoC State of charge
VRP Vehicle routing problem
VRPTW Vehicle routing problem with time windows

Appendix A

The used backward variables are presented in Table A1 and are computed by
Equations (A1)–(A7). The backward time window and fuel violations are given by
Equations (A8) and (A9). The initial values for backward variables related to the time
of the last user in route uN+1 are set to the late time window, b̃min

N+1 = b̃max
N+1 = bmin

N+1 =
bmax

N+1 = lN+1, while the fuel related variable is set to zero, brt
N+1 = 0.

Table A1. Backward variables—EVRPTW-PR.

Symbol Description

bmin
i Latest start time at user i with charging minimum amount as possible

before i
bmax

i Latest start time at user i with charging maximum amount possible
at preceding CSs with the assumption that minimum charging was
performed before preceding CS

brt
i Time needed to charge to maximum at user i with charging minimum

amount as possible before i
bsl

ij Slack time at user i
badd

ij Additional charging time at user i that has to be added at preceding CSs
b̃min

i Shifted latest start time at user i when violation occurs with charging
minimum amount as possible before i

b̃max
i Shifted latest start time at user i when violation occurs with charging

maximum amount possible at preceding CS with assumption that mini-
mum charging was performed before preceding CS

bsl
ij = max (0, b̃min

j − tij − si − li) (A1)



Energies 2022, 15, 285 24 of 27

brt
i =

{
min (H, max (0, brt

j − bsl
ij ) + hij) j ∈ F′

min (H, max (0, brt
j −min (bsl

ij , b̃min
j − b̃max

j )) + hij) else
(A2)

badd
ij =

{
max (0, max (0, brt

j − bsl
ij ) + hij − H) j ∈ F′

max (0, max (0, brt
j −min (bsl

ij , b̃min
j − b̃max

j )) + hij − H) else
(A3)

bmin
i = min (li, b̃min

j − tij − si)− badd
ij (A4)

bmax
i =

{
min (li, b̃min

j − brt
j − tij − si) j ∈ F′

min (li, b̃max
j − tij − si) else

(A5)

b̃min
i = max(bmin

i , bmax
i , ei) (A6)

b̃max
j = max(ej, bmax

j ) (A7)
←−
TW(φ) = ∑

u∈φ

max (eu −max (bmin
u , bmax

u ), 0) (A8)

←−
FL(φ) = ∑

u∈φ

max (bmax
u − bmin

u , 0) (A9)

Appendix B

The selection probabilities of the operators change depending on their performance. The ex-
ample of how probabilities change for used operators in EVRPTW-PR on instance C101 is
presented in Figure A1. The update of operator probabilities occurs every µuop = 50 iterations.
As it can be seen, different operators are preferred in different stages of the search. The re-
lated and CS vicinity destroy operators show lower probabilities than worst and Shaw
destroy operators. The probability of related operator increased in the last phase, showing
its benefits in the cases when the search is near the best found local optima. The sequential
insertion operator is preferred in the early stages of the search when more frequently,
better solutions are found. But later on, when the search gets stuck in the local optima,
the perturbed variant shows its benefits.

The example of the ALNS heuristic on the C101 instance and EVRPTW-FR problem is
presented in Figure A2. The vehicle number remained the same, while the distance traveled
decreased from 1085.55 before removal to 1053.88 after insertion. The removed customers
are presented with red dashed circles.

Figure A1. Example of operator probabilities: C101 -EVRPTW-PR.
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(a) Before removal

(b) After removal

(c) After insertion

Figure A2. ALNS example: C101—EVRPTW-FR.
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