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Abstract: Ocean wave power generation techniques (converting wave energy into electrical energy)
have been in use for many years. The objective of this paper is to review the design, control, efficiency,
and safety of ocean wave power generation systems. Several topics are discussed: the current
situation of ocean wave power generation system tests in real ocean waves; the optimization design
of linear generator for converting ocean wave energy into electrical energy; some optimization control
methods to improve the operational efficiency of ocean wave power generation systems; and the
current policy and financial support of ocean wave power generation in some countries. Due to
the harsh ocean environment, safety is another factor that ocean wave power generation systems
will face. Therefore, before the conclusion of this review, a damping coefficient optimization control
method based on the domain partition is proposed to improve the efficiency and safety of ocean
wave power generation systems.

Keywords: wave power generation; generator design; optimization control; efficiency; safety

1. Introduction

After the widespread utilization of hydropower and wind energy, ocean wave energy
is regarded as a new renewable source to meet the world’s energy shortage. One way
to utilize ocean wave energy is to convert wave energy into electrical energy, which is
called ‘ocean wave power generation’ in this paper. Ocean wave energy results from
wind energy or solar energy and is mainly stored in ocean surface waves [1]. Ocean wave
energy has a higher energy density than wind energy and solar energy. The evaluation data
indicates that ocean wave energy is about 2000 TWh/year, which accounts for 10% of the
world’s total electrical energy utilization [2]. So far, various ocean wave power generation
systems have been proposed, such as oscillating water column, floating buoys, and so
on. Usually, most of the oscillating water columns were installed on the shoreline or near
shore, and the buoys were located offshore [3]. Some prototypes of the oscillating water
column prototypes were built in the UK (the LIMPET near a rugged rock coastline of Isle
of Islay, initially rated at 500 kW, Scotland [4]), Australia (MK3 installed offshore from
the eastern breakwater of Port Kembla Harbour, one-third scale of the 2.5 MW full-scale
prototype [5]), and Spain (a power capacity of 300 kW, near the shore of Mutriku [6]). Some
buoy prototypes were built in Sweden (a single buoy system installed 2 km offshore of
Sweden’s west coast [7]), Portugal (multi-buoys named Pelamis installed at Agučadoura
Wave Park [8]), and the USA (two-buoy system named ‘PowerBuoy’ prototype installed
and tested off the Hawaii coast [9]).

According to the theory of mechanical vibration, only when the wave power genera-
tion system resonates with the ocean wave can the energy of the ocean wave be converted
into electric energy to the greatest extent. However, due to the irregularity and nonlinear-
ity of ocean waves, the operation efficiency of ocean wave power generation systems is
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low [10]. Besides, under severe marine environment conditions (typhoons, storms, etc.), the
motion distance of the wave power generation system is too large, resulting in unsafe con-
ditions. Therefore, some optimization control methods have been investigated to improve
the operating efficiency of the ocean wave power generation system. The optimization
control methods are generally classified into two categories: (1) based on the generator’s
electromagnetic force, the speed phase difference between the ocean wave power gen-
eration system and the ocean waves is reduced, and thus resonance occurs between the
ocean wave power generation system and ocean waves. (2) on the basis of buoys, some
control algorithms are proposed to optimize the motion process between the buoy and
ocean waves. The buoys are the transmission devices that drive the generator of the ocean
wave power generation system [11–13].

The aim of the present work is to summarize some optimization design and control
methods of ocean wave power generation systems, including generator design and system
control. The layout of the rest of the paper is as follows. The second section is the
current ocean wave power generation system test, especially in the real ocean waves.
The third section is the optimization design of the linear generator of the ocean wave power
generation system. The fourth section introduces some optimization control methods
of ocean wave power generation systems, including generator control and float buoy
control. Before the conclusion, an optimization control method based on domain partition
is proposed to improve the operation efficiency and safety of ocean wave power generation
system, and the current policies and financial supports for ocean wave power generation
in some countries are also discussed.

2. Ocean Wave Power Generation System Tests

Despite a wide variety of design methods, and more than 1000 patents having been
proposed for ocean wave power generation systems, few prototypes have been tested in
real ocean environments [14]. Ocean wave power generation systems can be classified into
three predominant types according to their location.

2.1. Tested in the Shoreline

An example of the ocean wave power generation system installed on the shoreline
is the Wavegen Limpet. The system has a power capacity of 500 kW, and is installed on
the island of Islay, Scotland [15]. Wavegen Limpet is the world’s first commercial ocean
wave power generation system connected to the British National Grid. Figure 1 shows a
sketch of Wavegen Limpet, which has two Wells turbine generators. The rise and fall of
water column drive air into and out of the wells turbine generator through the pressure
chamber. Regardless of the direction of air flow, the well turbine generator can be rotated
in the same direction. Therefore, without considering the direction of the generator current,
the ocean wave energy can be converted into electrical energy [16].

The prototype of the Wavegen Limpet has been constructed and tested in several other
countries—such as Japan, Norway, Australia, China, and so on. Besides, an ocean wave
power generation system equipped with 16-well turbine generators was installed on the
shoreline of Biscay, Spain [17].

2.2. Tested near the Shore

A representative prototype of an ocean wave power generation system installed
near the shore is Archimedes Wave Swing (AWS). The concept of AWS originated from
F. Gardner and H. van Breugel [18]. Figure 2 shows the sketch of AWS. Generally, the
AWS is a completely submerged cylindrical ocean wave power generation system, the
basement part is fixed on the sea bed, and the buoy is connected with the piston of the
linear generator. During the operation process of the AWS, the buoy can be pushed
down by the wave crest (the pressure of wave crest is larger than the buoyancy of buoy),
or it can be pushed up by the wave (the pressure of wave though is smaller than the
buoyancy of buoy). Therefore, the buoy can reciprocate with respect to the basement part,
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thereby driving the piston parts of linear generator to convert ocean wave energy into
electrical energy.
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In order to verify the feasibility of the AWS, some small-scale prototypes of AWSs were
tested. In 2004, an AWS pilot plant was installed near the northern shore of Portugal [19].
The experimental results indicate that the AWS was proved to be feasible near a shore
exposed to ocean waves.

H. Polinder et al. designed and built a double-sided permanent magnet linear syn-
chronous generator (PMLSG) to improve the performance of AWS, as shown in Figure 3. In
Figure 3, the permanent magnets is installed on the PMLSG’s stator, the translator (piston)
moves inside the stator, and the permanent magnets of the stator generates a varying flux,
which induces voltage in the windings of the translator. The PMLSG has the advantages of
high force density, reasonable efficiency, and low manufacturing costs [20].
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2.3. Tested Offshore

One famous example of ocean wave power generation system installed offshore is the
PowerBuoy prototype, designed and constructed by Ocean Power Technologies Inc., and
installed off of the northern shore of Spain [21]. Pelamis is another offshore ocean wave
power generation system, which has also been investigated in many countries, such as
Portugal, UK, and China, among other [22]. China designed and tested a two-buoy offshore
ocean wave power generation system, as shown in Figure 4. In Figure 4, the diameter of the
outer buoy is 2.4 m, the diameter of inner buoy is 0.83 m, the linear generator is installed in
the inner buoy, and the linear generator’s piston is connected to the outer buoy by a tripod.

Due to the depth below the ocean’s surface being greater, the amplitude of motion of
the ocean waves in the vertical direction is smaller. Therefore, the relative motion of two
buoys in the vertical direction occurs (the bottoms of the inner buoy and outer buoy below
the sea level are different, see Figure 4a), which drives the linear generator to convert ocean
wave energy into electrical energy [23].

In August, 2014, the two buoys offshore ocean wave power generation system was
installed in the East China Sea (see Figure 4b). According to the experimental results, the
maximum instantaneous power is 2.3 kW, and the average power is about 1 kW [23,24].

Besides, another type of offshore ocean wave power generation system is Pelamis,
which was designed by the British Ocean Power Delivery Ltd. (Edinburgh, UK), and tested
in Agucadoura Wave Park, Portugal [8]. Figure 5 shows the structure of Pelamis, which
consists of several buoys, hinged joints, generators, and an anchor. During operations, the
relative vertical direction motions of buoys were restricted by the hinged joints, and drive
the generators to convert ocean wave energy into electrical energy (the generators were
installed in the hinged joints). Pelamis has the advantages of high power capture/unit
weight, and was the first offshore ocean wave power generation system to convert ocean
wave energy into the grid.
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3. Optimal Design of Linear Generator for Ocean Wave Power Generation System

As a part of ocean wave power generation system, the generators play a significant
role in the conversion efficiency from wave energy to electrical energy. Usually, there are
two kinds of generator that apply to the ocean wave power generation system, namely
rotary generators and linear generators [24,25]. For rotary generators, some transmission
systems are required to couple the linear motion of ocean waves and the rotary motion of
the rotary generators. For the linear generator, the movement direction between waves
and linear generators can be identical (without any linear to rotary conversion devices). In
comparison with the conventional rotary generators, high efficiency and easy construction
made the linear generator an attractive candidate for an ocean wave power generation
system [26]. In this section, some linear generators are reviewed.

3.1. Linear Magnetic-Geared Generator

A permanent magnet is an object made from some material—such as iron, nickel,
etc.—which can keep its persistent magnetic field for more than 10 years. Therefore,
permanent magnet is one of the appropriate materials to produce magnetic source for
generators. Figure 6 shows the basic structure of tubular linear magnetic-geared generator.
It consists of a linear magnetic gear and a linear permanent magnet generator. Usually, the
operation process is that the low-velocity piston reciprocates with the ocean waves by buoy.
Then, under the condition of magnetic gear effect, the velocity of the high-velocity piston
is amplified correspondingly. Therefore, the tubular linear magnetic-geared generator
produces a higher output voltage [27]. The modulation rings are made from steel, and fixed
between the high-velocity piston and low-velocity piston by epoxy.
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The theoretical analysis and simulation results indicate that the tubular linear magnetic-
geared generator has higher efficiency than conventional rotary generators and linear
permanent magnet generators. However, the tubular linear magnetic-geared generator
requires some high-precision technology during its production process.

3.2. Linear Switched Reluctance Generator

The linear switched reluctance generator is a special linear generator without a per-
manent magnet, and it has the advantages of simple structure, good thermal performance,
and low cost [28,29].

Figure 7 shows the sketch of a linear switched reluctance generator, which consists of
a stator (static part) and a piston (movable part). Usually, the stator is housed by electrical
phase windings, and the piston has no magnetic field source. Since the piston has no
magnetic field source, some control methods need to be adopted to make the device as a
generator. For example, provided that the linear switched reluctance generator runs at high
velocity, the method of position control should be adopted, or the method of pulse width
modulation (PWM) chopper control should be to be adopted to keep the generator running
at low velocity.
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Besides, some other control methods have been proposed for the optimal design and
operation of linear switched reluctance generator [30,31].

3.3. Halbach Magnetized Linear Permanent Magnet Generator

A significant advantage of Halbach magnetized linear permanent magnet generator is
that the arrangement permanent magnets increase its air-gap flux density. The gap flux
density distribution of Halbach magnetized permanent magnet generator is better than
that of an ordinary linear permanent magnet generator. Figure 8 illustrates the sketch
and prototype of a Halbach magnetized linear permanent magnet generator designed by
Southeast University in China [32]. In Figure 8a, the Halbach magnetized linear permanent
magnet generator adopted assistant teeth to reduce its detent force.

Energies 2022, 14, x FOR PEER REVIEW 7 of 18 
 

 

and linear permanent magnet generators. However, the tubular linear magnetic-
geared generator requires some high-precision technology during its production pro-
cess. 

3.2. Linear Switched Reluctance Generator 
The linear switched reluctance generator is a special linear generator without a 

permanent magnet, and it has the advantages of simple structure, good thermal per-
formance, and low cost [28,29].  

Figure 7 shows the sketch of a linear switched reluctance generator, which con-
sists of a stator (static part) and a piston (movable part). Usually, the stator is housed 
by electrical phase windings, and the piston has no magnetic field source. Since the 
piston has no magnetic field source, some control methods need to be adopted to 
make the device as a generator. For example, provided that the linear switched reluc-
tance generator runs at high velocity, the method of position control should be 
adopted, or the method of pulse width modulation (PWM) chopper control should be 
to be adopted to keep the generator running at low velocity.  

 
Figure 7. Sketch of the linear switched reluctance generator. 

Besides, some other control methods have been proposed for the optimal design and 
operation of linear switched reluctance generator [30,31].  

3.3. Halbach Magnetized Linear Permanent Magnet Generator 
A significant advantage of Halbach magnetized linear permanent magnet generator 

is that the arrangement permanent magnets increase its air-gap flux density. The gap flux 
density distribution of Halbach magnetized permanent magnet generator is better than 
that of an ordinary linear permanent magnet generator. Figure 8 illustrates the sketch and 
prototype of a Halbach magnetized linear permanent magnet generator designed by 
Southeast University in China [32]. In Figure 8a, the Halbach magnetized linear perma-
nent magnet generator adopted assistant teeth to reduce its detent force. 

 
(a) 

Energies 2022, 14, x FOR PEER REVIEW 8 of 18 
 

 

 
(b) 

Figure 8. Halbach magnetized linear permanent magnet generator. (a) Sketch; (b) Prototype. 

The installation site of the Halbach magnetized linear permanent magnet gener-
ator in an ocean wave power generation system is shown in Figure 9. In August 2014, 
the ocean wave power generation system was installed and tested in the Yellow sea 
near Lianyungang, China. The experimental results indicate that the ocean wave 
power generation system has low efficiency in ocean waves [24]. The main reason for 
its low efficiency is that the phase difference between the ocean wave power genera-
tion system and the ocean waves. Therefore, some optimization control methods 
should be proposed to improve the operational efficiency of ocean wave power gen-
eration system. 

 
Figure 9. Installation site of Halbach magnetized linear permanent magnet generator. 

Table 1 shows the optimization design classification of linear generator of the 
ocean wave power generation system in the reference [25–31], including the structure, 
electromagnetic field, force, and operation control of the linear generators. 

Table 1. Optimization of linear generator for ocean wave power generation system 

Reference Number Main Research Contents 

Reference [25] 
Structure comparison of iron-cored linear permanent magnet generator 

and semi iron-cored linear permanent magnet generators 

Reference [26] Analysis of multi-physical coupling field of a permanent magnet linear 
synchronous generator 

Reference [27] 
Analysis of air gap flux density, thrust force characteristics, no-load and 
load performances of linear magnetic-geared interior permanent magnet 

generator 

References [28,29] 
Multi-objective optimization design and simulation calculation of linear 

switched reluctance generator 
References [30,31] Structure and operational control of linear switched reluctance machines 

Figure 8. Halbach magnetized linear permanent magnet generator. (a) Sketch; (b) Prototype.

The installation site of the Halbach magnetized linear permanent magnet generator in
an ocean wave power generation system is shown in Figure 9. In August 2014, the ocean
wave power generation system was installed and tested in the Yellow sea near Lianyungang,
China. The experimental results indicate that the ocean wave power generation system
has low efficiency in ocean waves [24]. The main reason for its low efficiency is that
the phase difference between the ocean wave power generation system and the ocean
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waves. Therefore, some optimization control methods should be proposed to improve the
operational efficiency of ocean wave power generation system.
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Table 1 shows the optimization design classification of linear generator of the ocean
wave power generation system in the reference [25–31], including the structure, electro-
magnetic field, force, and operation control of the linear generators.

Table 1. Optimization of linear generator for ocean wave power generation system.

Reference Number Main Research Contents

Reference [25] Structure comparison of iron-cored linear permanent magnet generator
and semi iron-cored linear permanent magnet generators

Reference [26] Analysis of multi-physical coupling field of a permanent magnet linear
synchronous generator

Reference [27]
Analysis of air gap flux density, thrust force characteristics, no-load and

load performances of linear magnetic-geared interior permanent
magnet generator

References [28,29] Multi-objective optimization design and simulation calculation of
linear switched reluctance generator

References [30,31] Structure and operational control of linear
switched reluctance machines

4. Optimization Control Methods for Ocean Wave Power Generation System

Due to the irregularity and nonlinearity motion of ocean waves, some optimization
control methods were proposed to improve the efficiency of ocean wave power generation
system [33–35]. The purpose of optimization control methods is to make the ocean wave
power generation system resonate with the ocean waves. Generally, there are two kinds of
optimal control methods, which are depicted as follows.

4.1. Optimization Control of Generator

The forces exerted on ocean wave power generation systems include ocean waves’
force, generator’s detent force, generator’s load force, system’s friction force, buoy’s radia-
tion force, etc. [36]. In order to make the ocean wave power generation system resonates
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with the ocean waves in the vertical direction, a method of q-axis current control of genera-
tor was proposed [37,38]. By Park transformation, the load force of the generator can be
written as

F̂u = −3
2

πψ

τ
îq (1)

where ψ is the magnetic linkage of generator, τ is the pole pitch of generator,ˆrepresents the
complex representation, and îq is the q-axis current of generator. According to the structure
of ocean wave power generation system and the theory of mechanical vibration, if the
velocities of buoy and ocean wave are identical, there will be resonance between the ocean
wave power generation system and ocean waves.

In the vertical direction, the acceleration formula of buoy can be described as

mâz = F̂z + F̂r + F̂b + F̂f (2)

where m is the mass (in kilograms), âz is the acceleration in the vertical direction, F̂z is
the vertical direction ocean wave force, F̂r is the radiation force from the relative motion
between buoy and ocean waves, F̂b is the hydrostatic buoyancy force, and F̂f is the friction
force.

The diameter of buoy is smallest than the wavelength of ocean waves, thus the method
of Froude–Krylow force and small object approximation can be used. Therefore, the vertical
direction ocean wave force F̂z can be written as

F̂z =
[
ρgSw − ω2ρV(1 + µz)

]
η̂ (3)

where ρ is the density of ocean water, g is the acceleration of gravity, Sw is the horizontal
cross-section of buoy, ω is the angular frequency of ocean waves, V is the volume of buoy
below the ocean waves surface, µz is the added mass coefficient of buoy, and η̂ is the wave
amplitude of ocean waves.

Besides, the radiation force F̂r, the hydrostatic buoyancy force F̂b, and the friction force
F̂f can be written as

F̂r =
(

ω2mz − iωRz

) âz

−ω2 (4)

F̂b = −ρgSw
âz

−ω2 (5)

F̂f = −iωR f
âz

−ω2 (6)

where mz and Rz are the added mass and damping coefficient of buoy respectively, R f is the
friction resistance coefficient of double buoys type ocean wave energy extraction system.

According to the relationship between speed and acceleration, the vertical direction
acceleration âz can be written as

âz = iωv̂z (7)

where v̂z is the vertical direction speed. Substitute Equations (3)–(7) into (2), the vertical
direction speed of buoy can be described as

v̂z =
F̂z + F̂u

iω[mm + mz] + Rz +
Swp
iω

(8)

From the velocity of buoy v̂z (see Equation (8)), it can be concluded that the resonance
between ocean waves and buoy can be occurred by adjust the load force of generator F̂u.

In Equation (1), the load force of generator F̂u can be changed by adjusting the q-axis
current îq. Therefore, based on the above equations, the optimization control diagram
based on q-axis current of generator is shown in Figure 10, which consists of the inverse
direction transformation, the current distribution, the space vector pulse width modula-
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tion (SVPWM), the power inverter, the generator, the inverse Park transformation, and
the inductance compensation. In Figure 10, θ is the electric angle of generator in op-
erational process, PI is the proportional integral regulation, dq and α-β represent the
coordinate system.
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Figure 10. Optimization control diagram of ocean wave power generation system based on the q-axis
current of generator.

By employing load current control of the generator, the efficiency of the ocean wave
power generation system can be significantly improved. The buoy’s heave excursions and
the peak-to-average power ratio are reduced.

4.2. Optimization Control of Float Buoy

Usually, the buoy of ocean wave power generation system oscillates in the vertical
direction. Therefore, some optimization control methods based on the buoy are proposed to
improve the operational efficiency of ocean wave power generation system. One optimiza-
tion control method is the internal model proportion integration differentiation (IM-PID).
Figure 11 shows the block diagram of IM-PID control [39]. In Figure 11, the input R(s) is
the velocity of ocean wave, and the output Y(s) is the velocity of buoy. The relationship
among output Y(s), input R(s) and disturbance D(s) can be written as

Y(s) =
G(s)GIMC(s)

1 +
(
G(s)− Ĝ(s)

)
GIMC(s)

R(s) +
G(s)

[
1 − GIMC(s)Ĝ(s)

]
1 +

(
G(s)− Ĝ(s)

)
GIMC(s)

D(s) (9)

where GIMC(s) is the IM-PID controller, G(s) is the plant (buoy) to control, and Ĝ(s) is the
mathematical model of G(s). After the formula derivation from Equation (9), the dynamic
performance of buoy can be optimization controlled (makes the velocity identical between
ocean waves and buoy) by adjusting the filter coefficient ε of GIMC(s).

Figure 12 shows the simulation model of an ocean wave power generation system
based on the IM-PID control. The purpose of IM-PID control is to make the buoy of
ocean wave power generation system resonate with the ocean waves, so as to improve the
efficiency of ocean wave power generation system. Figure 13 shows the simulation result
of IM-PID. The simulation result indicates that the resonance between ocean waves and
buoy can be realized by adjusting the filter coefficient ε of GIMC(s), and the ocean wave
power generation system has good robustness and high operational performance.
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Some other optimization control methods for ocean wave power generation system
are proposed. For example, the maximum power point tracking (MPPT) method was
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proposed to eliminate the faults of the AWS-based ocean wave power generation system,
and maximum power extraction from ocean waves [40]; the method based on learning
vector quantitative neural network (LVQNN) was proposed to improve the efficiency of an
adjustable slope angle type ocean wave power generation system [41]; the latching control
method is proposed to improve the operational performance of the oscillating-body-type
ocean wave power generation system [42,43]. Table 2 shows the optimization control
classification of ocean wave power generation system in reference papers [33–43].

Table 2. Optimization control classification of reference papers [33–43] for ocean wave power
generation systems.

Reference Number Main Research Contents

References [33–36]
Overall system optimization control of ocean wave power generation

system, including the power output, transmission and grid
connection, etc.

Reference [37] Analysis of the forces that exert on ocean wave power
generation system.

References [38,39]
Q-axis current control of linear generator for the stable operational

and maximum power output of ocean wave power
generation system.

Reference [40] Optimization control of float buoy to improve the power output of
ocean wave power generation system.

References [41–43]

Other optimization control methods—such as maximum power point
tracking (MPPT), learning vector quantitative neural network

(LVQNN), and latching control—to improve the power output of
ocean wave power generation system, but still in the stage of

theoretical research.

However, the above optimization control methods are still in the stage of theoretical
research. Before applying these optimization control methods in the real test of ocean wave
power generation system, it is also necessary to solve the problems of hardware design,
construction implementation, corrosion protection from ocean water, ocean environmental
adaptation, and waterproof sealing. In addition, the difficulty level, economic cost, main-
tenance cost, and actual efficiency of ocean wave power generation systems should also
be considered.

In order to improve the effect of optimization control of ocean wave power gen-
eration systems, some other mathematical modeling of ocean wave power generation
systems were provided. Such as the mathematical modeling of mooring system [44,45],
nonlinear approaches [46,47], mathematical modeling of single point mooring wave en-
ergy converter [48], mathematical modeling of wave impact on wave-energy buoys [49],
multi-oscillating water columns of wave energy converter [50], and so on.

5. Safety of Ocean Wave Power Generation Systems in Ocean Waves

In harsh ocean environments, many kinds of ocean wave power generation systems
were destroyed by the large ocean wave height, typhoons, or hurricanes. In August
2014, the two-buoy offshore ocean wave power generation system was destroyed by large
ocean wave height, as shown in Figure 14a. In Figure 14a, due to the amplitude of ocean
waves being greater than that of the ocean wave power generation system, the conjunction
between the tripod and inner buoy was broken. Subsequently, the ocean wave power
generation system was repaired, and tested in the same sea area again. However, the ocean
wave power generation system was damaged by a typhoon, as shown in Figure 14b.
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Figure 14. Tests of ocean wave power generation system. (a) The first test; (b) The second test.

Therefore, in addition to operational efficiency, safety is also another factor to promote
the development of ocean wave power generation technology. In this paper, a damping
coefficient optimization control method based on the domain partition is proposed to
improve the efficiency and safety of ocean wave power generation system. Figure 15 shows
the phase relationship between the exciting force of an ocean wave power generation
system and its velocity. Generally, the exciting force Fexc legs behind the velocity vz (in
Figure 15a), the exciting force Fexc ahead of the velocity vz (in Figure 15b), and the exciting
force Fexc is identical to the velocity vz (in Figure 15c). The domain between exciting force
Fexc and velocity vz are divided as T1, T2, T3, T4 and T.

According to the phase relationship between exciting force Fexc and velocity vz, a
certain damping coefficient Bpto can be obtained. The relationship between the linear
generator’s q-axis current and damping coefficient can be written as

îq = −
Bpto v̂zτp

0.5πψPM
(10)

where Bpto is the damping coefficient, τp is the length of the permanent magnet of the
linear generator. Equations (1) and (10) indicate that the generator’s load force F̂u can be
adjusted by the damping coefficient Bpto. In the ocean wave power generation system, the
generator’s load force F̂u is an important force to eliminate the phase difference between the
exciting force Fexc and velocity vz. Under this condition, the resonance between the ocean
wave power generation system and ocean waves can improve the operational efficiency of
ocean wave power generation system.

Based on the exciting force Fexc and velocity vz, the damping coefficient optimization
control method is described as follows. For domains T1 and T3, the constant damping
coefficient control method is adopted. For domains T2 and T4, the optimization damping
coefficient control method is adopted. For domain T, the zero damping coefficient control
method is adopted. Furthermore, under the extreme ocean environment conditions, the
maximum damping coefficient control method is adopted to ensure the safety of an ocean
wave power generation system. The diagram of the damping coefficient optimization
control method is shown in Figure 16.
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6. Policy and Financial Support for Ocean Wave Power Generation

In the past decade (2010–2020), there have been many policy and financial supports
for the development of ocean wave power generation projects.

In the United States, a lot of government and research departments provide the
financial or technical support for ocean wave power generation, including the Department
of Energy (DOE), National Science Foundation (NSF), National Laboratories, and so on. For
example, in order to support the “Hydropower” and “MHK” projects, DOE has invested
$116 million in 95 MHK projects in 2008–2014, most of which were used for technology
research [51].

Around 2015, both Britain and Denmark released technical roadmaps of wave energy
(or ocean energy), and established policy support, economic investment, development
objectives, etc. [52]. In 2010, the European Ocean Energy Association (EOEA) released the
European Marine Energy Roadmap 2010–2050, wherein it was stated that financial support
in the research and development of marine energy extraction will be increased, and the
installed capacity will reach 3600 MW by 2020 and nearly 188,000 MW by 2050 [53].

In Australia, many renewable energy development and utilization funds have been
established, such as the Renewable Energy Fund, Energy Innovation Fund, and Renewable
Energy Industry Development Fund, etc. [54].

In Asia, South Korea released a medium- and long-term development plan of ocean
energy extraction in 2015, which determined the government’s new task of developing
ocean energy, that is to increase the investment in ocean energy infrastructure, promote the
commercialization of ocean energy industry, and cooperation with Pacific Island countries
in ocean energy [55]. In 2015, China issued the renewable energy development plan
(2016–2020), which aims to improve the management system of ocean wave energy, full
acquisition of ocean energy power generation, tax relief, etc. [56].

7. Conclusions

This review shows the current situation of ocean wave power generation system tests.
The optimization design and control methods to improve the operational efficiency of ocean
wave power generation systems are also illustrated—mainly including the generator design,
float buoy control, and generator control. The safety of ocean wave power generation
systems in ocean environments is discussed, and a damping coefficient optimization
control method based on the domain partition of phase is proposed to improve the stability
and safety of ocean wave power generation system. The current policies and financial
support for ocean wave power generation in some countries were also elaborated.

According to the current development status of ocean wave power generation systems,
this review shows that the optimization control techniques of ocean wave power generation
systems needs further investigation and ocean testing.
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