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Abstract: Due to their low cost, facile fabrication, and high-power conversion efficiency (PCE), dye-
sensitized solar cells (DSSCs) have attracted much attention. Ruthenium (Ru) complex dyes and
organic solvent-based electrolytes are typically used in high-efficiency DSSCs. However, Ru dyes
are expensive and require a complex synthesis process. Organic solvents are toxic, environmentally
hazardous, and explosive, and can cause leakage problems due to their low surface tension. This
review summarizes and discusses previous works to replace them with natural dyes and water-based
electrolytes to fabricate low-cost, safe, biocompatible, and environmentally friendly DSSCs. Although
the performance of “eco-friendly DSSCs” remains less than 1%, continuous efforts to improve the PCE
can accelerate the development of more practical devices, such as designing novel redox couples and
photosensitizers, interfacial engineering of photoanodes and electrolytes, and biomimetic approaches
inspired by natural systems.

Keywords: dye sensitized solar cells (DSSCs); natural dye; aqueous electrolyte; eco-friendly DSSCs

1. Introduction

Since the late 19th century, renewable energy resources, such as solar, hydropower,
geothermal, biomass, and biofuel energy, have attracted much attention to substitute fossil
fuel, the main cause of global warming [1]. Solar energy is a limitless energy source
without the emission of CO2, which accounts for a large portion of greenhouse gas. Solar
energy can be converted into other types of energy by photovoltaic or photothermal
mechanisms [2–4]. A solar cell utilizes solar energy by converting sunlight into electricity
based on the photovoltaic mechanism. While a silicon solar cell is the representative
one, other types of cells, such as organic solar cells, thin-film solar cells, dye-sensitized
solar cells (DSSCs), and perovskite solar cells, have also been studied as economical
alternatives [5–7]. DSSCs are one of the third-generation photovoltaic devices suggested as
an alternative to conventional Si-based solar cells. DSSCs have various advantages, such as
a low cost and robust fabrication process, reasonable power conversion efficiency (PCE),
and semitransparency [8,9]. The color of the photoanode can be varied using different
dyes adsorbed on it. Additionally, DSSCs operate efficiently even under low-light intensity,
enabling them to be used indoors.

DSSCs are composed of a transparent electrode, a photoanode, a dye sensitizer, an
electrolyte, and a counter electrode. In 1991, Brian O’Regan and Michael Grätzel reported
DSSCs with a high PCE of 7.12%, based on a transparent nanoporous film of titanium
dioxide (TiO2) and ruthenium (Ru) complex dye [10]. Since then, researchers have devel-
oped novel dyes, electrolytes, photoanodes, and counter electrodes, to further improve the
efficiency of DSSCs. Recently, a high PCE of 14.34% was attained by Kakiage et al. via the
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co-sensitization of alkoxysilyl-anchor dye (ADEKA-1) and a carboxy-anchor organic dye
(LEG4) using various co-adsorbents with a (Co(phen)3)2+/3+ (phen = 1,10-phenanthroline)
redox electrolyte [11]. Concerning tandem-type cells, Eom et al. reported a high PCE value
of 14.64% in a tandem cell structure, where alkylated thieno(3,2-b)indole-based organic
dye (SGT-137) and Zn(II)-porphyrin dye (SGT-021) with a (Co(bpy)3)2+/3+ redox electrolyte
were used [12]. For high-efficiency DSSCs, Ru-complexes and organic solvents are mainly
used as dyes and electrolyte solvents, respectively. However, Ru-complex dyes are ex-
pensive and synthesized via complicated synthesis processes [13,14]. Ru compounds are
treated as moderately toxic, environmentally hazardous, and carcinogenic. Moreover, or-
ganic solvents are generally toxic and explosive and cause environmental problems [15–17].
Ironically, DSSCs that mimic photosynthesis in natural leaves to produce energy are made
of materials that could be harmful to nature. Because of these problems, researchers are
making efforts to increase efficiency and develop more environmentally friendly DSSCs.

Herein, we review various efforts to fabricate DSSCs based on eco-friendly compo-
nents, such as natural photosensitizers and water-based electrolytes. First, the harmful
effect of typical high-efficient DSSCs on the environment is discussed. Next, we discuss
recent research to employ natural dyes derived from nature and aqueous electrolytes in
DSSCs. Finally, the example studies of DSSCs fully based on environmentally benign dyes
and electrolytes are discussed.

2. Problems or Harmful Effects

For high-efficiency DSSCs, Ru-complex dyes and organic solvent-based electrolytes are
typically used. However, due to some issues in terms of possible human toxicity, potential
environmental impact, production cost, stability, and safety, they are unfavorable and may
need to be replaced with other materials.

For high-efficiency DSSCs, electrolytes with low viscosity, high dielectric constant,
good solubility, and high chemical stability are required [18–20]. Various solvents have been
used for DSSCs. Table 1 presents the melting point, boiling point, vapor pressure (P), and
viscosity (η) of organic solvents popularly used. Nitrile-based solvents, such as acetonitrile
(ACN) and 3-methoxypropionitrile (MPN), are considered the most preferred solvents for
electrolytes. Ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (GBL),
and N-methyl-2-pyrrolidone (NMP) are also used due to their low vapor pressure and
volatility. However, such organic solvents are not the best choice in terms of safety [19].
ACN can be metabolized to produce hydrogen cyanide, which is the source of the observed
toxic effects in microsomes, especially in the liver [21,22]. EC is converted into ethylene gly-
col, which is toxic alcohol, causing metabolic acidosis during ingestion [23,24]. GBL is the
precursor of γ-hydroxybutyrate (GHB), which can affect the central nervous system [25,26].
Additionally, some organic solvents have low viscosity, resulting in easy electrolyte leakage
and high flammability. Regarding health issues, a high volatility at room temperature
causes absorption into the human body due to the high exposure possibility to the solvents.
Thus, the solvents are unsuitable given the fabrication of DSSCs that are safe for humans
and the environment.

Table 1. Melting point, boiling point, vapor pressure, and viscosity of organic solvents popularly
used. All parameter values at 25 ◦C unless otherwise indicated.

Organic Solvent Melting Point (◦C) Boiling Point (◦C) Vapor Pressure
(Torr, at 25 ◦C)

Viscosity
(cP, at 25 ◦C)

Acetonitrile (ACN) −45 81.6 88.8 0.334
3-methoxypropionitrile (MPN) −62.9 164 1.72 (30 ◦C) 2.5

Valerontrile −96 139 2.794 0.78 (19 ◦C)
3-methyl-2-oxazolidinone (NMO) 15 88 0.00877 2.5

Ethylene carbonate (EC) 36 238 0.0098 90
Propylene carbonate (PC) −49 241 0.058 2.5

γ-butyrolactone (GBL) −44 204 0.45 (20 ◦C) 1.7
N-methyl-2-pyrrolidone (NMP) −24 203 0.342 1.65
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In DSSCs, the dye sensitizer plays a crucial role in absorbing light and converting it
into electricity. For high PCE, having a wide range of absorption wavelengths in visible light
is important. Ru-complex dyes absorb a wide range of absorption wavelength from 300 nm
to 600 nm in visible light, resulting in high-efficiency DSSCs with the maximum efficiency of
11.18% [27,28]. The Ru-complex dyes, such as N719, N3, and black dye, are the most widely
used due to their long-excited lifetime, wide absorption wavelength, and highly efficient
metal-to-ligand charge transfer, despite their low molar extinction coefficients [29–33].
However, Ru-complex dyes are expensive, need sophisticated and complex syntheses
processes [13,14], and cause environmental problems, which could be problems to be used
in cost-effective and eco-friendly DSSCs. Although Ru is nontoxic, its compounds, such
as ruthenium oxide (RuO4), are highly toxic and volatile [34–36]. Materials that undergo
dye synthesis processes are also harmful to health and cause environmental pollution. For
example, ammonium thiocyanate and hydrochloric acid are harmful to health, have high
causticity, and generate chlorine [37]. Recently, metal-free organic dyes were developed
to replace Ru-based dyes, but organic dyes could be toxic and carcinogenic and produce
hazardous pollutants during their synthesis [38,39]. All in all, the typical components in
DSSCs, organic solvents, and Ru-based complex dyes may need to be replaced to realize
low cost, biocompatible, and environmentally benign devices. Water and natural dyes
derived from plants could be excellent alternatives.

3. Natural Dyes Extracted from Nature

Natural photosensitizers are extracted from parts of plants, such as leaves, fruits,
and flowers. The dyes contain anthocyanin, chlorophyll, carotenoid, and betalain. The
molecular structures of the natural dyes are shown in Figure 1. Anthocyanins are generally
obtained from petals of flowers and fruits and absorb 450–580 nm wavelength of visible light
with a maximum peak at the 520 nm region [40–43]. Anthocyanins contain carbonyl (–CO–)
and hydroxyl (–OH) groups. The functional groups enable the molecules to be stably bound
to the surface of TiO2, which facilitates electron injection from anthocyanin molecules to
the conduction band of TiO2 [44–47]. Chlorophyll, a key molecule in photosynthesis, is a
green pigment commonly found in green leaves and plants. Chlorophyll absorbs 400–450
and 640–680 nm wavelength of visible light and has a maximum peak at 430 nm [48,49].
Carotenoids are yellow, orange, and red pigments obtained from colored vegetables, plants,
and algae. Betalains are yellow and red pigments obtained from petals of flowers, fruits,
leaves, and roots of plants. The process of extracting natural dye is simple and possibly
environmentally friendly. Therefore, many studies have been actively performed to adopt
the natural dyes as a photosensitizer of DSSCs to realize eco-friendly DSSCs.

Figure 1. Chemical structures of (a) anthocyanins, (b) chlorophylls, (c) carotenoids, and (d) betalain,
reprinted with permission from [50]. Copyright 2019 Springer Nature.
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Table 2 summarizes the previous works on DSSCs based on natural dyes, including
the types and sources of naturally derived dyes, materials for photoanodes, electrolytes,
and cathodes, and their PCE. Compared to those based on organic or metal-based dyes,
DSSCs based on natural dyes exhibited low PCE (mostly < 1%). One of the main reasons
is that natural dyes absorb a narrow range of light, which inhibits the increase in PCE,
whereas organic and rare metal-based dyes have a broad absorption spectrum of visible
light [27,28].

Table 2. Types and sources of natural dyes, photoanodes, electrolytes, and cathodes used for the
natural dye based-DSSCs and their corresponding photovoltaic performance.

Natural Dye Dye Sources Photoanode Electrolyte Cathode PCE (%) Ref.

Chlorophyll

Spinach TiO2 treated with TiCl4 I−/I3
− in EG Carbon 0.56 [51]

Spinach TiO2 I−/I3
− in EG Graphite 0.398 [52]

Spinach ZnO I−/I3
− Carbon 0.1312 [49]

Spinach TiO2 I−/I3
− Graphite 0.49 [53]

Spinach TiO2 I−/I3
− in ACN Pt 0.29 [54]

Spinach TiO2 I−/I3
− Pt 0.1712 [55]

Neem ZnO I−/I3
− in

EG/ACN Stainless foil 0.13 [56]

Wormwood TiO2 I−/I3
− in ACN Pt 0.538 [29]

Ipomoea TiO2 I−/I3
− Pt 0.278 [57]

Lemon leaves TiO2 I−/I3
− in ACN Pt 0.04 [41]

Papaya leaves TiO2 I−/I3
− in ACN Pt 0.07 [58]

Bermuda grass TiO2
I−/I3

− in
t-BuOH/ACN Pt 0.113 [59]

Papaya peels ZnO I−/I3
− FTO 0.017 [60]

Pandan leaves TiO2 NaI in PVDF-HFP Pt 0.51 [61]
Pterocarpus Indicus Willd TiO2 I−/I3

− in EG Carbon 0.0232 [62]

Anthocyanin

Melinjo skin TiO2 I−/I3
− Pt 0.036 [63]

Purple cabbage ZnO I−/I3
− Carbon 0.102 [64]

Purple cabbage ZnO I−/I3
− Carbon 0.1015 [49]

Siahkooti peel TiO2 I−/I3
− in ACN Pt 0.32 [45]

Raspberries TiO2 I−/I3
− in ACN Pt 1.5 [41]

Mangosteen peel TiO2 treated with TiCl4 T2/T− in ACN Mangosteen peel
carbon (MPC) 2.63 [65]

Dragon fruit TiO2 I−/I3
− Pt 0.22 [66]

Cumini TiO2
I−/I3

− in
PEO:PEG Pt 0.07 [67]

Pomegranate TiO2
I−/I3

−:PEG in
ACN Pt 0.028 [68]

Red cabbage TiO2 I−/I3
− in PEG Carbon 0.024 [40]

Fistula flower TiO2 I−/I3
− in ACN Pt 0.21 [69]

Rhododendron flower (red) TiO2 I−/I3
− Pt 0.33 [70]

Canarium odontophyllum TiO2
I−/I3

− in
EG/ACN Pt 0.96 [42]

Areca catechu TiO2 I−/I3
− Pt 0.38 [71]

Pomegranate TiO2-WO3
I−/I3

− in
chitosan Pt 1.8 [72]

Mangosteen peel TiO2 I−/I3
− Pt 0.199 [73]

Black rice TiO2 NaI in PVDF-HFP Pt 0.56 [61]
Rosella TiO2 I−/I3

− in EG Pt 0.37 [43]
Onion peel TiO2 I−/I3

− Pt 0.0647 [55]
Acanthus sennii chiovenda

flower TiO2
I−/I3

− in gel
electrolyte PEDOT 0.15 [74]

Consolida jacis TiO2
I−/I3

− in
ACN/VN Steel mesh 0.6 [75]

Petals of lxora coccinea TiO2
I−/I3

− in
ACN/EC Pt 0.76 [76]

Blueberry TiO2 I−/I3
− Pt 0.69 [77]
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Table 2. Cont.

Natural Dye Dye Sources Photoanode Electrolyte Cathode PCE (%) Ref.

Betalain

Cactus TiO2
I−/I3

− in
t-BuOH/ACN Pt 0.674 [59]

Yellow sweet potato TiO2 I−/I3
− Pt 0.057 [63]

Beetroot TiO2 treated with TiCl4 I−/I3
− in EG Carbon 0.49 [51]

Beetroot ZnO I−/I3
− Carbon 0.179 [64]

Beetroot TiO2
I−/I3

− in
ACN/EC Graphite 1.3 [78]

Turmeric stem ZnO I−/I3
− Carbon 0.3045 [79]

Turmeric TiO2 I−/I3
− in EG Carbon 0.33 [80]

Bougainvillea spectabilis TiO2
I−/I3

− in
ACN/EC Pt 0.21 [76]

Lawsone
Lawsonia inermis TiO2 I−/I3

− Pt 1.47 [81]
Henna leaves TiO2 I−/I3

− in ACN Graphite 1.08 [78]

Carotenoid Orange peel TiO2
I−/I3

−:PEG in
ACN Pt 0.005 [68]

Curcumin Turmeric root TiO2 I−/I3
− in EG Carbon 0.11 [82]

Indigo Indigofera tinctoria TiO2 treated with TiCl4 I−/I3
− in MPN Pt 0.114 [14]

The condition of natural dyes and concentration of dye extract solutions are affected by
the extraction temperature, pH, and the types of solvents. For example, high temperatures
can thermally degrade dyes, whereas low temperatures can limit the solubility of dyes
in extracting solvents [43]. Moreover, dyes have different solubilities depending on the
types of solvents because the molecules of natural dyes have different polarities [71,83,84].
Figure 2a shows the absorbance of anthocyanin extracted from Areca catechu according
to different extracting solvents [71]. Wongcharee et al. investigated the effect of the
types of extracting solvents on the efficiency of the resulting DSSCs [43]. It has been
reported that although anthocyanin is more soluble in ethanol than water, the photocatalytic
decomposition by TiO2 occurred in the presence of ethanol, decreasing the efficiency after
being exposed to sunlight for some time. It has been concluded that ethanol is unsuitable
as an anthocyanin-extracting solvent. Thus, the appropriate choice of extracting solvents is
important in the dye extraction process.

Figure 2. (a) Absorbance of the anthocyanin extracted from Areca catechu depending on the types
of extracting solvents. Wavelength region of adsorption is from 400 to 800 nm. Reprinted with
permission from [71]. Copyright 2020 Elsevier. (b) HOMO and LUMO levels of the chlorophyll
extracted from PLs depending on the pH of the extracting solvent. Reprinted with permission
from [58]. Copyright 2015 Elsevier.

The pH adjustment of extracting solvents and the addition of acid can affect the proper-
ties of dyes, such as the highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) levels, absorption spectra, polarity, and stability. The addition
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of acid changes the HOMO and LUMO levels of dyes, which is closely related to the VOC
value. Suyitno et al. investigated the HOMO and LUMO levels of chlorophyll extracted
from papaya leaves (PLs) depending on the pH of the extracting solvent (Figure 2b) [58].
After the pH changed to 3.5 by acidification, the bandgap lowered from 2.30 to 2.16 eV, and
the PCE was improved four times from 0.07% to 0.28%. Acidification also increases the po-
larity of the extracting solvents, such as ethanol or methanol, which could enhance the dye
separation from source materials, thereby increasing the concentration of the dye extract
solution and absorption value, which assists in higher harvesting from sunlight [43,57,85].
However, high-pH conditions can decompose natural dyes, thereby degrading the PCE
of DSSCs. Therefore, it is important to carefully optimize the acid or alkali treatment
conditions depending on the types of natural dyes.

The mixture of multiple natural dyes can absorb a wider range of wavelength of
light (Figure 3a). For a high photocurrent, the LUMO and HOMO levels should also
be above the conduction and valence bands of the photoanode materials, respectively,
thereby increasing the injection of photoelectrons and reducing recombination loss [79,86].
A mixture of multiple dyes can facilitate the photoelectron injection and increase the
electron lifetime due to the intermediate energy level of electrons in adjacent dye molecules
(Figure 3b) [59,87]. Consequently, it has been reported that the PCE of DSSCs can be
improved by employing a dye cocktail (Table 3). The most frequently used natural dye
is anthocyanin because its carbonyl and hydroxyl groups form a stable bonding to the
photoanode surface. The combination of dyes, the optimal mixing ratios of the dyes,
and the resulting photovoltaic performances of the DSSCs are presented in Table 3. The
optimal ratio may differ depending on the types of natural dyes and electrolytes. Kumar
et al. fabricated a co-sensitized solar cell with a high PCE of 1.139% (Figure 3c) by mixing
chlorophyll and anthocyanin in a ratio of 1:1 [59]. In their study, the dyes were extracted
from cactus and bermudagrass, respectively. The dye-mixing ratio is important to obtain a
maximum PCE. For example, Bashar et al. reported that when betalain and chlorophyll
were mixed in an optimized mixing ratio of 4:1, a maximum PCE of 0.99% was obtained.
By combining anthocyanin and chlorophyll, a maximum PCE of 1.29% was obtained in
the ratio of 1:1 [29]. Instead of employing a simple mixture of multiple dyes, Kumara
et al. performed the sequential adsorption of natural dyes for the layered co-sensitization
(Figure 3d) [42]. The PCE of DSSCs prepared by the layered co-sensitization was 1.55%,
which exceeded that of DSSCs with homogenous adsorption of the dyes (1.13%).

Table 3. Combination and ratio of natural dyes and the photovoltaic parameters.

Combination of Natural Dye Ratio VOC (V) JSC (mA/cm2) FF PCE (%) Ref.

Anthocyanin + Chlorophyll 1:1 0.532 1.45 0.67 0.5175 [49]
Anthocyanin + Chlorophyll 2:1 0.675 2.55 0.67 1.15

[29]Anthocyanin + Chlorophyll 1:1 0.66 3.16 0.62 1.29
Anthocyanin + Chlorophyll 1:1 0.47 2.63 0.58 0.72 [61]

Anthocyanin + Betalain 1:1 0.56 1.12 0.6 0.3824 [64]
Anthocyanin + Anthocyanin 1:1 0.38 6.26 0.47 1.13 [42]

Betalain + Chlorophyll 1:1 0.495 4.97 0.46 1.139 [59]
Betalain + Chlorophyll 4:1 0.386 4.74 0.54 0.99 [51]

Anthocyanin + Betalain + Chlorophyll 1:1:1 0.53 1.65 0.68 0.602 [79]
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Figure 3. (a) UV-vis absorption spectra of the natural dyes from bermudagrass (anthocyanin) and
cactus (chlorophyll), and their mixture. Reprinted with permission from [59]. Copyright 2016 Elsevier.
(b) Energy band schematic of a DSSC containing mixed natural dyes. (c) J-V curve of DSSCs sensitized
by chlorophyll, anthocyanin, and their mixture. Reprinted with permission from [59]. Copyright
2016 Elsevier. (d) Fabrication process of a layered co-sensitized solar cell. Reprinted with permission
from [42]. Copyright 2013 Elsevier.

4. Aqueous Electrolyte
4.1. Aqueous Electrolyte

To develop eco-friendly DSSCs, efforts to replace organic electrolytes with aqueous
electrolytes have progressed for several years (Table 4). In 2010, Law et al. replaced MPN
with water when preparing an electrolyte (comprising 2.0 M 1-propyl-3-methylimidazolium
iodide (PMII), 0.05 M iodine, 0.1 M guanidinium thiocyanate (GuSCN), and 0.5 M 4-
tert-butylpyridine (TBP)). When the MPN was completely displaced by water, the PCE
decreased from 5.5% to 2.4% (Figure 4a) [88]. Similarly, Vaghasiya et al. fabricated DSSCs
based on aqueous electrolytes containing organic ionic liquid. The effect of water content
on the PCE was investigated, showing that the PCE reduced from 5.61% (0% water) to
3.46% (100% of water) [89].

Although ionic liquids, such as PMII, 1-butyl-3-methylimidazolium iodide (BMII), and
1-ethyl-3-methylimidazolium iodide (EMII), are typically used in organic electrolytes of
DSSCs, they are not completely soluble in water, and surfactants are needed to avoid phase
separation in the electrolyte. Instead of using ionic liquids, water-soluble salts, such as KI,
NaI, and LiI, are employed in water-based electrolytes. Bella et al. investigated the effect of
the iodide/triiodide concentration in the electrolyte and the types of counter-ions, resulting
in the KI salt-based electrolyte exceeding the NaI-based one in performance, attaining
a PCE value of 0.8% (D131 dye, VOC = 0.488 V, JSC = 2.70 mA/cm2, and FF = 0.62) [90].
The desorption of the dye molecules from the photoanode surface in aqueous electrolytes
can also decrease the performance of the DSSCs based on aqueous electrolytes than com-
mon DSSCs based on organic electrolytes. Co-absorbents, such as chenodeoxycholic acid
(CDCA), which co-grafts with the dye onto the photoanode surface, prevent detachment
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and aggregation of the dye in water and reduce the charge recombination, resulting in
improvement in PCE and stability of DSSCs based on an aqueous electrolyte [91–95].
With a CDCA-to-dye molar ratio of 18:1, a PCE value of 1.25% (D131 dye, VOC = 0.59 V,
JSC = 3.86 mA/cm2, and FF = 0.55) was reached using an aqueous electrolyte containing
0.5 M NaI and 10 mM I2 [92].

To minimize the dye desorption in the presence of water and prevent evaporation or
leakage of electrolytes, quasi-solid gel electrolytes were introduced by gelation of aqueous
electrolytes. Gel electrolytes for DSSCs have been researched for decades for better device
stability; however, several components in the electrolytes are still petroleum-derived,
harmful, corrosive, or expensive [96]. For more eco-friendly DSSCs, aqueous and bio-
derived gels based on xanthan gum (XG) [95,97,98], cellulose [96], and agarose [99] have
been developed recently. XG is a water-soluble polysaccharide and a well-known stabilizing
agent widely used in the food and cosmetic industries. Additionally, because XG is
thixotropic, meaning that its viscosity decreases when an external force is applied, the
gel electrolyte based on XG can penetrate the mesoporous TiO2 electrode [100,101]. Park
et al. developed half aqueous XG-based gel electrolyte with PMII and MPN solvent for
DSSCs. The resulting device reached a PCE value of 4.40% even after 288 h, indicating that
the XG-based electrolyte enhanced the long-term stability [101]. Galliano et al. prepared
100% aqueous XG-based electrolyte containing NaI salt, based on which the resulting DSSC
device showed only a slightly lower PCE value of 1.93% than that based on a liquid-state
electrolyte (2.28%) due to lower diffusion coefficient and UV-vis absorption. Moreover,
it exhibited impressive stability after more than 1500 h of the aging test (Figure 4b) [97].
Further study to enhance the PCE was conducted using a cobalt-based redox couple,
leading to an overall PCE of 4.47% and stability for five days [98]. The aqueous gel
electrolyte based on carboxymethylcellulose (CMC) was prepared and used for DSSCs,
which showed a PCE value of 0.72% in optimum CMC concentration (5.5 wt.%), without
any additives and surface treatment of the photoanode, such as UVO or TiCl4 [96]. In the
study conducted by Haro et al., a bioderived gel electrolyte was developed using lignin,
a lignocellulose material, which is the most available material on earth for biofuels. The
resulting DSSCs with the lignin-based electrolyte exhibited a PCE value of 1.54% with
VOC = 0.63 V, JSC = 3.62 mA/cm2, and FF = 0.67 [102].

Figure 4. (a) J-V curves of the aqueous electrolyte-based DSSCs according to the content of water in
the electrolyte based on the water–MPN mixture. Reprinted with permission from [88]. Copyright
2010 Wiley. (b) Stability in photovoltaic performance of DSSCs based on aqueous electrolytes (black
squares) and hydrogel electrolytes (red circles). Reprinted with permission from [97]. Copyright
2020 MDPI.
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Table 4. Photovoltaic performance of DSSCs with aqueous electrolytes.

Dye Electrolyte Content of Water (%) Photoanode Cathode PCE (%) Ref.

LEG4 0.15 M TEMPO, 0.05 M TEMPOBF4,
LiClO4, 0.2 M NMBI in H2O 100 TiO2 Pt 4.14 [103]

D131 5.5 M KI, 0.05 M I2 in H2O 100 TiO2 Pt 0.73 [90]

BH2 2 M NaI, 0.02 M I2, 0.5 M GuSCN in an
aqueous solution saturated CDCA 100 TiO2 NiO 0.056 [91]

CdS QD 0.5 M Na2S, 2 M S, 0.2 M KCl in
MeOH:H2O 30 TiO2 Pt 1.15 [104]

N719/Z907

2 M NaI, 0.02 M I2, 0.5 M GuSCN
in H2O

100 TiO2 Pt

0.68
[105]

2 M NaI, 0.02 M I2, 0.5 M GuSCN, and
1 g natural rubber in H2O 0.46

JK-259 2 M PMMI, 0.05 M I2, 0.1 m GuSCN,
0.5 M TBP, 1% Triton X-100 in H2O 100 TiO2 Pt

1.16
[106]

JK-262 2.1

N719

2 M NaI, 0.2 M I2, 0.1 M GuSCN
in H2O

100 TiO2 Pt
2.51

[107]

2 M NaI, 0.2 M I2, 0.1 M GuSCN, and
0.2 wt.% FC-134 in H2O 3.69

T169 T-/DS in the presence of H2O2 100 TiO2 PEDOT 4.5 [108]

D205 1 M TEMPOL in an aqueous 1 M
NaBF4 solution 100 TiO2 Nafion 2.1 [109]

D131
0.5 M TEMPOL in an aqueous 0.5 M
NaCl solution in the presence of
0.1 M H2O2

100 TiO2 Pt 1.3 [110]

TG6
2 M PMMI, 0.05 M I2, 0.1 M GuSCN,
0.5 M TBP in MPN:H2O

0

TiO2 Pt

5.5

[88]60 4.5

100 2.4

D131

0.5 M NaI, 25 mM I2 in H2O 100 TiO2 Pt

0.2

[94]D205 0.1

D149 0.14

V35 2 M KI, 0.01 M I2 in an aqueous
solution saturated CDCA 100 TiO2 PEDOT 3.01 [111]

SK3 2 M LiI, 0.02 M I2, 1 M GuSCN in H2O 100 TiO2 Pt 1.27 [112]

N719
1 M LiI, 0.02 M I2 in H2O

100 TiO2 Pt
0.1

[113]
1 M LiI, 0.02 M I2, Rice starch in H2O 0.35

D131

5 M NaI, 0.03 M I2 in an aqueous
solution saturated CDCA

100 TiO2 Pt

2.44
[97]

5 M NaI, 0.03 M I2, 5 wt.% of XG in an
aqueous solution saturated CDCA 2.23

MK2 0.21 M Co(bpy)3Cl2, 0.07 M
Co(bpy)3Cl3, 1.5 wt.% of XG in H2O 100 TiO2 Pt 4.47 [98]

D131

5.5 M KI, 0.05 M I2, 5.5 wt.% CMC
in H2O

100 TiO2 Pt

0.72
[96]

4.5 M NaI, 0.05 M I2, 5.5 wt.% CMC
in H2O 0.61

N3
0.5 M KI, 0.025 M I2 in H2O 100

TiO2 Pt

0.6

[114,115]
N719 0.5

N3 0.5 M KI, 0.025 M I2 in 35% aqueous
ethanol solution 65

1.3

N719 1.1

D131 5 M NaI, 0.01 M I2 in an aqueous
solution saturated CDCA 100 TiO2 Pt 2.37 [116]

N3 0.5 M LiI, 0.025 M I2 in H2O 100 SnO2/TiO2 Pt 0.66 [117]
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4.2. Efforts to Improve Performance

The relatively poor performance of DSSCs using aqueous electrolytes compared
to organic electrolytes can be attributed to various causes: (1) less wettability of the
photoanode surface [104,107,108,112]; (2) desorption of the dye from the surface of the
semiconductor [89,118–120]; (3) reduction in the diffusion coefficient [89,104,107,108,112];
(4) recombination derived from a higher concentration of free iodine [91,121]; and (5) neg-
ative shift of the conduction band [122–124]. To overcome these problems, endeavors to
improve performances, such as adding surfactants, developing novel redox couples and
hydrophobic sensitizers, and chemical and morphological modification of the photoan-
ode surface have been performed. In this chapter, we will discuss the efforts to improve
aqueous DSSCs.

4.2.1. Development of Novel Redox Couples and Photosensitizers

To overcome the low VOC and JSC values of aqueous DSSCs, novel redox couples
and sensitizers were developed to have fast kinetics and a high positive redox potential,
which is related to high VOC. The radical of 4-hydroxy-2,2,6,6-tetramethlypiperidinoxyl (4-
hydroxy-TEMPO or TEMPOL (Figure 5a)), which has 0.7 V of redox potential in water, was
developed and was added to an aqueous electrolyte in DSSCs with a D131 dye [109,110],
resulting in a PCE value of 1.3% (VOC = 0.81 V, JSC = 3.1 mA/cm2, and FF = 0.56) [110].
Additionally, Kato et al. immobilized TEMPOL on the Nafion layer coated on a counter elec-
trode to enhance the reduction peak current and achieved a PCE value of 2.1% with 1.0 M
TEMPOL/TEMPOL+ and D205 dye (VOC = 0.69 V, JSC = 4.5 mA/cm2, and FF = 0.64) [109].
The high VOC compared to that of the previously reported aqueous systems was due to the
high positive redox potential of the TEMPO/TEMPO+ redox couple [103]. JSC remained con-
stant or only slightly higher than without TEMPO/TEMPO+, which was attributed to the
recombination between TEMPO+ and the use of the highly hydrophobic dyes [108,125,126].
Fayad et al. introduced a new water-soluble redox couple based on a thiolate/disulfide
(T−/DS) in an aqueous electrolyte and new zwitterionic dye (T169) to improve poor wet-
ting, showing excellent performance with VOC = 0.55 V, JSC = 13.30 mA/cm2, FF = 0.62,
and PCE = 4.50% [108].

Figure 5. (a) Redox reaction of the TEMPOL/TEMPOL+. (b) J-V curves of the DSSCs based on aque-
ous electrolytes containing 5 M NaI and 0.01 M I2, with or without TiCl4 treatment on photoanodes.
Reprinted with permission from [116]. Copyright 2019 Elsevier.

4.2.2. Interface Engineering of Photoanodes and Aqueous Electrolytes

Surfactants are widely used to impede phase separations in aqueous electrolytes,
including organic ionic liquids [88,127], and improve incomplete wettability between hy-
drophobic semiconductor photoanode and aqueous electrolytes by reducing the interfacial
tension [106,128]. For a 100% aqueous electrolyte, Zhang et al. applied ionic surfactants
(AOT and FK-1 as anionic surfactants and CTAB and FC-134 as cationic surfactants) to
100% water-electrolyte incorporating NaI and I2. Both the anionic and cationic surfactants
could improve the PCE from 2.51% (without surfactant) to 2.98% (with 0.1 wt.% of AOT)
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and 3.96% (with 0.2 wt.% of FC-134) due to the better wettability of the aqueous electrolyte
and dye-coated TiO2 layer [107]. However, since the surfactants could decrease the DSSC
performance by imposing a diffusion limitation of the redox couple, caution should be
taken to use the appropriate redox couple and surfactants [103].

Chemical and morphological modification of photoanode surfaces could also enhance
the performance of DSSCs. Miyasaka et al. treated a TiO2 photoanode with ozone and UV
light to increase its hydrophilicity and absorbed dye on the TiO2 surface in the presence of
tert-butylpyridine (TBP) to reinforce the dye–TiO2 binding. The PCE was enhanced from
0.6% to 1.1% with an aqueous electrolyte (0.5 M KI and 25 mM I2 in water) [114,115]. Fur-
thermore, an increase in the active surface area is a method for improving the photocurrent
and, therefore, the PCE of DSSCs. TiCl4 treatment on TiO2 surface forms a rough nanolayer
of TiO2, causing the surface area augmentation and increasing the light-harvesting ef-
ficiency and adsorption of dye [129,130]. The TiCl4 treatment on the TiO2 surface also
inhibited the charge recombination between the electrons and the oxidized redox couple
through the barrier effect [116,131,132]. In fact, in research activities on various types of
solar cells, including DSSCs, TiCl4 treatment has been actively utilized to increase efficiency.
Bella et al. used the TiCl4 treatment, which improved the PCE of DSSCs based on an
aqueous electrolyte comprising NaI and I2 from 1.25% to 2.37% (Figure 5b) [116]. The
TiCl4 liquid deposition process could damage the semiconductor film, resulting in flaking
off from the fluorine-doped tin oxide (FTO) after a long treatment time (>4 h). Therefore,
Pham et al. introduced a shorter (<1 h) and more effective nanoTiO2-layer-coating method
on SnO2 film using a (NH4)2TiF6 solution. With this approach, the PCE increased ten
times, from 0.067% (no treatment) to 0.66% ((NH4)2TiF6 treatment), which was higher
compared to the 0.204% improvement using the TiCl4 solution treatment [117]. S. Castro
et al. employed anchoring molecules, trioctylmethyl ammonium dodecanedioate (DTMA)
containing carboxyl groups and alkyl chains, to the TiO2 layer before the dye adsorption
step. The molecules are anchored onto the TiO2 layer by acting as selective physical barriers
that hinder the triiodide molecules from contacting the TiO2 layer [133].

5. Efforts to Obtain Fully Eco-Friendly DSSCs

In previous chapters, we discussed the studies where artificially synthesized dyes and
organic solvent-based electrolytes were individually replaced with eco-friendly materials
of natural dyes and water-based electrolytes, respectively. Here, studies to realize fully
“green” DSSCs by simultaneously using both natural dyes and aqueous electrolytes are
introduced (Figure 6a).

Gu et al. attained a PCE value of 0.01% using natural dye from purple cabbage and an
aqueous electrolyte, including 0.5 M KI and 50 mM I2 [134]. Kim et al. improved the PCE
of DSSCs based on chlorophyll and 100% aqueous electrolyte with KI/I2 via O2 plasma
treatment. The treatment enhanced the hydrophilicity of the TiO2 photoanode surface,
thereby increasing the PCE from 0.023% (VOC = 0.46 V, JSC = 0.089 mA/cm2, and FF = 0.56)
to 0.033% (VOC = 0.46 V, JSC = 0.14 mA/cm2, and FF = 0.52) [118]. Furthermore, Hon et al.
used a 35% aqueous ethanol electrolyte, including 0.1 M Ce(NO3)3/0.05 Ce(NO3)4 and Au
nanoparticles, which can create a Schottky barrier between the Au nanoparticles and the
TiO2 electrode to enhance the photocurrent. They achieved a PCE value of 1.49% [135].

Other examples of approaches for more eco-friendly and low-cost DSSCs, besides
using natural dyes and aqueous electrolytes, are to use a CoS-deposited carbon fabric [136]
and graphite electrode [134] as a counter electrode or develop the eco-friendly synthesis
process of TiO2 using Terminalia arjuna bark extract. As an intriguing approach for eco-
friendly DSSCs, Koo et al. reported a biomimetic, regenerable DSSC with microfluidic
hydrogels inspired by the vein of a leaf (Figure 6b), which showed a PCE value of 0.21%,
with VOC = 0.63 V, JSC = 0.59 mA/cm2, and FF = 0.57. In microfluidic DSSCs with organic
eosin Y dye, the dyes and aqueous electrolytes could be repeatedly infused and supplied to
the device through the microfluidic hydrogel network, thereby continuously regenerating
the DSSCs [99].
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Figure 6. (a) Scheme of general DSSCs containing a synthesized dye and organic electrolyte and
eco-friendly DSSCs containing a natural dye and aqueous electrolyte. (b) DSSC assembled with
an aqueous gel electrolyte mimicking a leaf vein. Reprinted with permission from [99]. Copyright
2013 Elsevier.

6. Conclusions and Future Outlooks

Due to low cost, facile fabrication, and high conversion efficiency, DSSCs have attracted
much attention as new renewable energy devices. To replace the expensive and toxic
materials in typical DSSCs with less harmful ones, efforts using natural dyes and aqueous
electrolytes have been made. The DSSCs based on natural dyes and aqueous electrolytes,
however, showed a lower efficiency than conventional DSSCs due to poor wettability,
desorption of dye, low-diffusion coefficient of ions, recombination of photoanodes, and
negative shift of the conduction band. Various efforts, such as the combination of the
dyes, addition of the surfactants, and treatment of the photoanode, have improved the
performance of aqueous DSSCs. Today, a few studies on fully eco-friendly DSSCs have
been reported, even though the efficiency is still very low. Attaining long-term stability
of the eco-friendly DSSCs is another key task. Fortunately, it has been reported that
an aqueous electrolyte could be more durable than an organic solvent-based electrolyte,
possibly due to the low volatility, high surface tension, high specific heat, and high boiling
point of water [19,90]. Research on fully eco-friendly DSSCs with enhanced efficiency and
stability should be conducted to develop more practical energy devices with the minimum
environmental footprint.
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