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Abstract: The aim of this study was to investigate and analyze the separation process of poly
(ethylene terephthalate) and high-density polyethylene mixture. The research studied the influence of
parameters of tribocharging and separation processes on the quality of separation. The research was
carried out using a developed test stand consisting of a test tribocharger and a dedicated drum-type
electrostatic separator. Both the separator and the tribocharger have been designed as automated
test benches to assess the quality of plastic separation. In order to assess the quality of electrostatic
separation of plastics, an original method based on the use of a dedicated vision system was used. The
research was conducted in two stages. Firstly, the influence of the tribocharging process parameters
on the efficiency of the process, i.e., the charge collected, was investigated. The next stage of the
research was focused on the analysis of the influence of the separation process parameters on its
effectiveness. The obtained results were presented and discussed. On the basis of the conducted
research, the parameters of the tribocharging and separation processes affecting their effectiveness
were determined.

Keywords: electric field; PET; PE-HD; tribocharging; electrostatic separation; vision system

1. Introduction

The current technological progress and today’s lifestyle make plastics indispensable
materials. Because they are inexpensive, very functional, lightweight, hygienic plastic
become crucial in industrial and commercial applications in many areas [1]. Out of that
versatility, the world production of plastics over the last decades has increased significantly.
With the increase in production, and due to the large variety of types of plastic, the amount
of waste grows dramatically [2]. For example, in Europe, post-consumer waste reaches over
29 million tons. The total demand for European plastics converters is around 58 million
tons compared to 368 million tons worldwide. The EU average percentage ratio of recycling
in plastic packaging reaches only 42% [3,4]. According to the EU Packaging and Packaging
Waste Directive, the target should reach 55% by 2030 [5].

Plastic waste is unacceptable in any habitat. Global issues in waste management
prompt scientists to improve old and search for new methods of separating plastics [6,7].
Moreover, waste management, nowadays, should be strongly linked to the process of
manufacturing goods [8]. There are many technologies and phenomena used to separate
mixed plastic, such as, e.g.,: density difference [9], selective dissolution [10], electrostatic
separation and more [11,12]. From the perspective of energy consumption as well as
simplicity and number of incorporated co-processes the electrostatic separation is one of
the most promising methods of plastic waste separation [13]. For example comparing
to the most commonly applied float-sink methods the electrostatic separation do not
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exploit water resources as well as do not need drying of the material after separation
process. Triboelectric charging occurs in almost every system involving moving particles.
The occurrence of forces acting on charged particles in an electric field is the basis for
electrostatic separation systems used in many applications, for example, when obtaining
plant protein and plant raw materials [14,15], separating organic powders [16], in the coal
and mine industry [17], in PCB (Printed Circuit Board) and plastic recycling [18], and many
others. Despite of discussed advantages of electrostatic separation of plastics raises still
many difficulties mainly by the high number of factors affecting tribocharging process and
variety of properties of different polymers in plastic waste [19,20].

On the basis of the literature review linked to the subject of this paper, it can be noted
that research related to the separation of mixed plastic concerns primarily two objectives,
i.e., the development of a new, or the modification of the existing equipment for the plastic
separation and the search for effective methods of electrifying mixed plastic waste [21,22]. In
the majority of papers, both aims are interrelated. Their authors are looking for methods to
separate mixed plastics to the best possible extent. It should be noted that in the recycling of
polymeric waste by electrostatic separation, i.e., in the separation using an electric field [23],
authors aim to achieve the highest possible electrostatic charge on the separated material
as well as to gain the highest recovery and purity factors characterising the effectiveness
of the separation process. It should be highlighted that due to a large number of factors
influencing the phenomenon of tribocharging of plastic particles (among others, particle
size, electrical properties of materials, their humidity, pressure and temperature, the method
and materials used to charge particles, etc.), the conducted research is very complex. Many
tribocharger designs and particle charging methods adapted for electrostatic separation
of selected polymers are described in the literature. A reliable comparative evaluation
of the effectiveness of the proposed solutions is difficult due to the incompleteness of
data concerning the conducted studies. In order to relate the research presented in the
paper to the contemporary achievements in the field of electrostatic separation, the data
on the research carried out in this field are summarized in Tables 1 and 2. The data on the
separated materials, particle size, accumulated charge during the charging process, and
the obtained separation quality parameters are summarized in Table 1. Information on the
applied particle charging method, charger types and materials, as well as the applied level
of high voltage, are given in Table 2.

Table 1. Summary of selected parameters characterizing plastic waste separation on the basis of a
literature review.

Article Input Material
(Waste)

Particle Size
[mm]

Accumulated
Charge [nC/g]

(CMR)
Recovery [%] Purity [%]

[7]

ABS, HIPS - - 90 (ABS), 94
(HIPS)

99.5 (ABS and
HIPS)

ABS, HIPS, PET,
PC - - 41 (PET), 90

(HIPS)
99 (PET and

HIPS)

PA, PC 2.5 ÷ 3.4 (PA)
3.0 ÷ 3.6 (PC) - 62 (PA)

66 (PC)
98.72 (PA)
98.6 (PC)

[18] HIPS/ABS,
HIPS/ABS-PC 0.25 ÷ 2 -

88 ÷ 94.3 (HIPS)
90.5 ÷ 97
(ABS-PC)

88 ÷ 94.8 (ABS)

92.9 ÷ 99.6
(HIPS)

82.8 ÷ 99.6
(ABS-PC)

92 ÷ 99.8 (ABS)

[24] PP, PA 0.5 ÷ 5 - 91.5 (PA)
93.5 (PP)

90.5 (PA)
90.0 (PP)

[25] PVC, PET, HDPE
6.5 (PVC)
10.0 (PET)

3.5 (HDPE)
-

41 (PVC), 93
(PET),

80 (HDPE),
77/81

(PVC/HDPE),
66/96

(PVC/PET)

91/91(PVC/
HDPE)68/81
(PVC/PET)
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Table 1. Cont.

Article Input Material
(Waste)

Particle Size
[mm]

Accumulated
Charge [nC/g]

(CMR)
Recovery [%] Purity [%]

[26] PP, ABS, PVC, PS
2.2 ÷ 2.8 (PP,

ABS, PS)
2.8 ÷ 3.2 (PVC)

7.17 (for PVC
charger

material),
8.37 (for ABS

charger
material),

3.16 (for fluoro
rubber charger

material)

- -

[27] WPVC, GPVC 100
mikro/granulometric - 40 (WPVC)

40 (GPVC)
92 (WPVC)
92 (GPVC)

[28] PVC, UPVC 0.001 - 98.63 (PVC)
85.79 (UPVC)

82.79 (PVC)
97.41 (UPVC)

[29] ABS, PS 2 ÷ 5 5.5 (ABS)
2.5 (PS) - -

[30]

PC-ABS, PVC 10 - 89 (PVC)
94 (PC-ABS)

95 (PVC)
90 (PC-ABS)

PC-ABS, HIPS

2 −2.69 (HIPS)
+4.18 (PC-ABS)

88
(PC-ABS and

HIPS)

88
(PC-ABS and

HIPS)

3 −2.52 (HIPS)
+3.87 (PC-ABS)

98 (PC-ABS)
90 (HIPS)

90 (PC-ABS)
98 (HIPS)

5 −2.37 (HIPS)
+3.23 (PC-ABS)

99 (PC-ABS)
96 (HIPS)

95 (PC-ABS)
99 (HIPS)

7 −1.97 (HIPS)
+2.76 (PC-ABS)

90
(PC-ABS and

HIPS)

90
(PC-ABS and

HIPS)

[31] WPVC, GPVC 0.9 - - 89 (WVPC)
94 (GPVC)

[32] ABS, PA >10 - 94.5 (ABS),
95.5 (PA) -

[33] PA, PC 3 9.8 ÷ 12.2 (PA)
6.46 ÷ 7.71 (PC)

96.3 (PA)
93.0 (PC)

98.8 (PA)
99.15 (PC)

[34] PP, PU, PVC 4 ÷ 8 -

first stage of
separation:
41 (PVC)

71 (PP-PU
mixture)

second stage of
separation:

74 (PP)
94 (PU)

first stage of
separation:
97 (PP-PU
mixture)

second stage of
separation:

95 (PP)
99 (PU)

[35] LDPE, HDPE,
PVC, PET 2.8 - 92.8 (PP)

95.9 (HDPE)
97.7 (PP)

93.1 (HDPE)

[36] PS, PP 1 ÷ 3 - 87 (PS), 97 (PP) 98 (PS), 97.5 (PP)

[37]

PVC, ABSb, PP,
PS, HDPEb,

HDPEw, HIPSw,
HIPSg, PA, PC,

ABSbr

1 ÷ 4

−3.0 (PVC)
−0.58 (ABSb)
−1.65 (PP)
−1.68 (PS)

−0.38 (HDPEb)
−2.2 (HDPEw)
−1.8 (HIPSw)
−0.62 (HIPSg)

+2.88 (PA)
+1.25 (PC)

+2.1 (ABSbr)

Fluized bed
98 (PA)
97 (PC)

93 (HIPSw)
89 (PVC)

Sliding
99 (PA)
99 (PC)

98 (HIPSw)
97 (PVC)

Fluized bed
97 (PA)
73 (PC)

71 (HIPSw)
60 (PVC)

Sliding
84 (PA)
81 (PC)

96 (HIPSw)
93 (PVC)

[38] HDPE, PVC, PC 2 ÷ 5

Hollow tube
+1.5 (PC)

−1.0 (HDPE)
−2.6 (PVC)
2 cylindres
+4.0 (PC)

−1.8 (HDPE)
−4.2 (PVC)

94.38 (PC)
89.66 (HDPE)

99.9 (PVC)

95,88 (PC)
96,97 (HDPE)

99.9 (PVC)
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Table 2. Summary of separator types, method of charging particles and operation voltage on the
basis of a literature review.

Article Method/Type/Material Type of Separator Voltage
[kV]

[7] Electrostatic/Tribocharging Fluidized bed and
rotating rolls 20

[18] Fluidized bed tribocharging/Al, PP, PET Free-fall 35 ÷ 40

[24] Electrostatic/Tribocharging/PMMA Free-fall with rotating
cylindrical electrodes 30

[25] Electrostatic/Tribocharging/PVC Free-fall 25

[26] Vibrating and cyclone/Tribocharging/PVC,
ABS, PTFE, silicone rubber, and fluoro rubber Free-fall 35

[27] Triboelectrostatic/Fluidized/PMMA Walls Chamber 12

[28] Triboelectric/Electrodes/Stainless steel Free-fall 20

[29] Triboelectric/Rotating-Cylinder/PVC Rotating-Cylinder-Type
Triboelectric Charging -

[30] Electrostatic/Tribocharging Roll-type 24

[31] Electrostatic/Tribocharging

Triboelectrostatic
separator with two

metallic horizontal and
parallel plate electrodes

28

[32] Fluidization chamber, which consists of
transparent plexiglas walls

Two aluminium
electrodes attached to
plexiglass insulating

plater

15 ÷ 25

[33] Aero-Dynamic Tribocharging/Three coaxial
cylinders/PVC Free-fall 54

[34] Tribocharging/Friction rotating
drum/PMMA Free-fall 35

[35]
Single-phase tribocharger/vibration system,
Two-phase gas-solid tribocharger/fluidized

bed system/PP
Roll-type 30

[36] Without corona charging/with corona
charging

Insulating
conveyor-belt-type

electrostatic separator
24, 30

[37] Electrostatic/Tribocharging Roll-type 35

[38] Electrostatic/A rotating cylinder of PP/PP
Roll-type electrostatic

separator
metal-belt conveyor

30

2. Materials and Methods

Particles of two materials, PET (Poly(Ethylene Terephthalate)) and PE-HD (High-
density Polyethylene), used in the production of plastic bottles were used in the study. On
the basis of previous studies for tribocharging of these materials, the authors stated that
the particles of these materials with a grain size of 1.8–2.8 mm [23], obtained the highest
charges. Such a fraction of the tested materials obtained after grinding them in a Shini SG
1411 CE X mill (Shini Plastics Technologies Inc. Taiwan) and sieving through sieves placed
in a Vibratory Sieve Shaker ANALYSETTE 3 (FRITSCH GmbH, Idar-Oberstein, Germany)
was used in the described research. Figure 1 shows the prepared material before and after
mixing it in a ratio of 50% PET and 50% PE-HD. In order to exploit the proposed method
of evaluating the separation quality by a vision system, the materials were given different
colours. The tests were conducted at room temperature in the range of 20 to 21 ◦C, with
relative humidity in the range of 40% to 45%. The authors’ project of an automated test
stand for the tribocharging and separation process of mixed plastic waste is shown in
Figure 2.
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system, in order to create a strong air flow, a professional blower, Cormak FM300 
(CORMAK, Siedlce, Poland), with a suction capacity of 2530 m3/h was applied. The 
blower fan is driven by a three-phase motor with a capacity of 1.5 kW and a rated speed 
of 2850 rpm. The motor is supplied by a 3G3MX2-A4015-E inverter (OMRON Co. Kyoto, 
Japan) (Figure 3b) with a voltage of adjustable frequency within the range of 45–70 Hz, 
which made it possible to obtain an air output in the range of 2.16–3.68 cpm. The applied 
blower, after sucking in the particles of the tested materials, blows them into a 
10-metre-long polyurethane (PU) tube with a diameter of 30 mm, coiled into a spiral, 
and then blows the particles into a conical cyclone. The tested material circulates in the 
cyclone and the PU pipe and is electrified. The capacity of the particles to be electrically 
charged in the PU tube and the cyclone was, therefore, investigated independently for 
both devices. Faraday buckets connected to a JCI 178X (Chilworth Technology Ltd. PHI 
House, Southampton Science Park, UK) Charge Measuring Unit (Figure 4) were used to 
measure the accumulated charge of the particles in both materials. 
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Figure 2. The automated test bench of the tribocharging and separation process.

In order to electrify particles of the materials under study in the tribocharging process,
a system shown in Figure 3a was developed, built, and used by the authors. In this system,
in order to create a strong air flow, a professional blower, Cormak FM300 (CORMAK,
Siedlce, Poland), with a suction capacity of 2530 m3/h was applied. The blower fan is
driven by a three-phase motor with a capacity of 1.5 kW and a rated speed of 2850 rpm. The
motor is supplied by a 3G3MX2-A4015-E inverter (OMRON Co. Kyoto, Japan) (Figure 3b)
with a voltage of adjustable frequency within the range of 45–70 Hz, which made it possible
to obtain an air output in the range of 2.16–3.68 cpm. The applied blower, after sucking
in the particles of the tested materials, blows them into a 10-metre-long polyurethane
(PU) tube with a diameter of 30 mm, coiled into a spiral, and then blows the particles
into a conical cyclone. The tested material circulates in the cyclone and the PU pipe and
is electrified. The capacity of the particles to be electrically charged in the PU tube and
the cyclone was, therefore, investigated independently for both devices. Faraday buckets
connected to a JCI 178X (Chilworth Technology Ltd. PHI House, Southampton Science
Park, UK) Charge Measuring Unit (Figure 4) were used to measure the accumulated charge
of the particles in both materials.
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Figure 4. A system for measuring the accumulated charge on particles of (a) PE-HD and (b) PET
polymers.

In further studies, the mixed particles of both materials in the same weight proportions
were subjected to the process of electrical charging (tribocharging) in the system presented
in Figure 3a. The electrified particles were then delivered onto the belt conveyor of the
separator built by the authors (Figure 5a) [22,23]. The separation efficiency of the process
was evaluated with the use of a vision system developed by the authors (Figure 5b), by
observing the changing speed of the conveyor belt and negative electrode roller [22,23].
The vision system allowed for the percentage assessment of the degree of separation for
individual collectors treated as the region of interests (ROI, Figure 5b-1). The starting
point was an image (taken by the camera in Figure 5b-2) filtered using the HSV color
palette. Before the tests, the vision system setup was calibrated for the tested material. The
calibration procedure and a detailed description of the vision system were presented by the
authors in [22]. To evaluate the impact of the selected parameters of the separation process,
two figures of merit have been proposed: the recovery rate (RR) and purity (PUR). These
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quality factors refer to data summarized in Table 1, nevertheless, it should be emphasized
that since the proposed assessment method is based on a vision system, the RR and PUR
factors cannot be treated directly as absolute values. The recovery rate is calculated using
the following formula:

RR =
mr

mr + mw
·100% (1)

where: mr is the estimated mass of the recovered material of required purity (RP), mw is
the estimated mass of the material of purity less than RP, mri and mwi are estimated by the
analysis of each ROI.

mr = ∑l
i=1 mri mrw = ∑l

i=1 mwi (2)

where: i denotes the ROI number, l is the numbers of ROI segments.
The purity parameter represents the purity of recovered material from the mixture of

A (PET) and B (PE-HD) materials. The parameter PUR is calculated as the average value of
purities of the separated materials PUA and PUB, respectively.

PUR =
PUA + PUB

2
·100% (3)

where PUj represents the purity of the j–th material and is calculated as follows:

PUA =
mAR
mBW

·100% PUB =
mBR
mAW

·100% (4)

here mAR and mBR are the estimated masses of recovered materials A and B, respectively;
while mBW and mAW are the estimated masses of materials B and A in mAR and mBR,
respectively.

The influence of the position of the deflecting electrode on the separation efficiency of
the materials studied was also examined. Both the angle of inclination and the distance of
the deflecting electrode from the drum discharging the separated particles into containers
(ROIs) were changed. Figure 6 shows a selection of two different positions of the deflecting
electrode for which separation quality tests were performed.
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analyzed material, 2-camera.
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3. Results and Discussion

In the course of the research carried out, the efficiency of electrical charging of PET
and PE-HD particles in elements of the system used for tribocharging (Figure 3a), i.e.,
the PU tube and cyclone, was the first thing checked. The tests were carried out at the
voltage supplying the motor driving the blower with a frequency of 70 Hz. The blower first
sucked the area of one end of the closed circuit in the PU tube and then blew particles of
the analyzed materials into the other end of the PU tube. During the process of rubbing
the particles against the walls of the PU tube, the particles were electrified. The duration
of the charging process of 10 g particles for both tested materials was varied up to 8 min.
Afterwards, the charge accumulated in PET and PE-HD particles was measured. The
obtained results are illustrated in Figure 7a,b, respectively. At the same blower settings, the
particles of both materials were electrified inside the cyclone. The duration of the charging
process for PET and PE-HD particles of 10 g inside the cyclone lasted also up to 8 min. The
results of the measurements of the charge accumulated in the particles of both materials
during this research are presented in Figure 7c,d, respectively.

Next, the separation efficiency of the mixed material (50 g PET+50 g PE-HD particles)
was tested. The tests were carried out at a blower air flow rate of 3.68 cpm in the constructed
system (Figure 3a). The duration of the tribocharging process was varied up to 8 min. The
electrified particles of the mixture of both materials were separated in a separator (Figure 5a)
and the efficiency of this separation was evaluated in the vision system (Figure 5b). The
obtained results of selected separation tests are shown in Figures 8–10.



Energies 2022, 15, 19 9 of 13Energies 2021, 14, x FOR PEER REVIEW 10 of 14 
 

 

 

 
Figure 7. Charge density Q/m as a function of time t tribocharging in a PU tube for PET (a) and 
PE-HD particles (b) and in a cyclone for PET (c) and PE-HD particles (d). 

Next, the separation efficiency of the mixed material (50 g PET+50 g PE-HD parti-
cles) was tested. The tests were carried out at a blower air flow rate of 3.68 cpm in the 
constructed system (Figure 3a). The duration of the tribocharging process was varied up 
to 8 minutes. The electrified particles of the mixture of both materials were separated in a 
separator (Figure 5a) and the efficiency of this separation was evaluated in the vision 
system (Figure 5b). The obtained results of selected separation tests are shown in Figures 
8–10. 

 
Figure 8. Results after 8 min of tribocharging and separation: (a) percentage of PET and PE-HD in 
each ROI segments; (b) percentage of PET and PE-HD in relation to the surface of the ROI seg-
ments. 

Figure 7. Charge density Q/m as a function of time t tribocharging in a PU tube for PET (a) and
PE-HD particles (b) and in a cyclone for PET (c) and PE-HD particles (d).

Energies 2021, 14, x FOR PEER REVIEW 10 of 14 
 

 

 

 
Figure 7. Charge density Q/m as a function of time t tribocharging in a PU tube for PET (a) and 
PE-HD particles (b) and in a cyclone for PET (c) and PE-HD particles (d). 

Next, the separation efficiency of the mixed material (50 g PET+50 g PE-HD parti-
cles) was tested. The tests were carried out at a blower air flow rate of 3.68 cpm in the 
constructed system (Figure 3a). The duration of the tribocharging process was varied up 
to 8 minutes. The electrified particles of the mixture of both materials were separated in a 
separator (Figure 5a) and the efficiency of this separation was evaluated in the vision 
system (Figure 5b). The obtained results of selected separation tests are shown in Figures 
8–10. 

 
Figure 8. Results after 8 min of tribocharging and separation: (a) percentage of PET and PE-HD in 
each ROI segments; (b) percentage of PET and PE-HD in relation to the surface of the ROI seg-
ments. 

Figure 8. Results after 8 min of tribocharging and separation: (a) percentage of PET and PE-HD in
each ROI segments; (b) percentage of PET and PE-HD in relation to the surface of the ROI segments.

Energies 2021, 14, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 9. Results after 5 min. of tribocharging and separation: (a) percentage of PET and PE-HD in 
each ROI segments; (b) percentage of PET and PE-HD in relation to the surface of the ROI seg-
ments. 

 
Figure 10. Results after 1 min. of tribocharging and separation: (a) percentage of PET and PE-HD in 
each ROI segments; (b) percentage of PET and PE-HD in relation to the surface of the ROI segments. 

The separation efficiency tests carried out using the developed vision system 
showed that the separation efficiency rapidly improves when the tribocharging time for 
the particle mixture of both materials in the range of up to about 5 min was increased. 
Further extending the tribocharging time only slightly improved the separation effi-
ciency. Therefore, further studies of that separation efficiency and quality were per-
formed for a tribocharging time of 5 min. The influence of the position of the deflecting 
electrode (Figure 11) and the drum rotational speed on RR and PUR of the separated PET 
and PE-HD particles was analysed. 

Figure 9. Results after 5 min. of tribocharging and separation: (a) percentage of PET and PE-HD in
each ROI segments; (b) percentage of PET and PE-HD in relation to the surface of the ROI segments.



Energies 2022, 15, 19 10 of 13

Energies 2021, 14, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 9. Results after 5 min. of tribocharging and separation: (a) percentage of PET and PE-HD in 
each ROI segments; (b) percentage of PET and PE-HD in relation to the surface of the ROI seg-
ments. 

 
Figure 10. Results after 1 min. of tribocharging and separation: (a) percentage of PET and PE-HD in 
each ROI segments; (b) percentage of PET and PE-HD in relation to the surface of the ROI segments. 

The separation efficiency tests carried out using the developed vision system 
showed that the separation efficiency rapidly improves when the tribocharging time for 
the particle mixture of both materials in the range of up to about 5 min was increased. 
Further extending the tribocharging time only slightly improved the separation effi-
ciency. Therefore, further studies of that separation efficiency and quality were per-
formed for a tribocharging time of 5 min. The influence of the position of the deflecting 
electrode (Figure 11) and the drum rotational speed on RR and PUR of the separated PET 
and PE-HD particles was analysed. 

Figure 10. Results after 1 min. of tribocharging and separation: (a) percentage of PET and PE-HD in
each ROI segments; (b) percentage of PET and PE-HD in relation to the surface of the ROI segments.

The separation efficiency tests carried out using the developed vision system showed
that the separation efficiency rapidly improves when the tribocharging time for the particle
mixture of both materials in the range of up to about 5 min was increased. Further extending
the tribocharging time only slightly improved the separation efficiency. Therefore, further
studies of that separation efficiency and quality were performed for a tribocharging time of
5 min. The influence of the position of the deflecting electrode (Figure 11) and the drum
rotational speed on RR and PUR of the separated PET and PE-HD particles was analysed.
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4. Conclusions

The paper presents the results of research on the electrostatic separation of plastics.
In order to enable the evaluation of the proposed approach, a comparative analysis of
various solutions for electrostatic separators and systems, based on the literature review,
was included in the introductory part of the paper. The presented research was carried out
using a developed test stand consisting of a drum separator, a tribocharger, and a dedicated
vision system enabling quick and effective assessment of the separation process quality.

The research on the tribocharging efficiency of the studied PET and PE-HD particles in
the tribocharging system showed that PE-HD particles have a greater ability to accumulate
a positive charge. This causes them to be more attracted to the negative electrode (drum) of
the separator. On the basis of the obtained results, it was stated that the charging efficiency
of PE-HD particles after about 4–5 min in the cyclone does not increase as fast as that of PET
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particles and begins to stabilize (saturate). Also, the evaluation of the separation efficiency
of the mixture for both materials performed with the developed vision system showed a
visible improvement of the separation efficiency of the particles for both materials when
increasing the tribocharging time to about 5 min. The tests of separation efficiency and
quality for this tribocharging time when changing the drum speed and deflecting electrode
setting showed that:

the most favourable separation at a short distance from the drum with the positive (deflect-
ing) electrode weakly deviating from the vertical position can be obtained when the drum
speed is about 70 rpm;
the least favourable separation at a large distance from the drum with the positive (deflect-
ing) electrode strongly deviated from the vertical position is obtained at a drum speed of
approx. 55–60 rpm; the recovery rate (RR), in this variant, increases with the increasing
drum speed.

The performed research confirms the benefits of further work on improving the
methods for efficient separation of plastics for reprocessing.
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