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Abstract: Electrical power generation by means of electrochemical systems utilizing wastewaters
is a global energy challenge tackling technique for which a creation of novel eco-friendly electrode
materials is in high relevance. For this purpose a Rhodophyta algae derived activated biochar
anode bound with a flaxseeds mucilage binder (5, 10, 20, 30 wt.%) was formed and characterized by
thermogravimetric, Brunauer-Emmett-Teller (BET) analysis as well as conductivity and mechanical
resistance determination. Activation technique with KOH prior to carbonization at 800 ◦C of algae
was employed to obtain biocarbon with a large surface area. The highest specific surface area of
1298.49 m2/g was obtained with the binder-free sample and had a tendency to decrease with the
increase of the binder content. It was estimated that biochar anodes are thermally stable at the
temperature of up to 200 ◦C regardless of binder concentration. The concentration of the binder on
the other hand had a significant influence in anodes mechanical resistance and electrical conductance:
anode with 30 wt.% of the binder had the highest compressive strength equal to 104 bar; however,
the highest conductivity was estimated in anode with 5 wt.% of the binder equal to 58 S/m. It is
concluded that anode with 10 wt.% mucilage binder has the optimal properties necessary in MFC
utilization.

Keywords: microbial fuel cells; activated biochar; biochar anode; environmentally friendly binder

1. Introduction

Rapid increase of global demand for energy caused by human population growth as
well as conventional fuels depletion and environmental pollution elevates international
interest among scientists in development of innovative and clean energy generation tech-
nologies [1]. Microbial fuel cells (MFC) are one of the defined techniques that addresses
mentioned issues and therefore is an actively investigated method [2]. MFC is a tech-
nology employed to produce sustainable energy using various carbohydrates and other
organic substrates available in wastewaters [3]. Typically, MFC consists of two electrodes
compartments—anode and cathode—that are separated by proton exchange membrane
(PEM) [4]. In the MFC approach microorganisms instead of metal catalyst at anode are
applied as biocatalysts [5]. Bacteria attached on the surface of anode catalyse oxidation
reaction of organic matter present in wastewater to release electrons that are transferred
to cathode section through an external circuit [4]. Consequently, originated potential dif-
ferences in between of anode and cathode create an electrical current—electric power [6].
Assuming, that anode must provide a large surface area for biofilm formation purposes
as well as good electrical conductivity to achieve well electron transfer through the MFC
system, a negatively charged electrode has a significant role, and therefore, eligible anode
materials are actively researched nowadays [7].
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Most commonly electrodes used in MFC are carbon-based, including carbon felt, cloth,
mesh, graphite materials, etc. due to their cost-effectiveness, good biocompatibility and
high conductivity [7]. Considering pressing issues of our time pyrolysis of renewable
biomass is a very common way employed to obtain biocarbon based electrodes or superca-
pacitors. As it is seeking to overcome crucial shortcomings of biochar electrodes in MFC
like poor electrical conductivity and insufficient surface area as well as lower porosity [8],
biochar is prepared by applying various activation and pre-treatment methods [9]. To obtain
more efficiently graphitized carbon with higher porosity, Zha et al. [10] performed research
of eggplant-derived biocarbon in advance chemically activated with K3[Fe(C2O4)3]·3H2O.
Investigation revealed that such activation technique allows to build biocarbon electrodes
with maximum surface area of 1181 m2/g and power density of 667 mW/m2 in MFC
according to a pyrolysis temperature and proportion of the salt used during activation.
Tang et al. [11] applied activation with 0.1 mol/L ZnCl2 prior to carbonization of kapok
fibers and produced biocarbon with the surface area of 848.3 m2/g and power density of
801 ± 40 mW/m2 in MFC, which was even higher compared with platinum-based elec-
trodes. Thus, the approach of biocarbon fabrication by treating bio-mass with an activating
agent prior to pyrolysis is a promising way to develop sustainable MFC electrodes avoiding
the use of conventional carbon materials.

A considerable amount of research has been carried out using waste biomass as a
biochar precursor, for comparison a biomass of higher algae biocarbon used to construct
MFC electrodes has been studied to a lesser extent. Although, studies have demonstrated
that there is a possibility to fabricate algal biocarbon based electrodes and apply them in
MFC technology successfully [12]. Employment of algae biomass for production purposes
of value added products is particularly relevant due to the eutrophication process problem
that is primary caused by the increase of algae biomass in water sources [13]. Additional
advantage of algae utilization in manufacturing of biocarbon electrodes is the one, that
cultivation land for growing high yields of algal biomass is not required and it grows
with no manpower, naturally in ponds [14]. Wang et al. [12] investigated algal biomass
collected on Lake Chaohu, China. Authors applied activation technique with KOH prior to
pyrolysis and obtained results demonstrated that algal biochar anode generated 4.1 times
higher current density compared with graphite electrode. Yang et al. [1] paper discuss
Chlorella pyrenoidosa microalgae derived catalysts to coat carbon cloth electrodes applied
in MFC technology. In this work an algal biochar catalyst by pyrolyzing a mix of Chlorella
pyrenoidosa algae, Mg5(OH)2(CO3)4 and ZnCl2 in a mass ratio of 0.67:3:1 was obtained.
The results have revealed that carbon cloth electrode covered with produced algal biochar
catalyst had a surface area of 636.99 m2/g and generated maximum power density of
2288 ± 30 mW/m2 in constructed MFC system. Activated algal derived biochar, besides
the implementation in clean energy generation technologies, provides the perspectives in
electrical energy storage technologies as well. For instance, Salimi et al. [15] applied the
pretreatment technique by soaking dread Cladophora glomerata biomass in 10 mM FeCl3
solution for 300 min prior to slow pyrolysis. By binding obtained biochar with non-toxic
polyvinylidene fluoride binder, magnetic electrode with the adequate surface area of 296.4
m2/g and initial specific discharge capacity of 740 mAh/g was produced and additional
test for energy accumulation technologies showed good relevance. Thus, the activation of
algal biomass prior to carbonization is a tool that enables to produce a biochar with desired
properties that are relevant in the technology under study.

The biochar obtained after carbonization process is bound using different polymeric
binders and thus a durable electrode is formed. Such polyfunctional polymeric binders are
of high interest nowadays and are particularly investigated in electrochemical systems [16].
Examples of polymeric binders utilized to construct MFC’s anode and cathode are nafion,
PDMS (polydimethylsiloxane), PTFE (Polytetrafluoroethylene), PLA (Polylactic acid), PEI
(polyethyleneimine), PS (polystyrene), etc. [7]. However, usage of some binders in for-
mation of electrodes is hazardous to the environment and unsustainable. For example,
one of the most frequently used aqueous binder PTFE [7] is stabilized by wetting agents
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that poses a biological threat due to fluorine containing chemicals [17]. Other commonly
used binder perfluorosulfonic acid (nafion) contains this biohazardous element as well [18];
hence, these binder alternatives are considered as undesirable solutions when the aspira-
tion is environmental friendliness. However, natural and eco-friendly binders can also
be used for production of electrodes with good electrical properties, although it is little
researched. Example of alternative binder was investigated by Wang et al. [19] by carrying
out research on car-bon-nanotube brush electrodes that were bound with biocompatible
and environmentally friendly poly-pyrrole and carboxymethyl cellulose binder. The results
have revealed that the prepared composite electrode exhibited well storage properties and
good energy outputs with power density of 2970 mW/m2 generated in MFCs. On the other
hand, binder free electrodes are also applicable if it is desired to overcome binder insertion
drawbacks such as clogging of pores on the surface of electrode as well as conductivity
reduction [20]. For instance, in study conducted by Feng et al. [21] binder-free carbon was
derived from sewage sludge pyrolyzing it in the atmosphere of CH4 and N2 gases mixture.
Anode made of sewage sludge carbon obtained at 1200 ◦C created 5 times higher power
density compared to graphite anode which was equal to 2228 mW/m2.

Electrode disposal at the end of its shelf life is the issue that directly affects ecosystems
due to added harmful binders like nafion and PTFE. Plentiful research has been done on
carbon-based MFC electrodes bounded with conventional binders (PTFE, nafion, etc.);
however, biochar electrodes bounded with natural and environmentally friendly binders
still is a research-lacking field. Therefore, the goal of this study is to investigate properties
of MFC electrodes made from seaweed algal biochar with an eco-friendly binder that
would be able to decompose naturally without any negative effects to living organisms in
the environment.

2. Materials and Methods

An investigation was carried out to verify the feasibility of seaweed derived biochar
anode bound with mucilage extracted from flaxseeds as a MFC electrode. Experimental
part constituted the fabrication of activated biochar anodes and settlement of obtained
anode properties.

In order to evaluate the potential of produced anode utilization in MFC technology,
relevant characteristics of produced material were determined. Experimental part of
fabricated anode characterisation included thermal, mechanical resistance, specific sur-face
area and conductivity properties identification. Flowchart of designed process is presented
in Figure 1.
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Figure 1. A graphical abstract of all approaches and measurements performed during the investigation.

2.1. Fabrication of Activated Biochar Anodes
2.1.1. Production of Activated Biochar

In this investigation, activated biochar was derived from Rhodophyta seaweed algae
that was collected from the Baltic Sea coast in Melnrage, Lithuania. Stored seaweed was
carefully washed with distilled water to remove all accumulated sand and other impurities
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after-wards drying it at 105 ◦C for 12 h in a drying oven. Clean and dry biomass was
prepared for utilization in activated biochar production.

To obtain highly porous and conductive biochar KOH was chosen as an activating
agent. It is estimated that KOH during pyrolysis react with oxygenated species present
in biomass and creates numerous amount of cavities in the biocarbon by means of re-
moving oxygen containing groups from the surface. Therefore, the one-step method is
mostly employed for activated biocarbon production during which biomass and KOH
blend is pyrolyzed at higher temperature compared to the regular one used in biochar
fabrication [22].

Activated biochar was produced following the approach described by Wang et al. [12].
Purified, dry algal biomass was grinded to obtain small particles and mixed with solid
KOH in the mass ratio of 1:1. Then, the blend was pyrolyzed at 800 ◦C temperature with a
heating rate of 10 ◦C/min in the inert atmosphere of nitrogen for 3 h. 5% HCl solution was
used subsequently to neutralize alkali remained in the obtained carbon and additionally
washed with deionized water. Eventually, derived biochar was dried in a drying oven at
105 ◦C temperature for 12 h.

2.1.2. Mucilage as a Binding Agent Extraction and Preparation

Mucilage was extracted from flaxseed cultivars by following method as described by
Ziolkovska et al. [23] with slight modifications. Flaxseeds were not prepared by mechanical
grinding prior to extraction process as the grinding would lead to the leakage of other
substances and proteins which can reduce the quality of mucilage extract. Since most hull
substances from seeds can only partially swell in aqueous media, water is an appropriate
solvent in this case. In addition, it is economically feasible to use it for this purpose.

Before the extraction procedure, flaxseeds were washed under running water for 3 min
to remove dust from the surface. Flaxseed mucilage was extracted by an aqueous process
using distilled water (pH of 7.0) under atmospheric pressure. Firstly, seeds were mixed
with hot distilled water (80 ◦C, 1:25 w/v ration) in a glass flask using a continuous magnetic
stirrer (400 rpm) for 30 min. The extraction process consisted of two stages. In the first
stage, seeds were extracted with distilled water. In the second stage, seeds remaining after
the first stage were extracted a second time with a new portion of water. The extract was
obtained from the seeds using 200-mesh. The Mucilage was dried to solid content at 105 ◦C
and held in a desiccator until further analysis.

Ball milling technique was employed to obtain fine powder of the mucilage binder. The
milling was conducted using Fritsch Pulverisette 6 planetary ball miller. In total 30 milling-
pause cycles (milling time—5 min, pause time—30 min, rotation speed—200 RPM) were
applied. The diameter of used stainless steel balls was 10 mm, approximate mass of the
sample was 1.1 g, and ball to mass ratio was equal to 44 g. Particle sizes of the milled binder
were measured using a Hitachi S-3400N scanning electron microscope Figure 2. Particles
from 34 µm up to 60 µm in size prevailed, the smallest particles were 8 µm in size.
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2.1.3. Formation of Anodes

Mixtures of dry activated biochar was prepared with different concentrations (5, 10,
20 and 30 wt.%) of flaxseeds mucilage and named BC5, BC10, BC20 and BC30 respectively.
Firstly, fine powder of mucilage was dissolved in deionized water to obtain thick mass
similar to glue. The weight amount of mucilage was blended manually with approximately
0.5 mL of water in 30 ◦C temperature to enhance the solubility of the mucilage. Prepared
binding solution was then mixed with grinded activated biochar (particles size was up to
250 µm) obtaining a viscous mass. The mixture was further pressed using 1000 kg/cm
force to form cylindrical shape anodes. Eventually, prepared anodes were dried in an oven
dryer for 8 h at 70 ◦C temperature and investigated further.

2.2. Properties Determination of Produced Anodes
2.2.1. Thermal Characterization—Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (TGA) is an analytical approach employed to estimate
thermal stability of the matter as well as to determine the formation of volatile compounds
during the thermal degradation of a sample by observation of mass change dependent on
heating at a stable heating rate [24]. Thermal stability of MFC electrode is an important
feature since it is significant to prevent the degradation of thermolabile natural origin
compounds in electrodes (in this case—natural binding agent), as the temperature in some
cases can reach 50 ◦C or more during the electrochemical process in MFC [25]. Moreover,
the thermal stability test or TGA of the raw material as well as of constructed composite is
relevant due to the thorough substance characterization fulfillment.

NETZSCH STA 449 F3 Jupiter analyser with the silicon carbide (SiC) furnace was
employed to evaluate thermal characteristics of the stock and obtained activated biochar
as well as it’s mixtures with different concentrations of mucilage binder. Samples of up
to 40 mg weight in Al2O3 crucibles were heated in 35 ◦C/min heating rate from 40 ◦C to
900 ◦C temperature in the inert atmosphere of nitrogen with a flow rate of 60 mL/min. An
isothermal step at 110 ◦C for 5 min was added to ensure well evaporation of water as well
as at 900 ◦C for 7 min to ensure full vaporization of volatiles and even formation of carbon.
Atmosphere was switched to reactive (25 mL/min of compressed air and 35 mL/min of
N2) afterwards and temperature was decreased with the identic heating rate to 800 ◦C and
held at this temperature for an hour to burn out formed carbon completely and evaluate
the ash content.

2.2.2. Analysis of Mechanical Resistance

Samples were prepared as described in the section “Formation of Anodes”, although
the drying temperature and length of drying was unequal. Prior to analysis of samples
mechanical resistance, with distinct concentrations of the binder formed anodes were dried
at room temperature (24 ◦C) for 72 h. Compression tests have been carried out to determine
the mechanical resistance of the samples. The compressive mechanical analysis of produced
activated biochar anodes were accomplished employing the Zwick Roell universal testing
machine with the loading rate equal to 0.5 mm per minute [26].

2.2.3. Brunauer-Emmett-Teller (BET) Surface Area Analysis

Quantachrome Autosorb-iQ-KR/MP automated gas sorption analyser was employed
to determine the specific surface area of produced activated biochar and anodes formed
with mucilage binder. Surface area characterisation was performed by means of N2 gases
adsorption–desorption isotherms at liquid nitrogen temperature (−196 ◦C). The specific
surface area of samples was calculated with the Brunauer–Emmett–Teller equation. Cal-
culations were performed employing an ASiQwin (Version 2.0) program developed by
Quantachrome Instrument 24.
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2.2.4. Electrical Conductivity Estimation

Compression molding approach was employed to carry out experiments of resistivity
value (Ω m) dependence on compression force (kg/cm) applied to the sample based on
the methods described by Espinola et al. [27] also Pantea et al. [28]. Cold press technique
was implemented operating at a room temperature (24 ◦C) using a two-part mold system
Figure 3. Sample of up to 0.5 g weight was placed in a 10 mm diameter cavity of dielectric
mould. A rod made of steel was utilized to form cylindrical shape anodes applying pressure
from 5 to 60 bar with an increment of 5 bar simultaneously measuring electrical resistance
by means of DM3068 RIGOL digital multimeter.
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Data of electrical resistance experiments was further utilized in calculations of electrical
conductivity. The conductance of bulk biocarbon and fabricated anodes was calculated
by means of mathematical expression where electrical conductivity (S/m) is equal to one
divided by the measured resistance value (Ω m).

3. Results
3.1. Thermogravimetric Analysis (TGA)

The principle of TGA is that the sample loses weight at particular temperatures that
indicates the decomposition of a certain component in the sample [29]. Therefore, the ther-
mogravimetry and differential thermogravimetry approaches can be used to characterize
composition differences of specific samples. Thermogravimetric curves obtained during
the proximate analysis of the red seaweed (Rhodophyta) feedstock is presented in Figure 4.
Generally, red seaweed biomass is made of 3 components: cellulose, hemicellulose and
lignin, however specifically hemicellulose forms the major part of it, cellulose compiles the
smaller part and lignin—the least part. Also, red seaweed normally includes substantial
ash as well as relatively high protein content [30].
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Figure 4. Thermal analysis of red seaweed (Rhodophyta) feedstock: (a) thermogravimetric (TG)
curve; (b) derivative thermogravimetric (DTG) curve.
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TG curve presented in Figure 4a revealed that moisture composed around 4.62% of the
raw material and it evaporated in the temperature range from 40 ◦C to 168 ◦C. The thermal
decomposition of the material started afterwards and lasted till 900 ◦C with simultaneous
formation of plentiful amount of volatile compounds—around 63.6%. Atmosphere was
switched to partially reactive and combustion process started in 39 experiment minute
which resulted remaining of 7.71% ash in the crucible eventually.

Peaks in the DTG curve (Figure 4b) illustrated that thermal decomposition occurred
in two main points. The first one at around 200 ◦C reveals the thermal decomposition of
hemicellulose [31]; at this temperature disintegration proceeds in maximum speed which
indicates that hemicellulose comprises the major part of the investigated algal biomass.
The other clear peak at 315 ◦C stands for cellulose thermal decomposition [31] and the
lower reaction rate confirms that it composes much smaller part of the sample. The smaller
intensity peak starting at 680 ◦C can be related to lignin disintegration as its complex
structure gives it the highest thermal stability compared with holocellulose components
therefore it decomposes at higher temperature [31].

Figure 5 illustrates thermogravimetric curves obtained during the proximate analysis
of activated biochar with different concentrations of the binder. Referring to TGA curves in
Figure 5a it was estimated that the highest percentage of volatiles have formed during the
thermal decomposition of activated biochar with 30 wt.% of mucilage binder that amounted
over 27% of total sample weight. Comparatively, the least amount of volatile compounds
formed during the degradation of binder-free biochar—around 17.13% respectively. Values
of decomposition rates in the partially reactive atmosphere in most cases were even;
however, it was determined that decomposition rate of biochar with 10 and 30 wt.% binder
concentration in partially reactive atmosphere were distinct compared to other samples.
The analysis was accomplished in the micro scale which is performed in great precision
when sample is in high homogeneity. From this point the assumption is made that particular
biochar samples with the binding agent was roughly heterogeneous and that caused the
differentiation in the decomposition rate.
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Figure 5. Thermal analysis of activated algal biochar mixed with different concentrations of the
mucilage binder: (a)—TG curve; (b)—DTG curve obtained before combustion initiation.

The additional degradation of obtained activated biochar followed by origination
of volatiles observed in Figure 5b occurred in the inert atmosphere due to the higher
temperature employed as well as more accurate maintenance of constant degradation
environment in the proximate analysis compared with the reactor. The higher thermal
energy used induced chemical bonds cleavage that were present in organics left in produced
biocarbon resulting in the secondary release of volatile compounds. Similar results were
also obtained in previous researches and it was confirmed that the lower temperature
employed during the pyrolysis to form biocarbon influenced the formation of higher
contents of volatiles during the proximate analysis of produced biochar [32].



Energies 2022, 15, 112 8 of 13

Table 1 presents the composition differences of samples estimated owing to proximate
analysis. It was estimated that in all cases values of remained ash quantities were fairly
close, percentages of moisture content were similar as well.

Table 1. Measured moisture, volatile compounds, fixed carbon and ash contents (%) emerged due to
the thermal degradation of samples during the proximate analysis employed.

Sample Name Moisture (%) Volatiles (%) Fixed Carbon
(%) Ash (%)

BC0 4.40 66.01 17.13 12.39
BC5 7.40 56.09 22.07 14.41
BC10 4.82 56.84 24.12 14.21
BC20 2.66 60.11 25.33 11.85
BC30 7.77 52.56 27.67 11.89

Mucilage extracted from seeds is composed of carbohydrates, mostly—pectin, cellu-
lose, and hemicelluloses [33]. Regarding the nature of these compounds, high temperature
to degrade is usually not required. According to previous articles, structure of mucilage
tends to disintegrate at temperature range of 200–300 ◦C. In this range all three mentioned
components of mucilage decompose therefore, in DTG curve single high intensity peak is
commonly observed [34]. With a reference to investigations carried out previously, plant
seeds mucilage contains divergent amount of ash, depending on plant species as well as
extraction conditions. It was acknowledged that mucilage extracted from flaxseeds has
relatively low content of ash, varying from approximately 2 to 6% [35]. Therefore, the
ash content was comparatively constant evaluating proximate analysis results of activated
biochar with different concentrations of the binder.

Thermogravimetric analysis results indicated that formed anodes possessed appro-
priate thermal stability regardless of binder concentration; activated biochar anodes were
thermally stable at the temperature of up to 200 ◦C.

3.2. Mechanical Resistance

BC10, BC20 and BC30 samples with 10, 20 and 30 wt.% binder concentration respec-
tively were investigated in order to determine the compression strength of anodes. BC5
sample was not examined owing to an insufficient maintenance of cylindrical-shaped anode
form in atmospheric pressure. Therefore, it was estimated that in order to implement an
anode formation from activated biochar, the concentration of the mucilage binder should
be at least 10 wt.%. Dimensions of anodes prepared for the experiment are given in Table 2.

Table 2. Dimensions of activated biochar anodes with 10, 20 and 30 wt.% binder concentrations for
compression strength analysis.

Samples Diameter, mm Height, mm Compression
Surface Area, mm2

BC10 13.04 16.21 134.58
BC20 13.02 15.10 133.14
BC30 13.09 15.78 133.55

The compression deformation experiment showed the mechanical resistance changes
when a vertical compressive force is applied in 0.5 mm/min rate. The deformation of
samples proceeded relatively uniformly with low compression up to 0.2 mm comparing all
three samples. The differentiation started to emerge when applied pressure exceeded 6.7
bar force. With the increase of compression force to 22 bar, deformation of BC10 and BC20
was even and increased constantly reaching 0.8 mm, while BC30 sample required much
greater pressure—52 bar to deform at the same dimension.
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BC30 sample required the highest pressure to crack at 1.4 mm deformation point—
96 bar compared with BC20 and BC10 samples. BC20 sample cracked when maximum
compression was equal to 45 bar at 1.43 mm deformation point and BC10—28 bar at 1.2 mm,
respectively (Figure 6). Hu et al. [36] performed mechanical resistance experiments of rise
husk biochar bound with natural materials of lignin and starch; obtained results showed
that the compressive strength was equal to maximum value of 25 and 10 bar respectively.
Consequently, a presumption is made that flaxseed mucilage binder is more preferable in
terms of higher mechanical resistance provision.
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Figure 6. Compression deformation experiment results of biochar anodes with different binder con-
centrations.

According to results obtained it is concluded that biochar anode with 30 wt.% binder
concentration had the highest mechanical resistance and compression strength value of
104 bar. Therefore, considering mechanical strength property, anode with 30 wt.% mucilage
binder is the most favourable choice for application in MFC.

3.3. BET Surface Area Analysis

The analysis has revealed a dependency of specific surface area value on the binder
concentration in biochar anode. A linear decrease of the specific surface area was observed
with the increase of mucilage binder concentration in a sample. This is explained by a
blockage of pores occurrence, therefore the higher concentration of the binder tends to
block greater number of activated biochar surface pores by means of reducing specific
surface area of anode. The mucilage binder reduced specific surface area as following: BC5
specific surface area was equal to 1077.34 m2/g, BC10—1056.49 m2/g, BC20—856.21 m2/g
and BC30—796.13 m2/g respectively. Distribution of results is presented in Figure 7.
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Figure 7. Dependency of binder concentration (wt.%) on the specific surface area of formed anode.
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The highest specific surface area was estimated for the binder-free BC0 sample that was
equal to 1298.49 m2/g. To compare, Wang et al. [12] carried out the investigation of unde-
fined species algal biochar anodes obtainment by KOH activation technique and determined
that such biochar had a specific surface area of 873 m2/g. Zha et al. [10] employed differ-
ent activation technique by means of soaking eggplant biomass in (K3[Fe(C2O4)3]·3H2O)
solution prior carbonization and obtained specific surface area of biocarbon equal to 1137
m2/g. On the other hand, utilization of this technique on Rhodophyta seaweed biomass
has not provided the result desired. This approach employment on Rhodophyta only
provided a specific surface area of 6.2 m2/g of algal de-rived biochar. Therefore, not only
the treatment method but the structure and type of biomass plays a vital role to the final
result of biocarbon-specific surface area value.

Specific surface area of all investigated samples was competent and sufficient for
employment in MFC since the adequate attachment of biocatalysts on the surface of
fabricated anodes and biofilm formation would be feasible.

3.4. Electrical Conductivity Estimation

Electrical conductivity is considered as a vital attribute regarding formation of a
MFC anode with favourable electron transfer rate value through the electrode. Thus, the
determination of electrical conductance of constructed anode is essential. The electrical
resistivity value of the sample describes the resistance of electrical current flow through the
sample material; therefore the electrical conductivity is described as an opposite dimension
to the electrical resistance [37]. The electrical resistivity of BC0, BC5, BC10, BC20 and BC30
samples was measured to determine the electrical conductivity of formed anodes and of
bulk-activated carbon comparatively.

Values of measured electrical resistance strongly depended on the pressure applied to
the sample. The increase of pressure caused a notable decrease in the resistance value of
each sample compressed. This correlation was explained by researchers Sánchez-Gonzalez
et al. [38] which elucidated the decline of electrical conductance of carbon material depen-
dency on the pressure increase by the initial sample volume reduction that contributes to
the superior compression of the sample.

The initial resistivity values of formed anodes were approximately 30, 46, 112, 159
and 298 Ω for BC0, BC5, BC10, BC20 and BC30 respectively. The influence of applied
pressure to average electrical resistance value is illustrated in Figure 8. The clear difference
of resistivity values was detected with the compression force applied equal to 5 bar, which
impacted resistivity values as following: 0.1; 0.18; 0.19; 0.24 and 0.29 Ω for BC0, BC5, BC10,
BC20 and BC30 samples respectively.
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Figure 8. Experimentally measured electrical resistance value (Ω) dependency on the pressure
applied to the surface of anode sample.

Results have revealed that the higher proportion of the binder in a sample influenced
greater electrical resistance value that was extremely visible with lower pressure applied. El-
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evated resistance related to higher concentration of the binder in biochar anode is explained
by the limitations of the electrical conductivity of the binding material itself. Previous
researches indicated that a solution of mucilage extracted from seeds has a property of
hydraulic conductance whereas the electrical conductivity appears due to naturally present
electrolytes in mucilage extract dissolved in water [39]. Therefore, the mucilage binder
itself gives high resistance values and consequently negatively affects electrical properties
of formed electrode.

Figure 9 illustrates considerable changes in average values of calculated electrical
conductivity depending on the binder concentration used and pressure applied. Electrical
conductivity was calculated firstly determining the impact of samples dimensions to
electrical resistivity values obtained experimentally. Initial values of electrical conductivity
were particularly low, equal to 0.183, 0.078, 0.055, 0.037 and 0.008 S/m for BC0, BC5, BC10,
BC20 and BC30 samples respectively.
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Figure 9. Dependence of calculated electrical conductivity values on the pressure applied to samples
with different concentrations of the binder.

The highest electrical conductivity was obtained with bulk biochar BC0 sample that
reached a maximum electrical conductivity value of 82 S/m when the pressure applied was
equal to 60 bar. Comparatively, Delord et al. [40] investigated binder free carbon nanotube
based electrodes and determined that the electrical conductivity of electrodes was equal
to approximately 106 S/m. These differences emerge due to the biochar and graphitized
carbon structural differences, carbon nanotubes usually is more electrically conductive as it
has higher graphitization level compared with a regular biochar [41].

Electrical conductance as opposed to electrical resistance had a tendency to decrease
with the elevation of binder content in anode. However, the amplification of applied
pressure force conditioned in the increase of electrical conductivity value and the highest
conductivity by applying 60 bar compression was achieved as following: 58, 46, 32 and
16 S/m forBC5, BC10, BC20 and BC30 anodes respectively. Therefore, according to the
electrical conductivity results it is concluded that biochar anodes bound with 5 or 10 wt.%
mucilage binder have the most decent electrical properties required for MFC electrode.

4. Conclusions

This investigation highlighted the potential of a KOH activated seaweed derived
biochar employment as an anode material in clean energy generation fulfilment by means
of MFC technology. In assistance of flaxseeds mucilage fabricated environmentally friendly
anodes possessed different mechanical strength, electrical and surface area properties,
whereas good thermal stability was appropriate in all anodes investigated. Evaluation have
been made that algal biochar anode with 10 wt.% binding agent had optimum character-
istics necessary for electrode along with well maintenance of bound anode form. Higher
concentrations of the mucilage binder resulted in the decrease of electrical conductivity
value as well as specific surface area reduction which are the very main properties of MFC
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electrode; accordingly, biochar anodes with higher content of the binder are considered
as not particularly suitable for application in MFC technology. The additional research is
required to test whether utilization of constructed algal biochar anodes enables sufficient
power density generation in MFC system and feasibility investigation is needed.
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