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Abstract: The Taiwanese government has set an energy transition roadmap of 20% renewable energy
supply by 2025, including a 20 GW installed PV capacity target, composed of 8 GW rooftop and
12 GW ground-mounted systems. The main trend of feed-in tariffs is downwards, having fallen by
50% over a ten-year period. Predicting the future ten-year equity internal rate of return (IRR) in this
study, we examine the investability of PV systems in Taiwan when subsidies and investment costs
descend. We have found that the projected subsidies scheme favours investment in small-sized PV
systems. Unless the investment costs of medium-sized PV systems fall or subsidies rise over the
next decade, investing in medium-sized PV systems will be less attractive. Nonlinear and linear
degradation causes slight IRR differences when using higher-reliability modules.

Keywords: feed-in tariff; photovoltaic; investability; IRR

1. Introduction

With growing environmental consciousness, renewable energy has been used to fight
against global climate change by reducing greenhouse gas emissions [1]. Renewable energy
development is a growing trend worldwide [2]. The largest proportion of renewable energy
investment is photovoltaic (PV) power, or solar power. From 2010 to 2019, global renewable
energy investment reached USD 2.6 trillion, with PV accounting for 52%, which was USD
1.3 trillion [3]. REmap from IRENA predicted that global installed capacity of solar power
would increase six times larger to 2840 GW by 2030, compared to 2018, and with nearly
9% growth annually to 8519 GW by 2050, equivalent to USD 8 trillion in investments
from equity and debt markets [4,5]. Owing to the mature manufacturing technologies of
PV panels and the reduction of system installation costs over the past ten years, the PV
industry has reached economies of scale, and hence become the electricity source with the
most potential [6,7].

Like most governments, the Ministry of Economic Affairs (MOEA) in Taiwan has set a
goal for renewable energy development and legislated related regulations to accommodate
the energy transition [8–11]. The goal is to make renewable energy 20% of total energy
production by 2025; the PV capacity would then reach 20 GW, which is equivalent to 66.3%
of the total goal and composed of 8 GW roof-top and 12 GW ground-mounted systems. It
would also make the PV capacity in Taiwan up to 1% of the world in 2030. As shown in
Figure 1, the annual increments in PV cumulative installed capacity and production has
risen from 2016 to 2020. Figure 2 displays different proportions of PV systems in Taiwan.
As shown in Figures 1 and 2, Taiwan has cumulatively installed 5817.21 MW solar power
systems, composed of 78% rooftop, 21% ground-mounted, and 1% floating, and generated
6085.79 GWh of electricity at the end of 2020 [12].
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Figure 1. Photovoltaic cumulative installed capacity and power generation Source: [12], self-elaboration. 

 

Figure 2. Different proportions of PV power systems in Taiwan (2020). Source: [13,14] 
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The drop in investment costs has led to subsidies, such as the feed-in tariff (FIT), 

decreasing gradually year by year in Taiwan. Overall FITs have dropped 50% over the 

past ten years. As the trend from 2012 to 2020 in Figure 3 demonstrates, FITs for rooftop 

PV power plants for which capacities are 100 kW–499 kW and above 500 kW have de-

creased by 53.85%, and 49.92%, respectively. FITs for ground-mounted PV systems with 

capacities more than 1 kW have declined by 47.13%. All of the PV power systems con-

verged to around 0.12 EUR/kWh from 2011 to 2020, resulting from contracting invest-

ment costs, shown in Figure 3. 
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The drop in investment costs has led to subsidies, such as the feed-in tariff (FIT),
decreasing gradually year by year in Taiwan. Overall FITs have dropped 50% over the past
ten years. As the trend from 2012 to 2020 in Figure 3 demonstrates, FITs for rooftop PV
power plants for which capacities are 100 kW–499 kW and above 500 kW have decreased
by 53.85%, and 49.92%, respectively. FITs for ground-mounted PV systems with capacities
more than 1 kW have declined by 47.13%. All of the PV power systems converged to
around 0.12 EUR/kWh from 2011 to 2020, resulting from contracting investment costs,
shown in Figure 3.
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Figure 3. (a) FIT schedule from 2012 to 2020 (b) Investment cost from 2012 to 2020 Source: [15],
self-elaboration.

Different feed-in tariff incentives may cause variable PV investability. For example,
Greek feed-in tariffs changed from constant to de-escalating, declined annually from 2009
to 2014, and been set as the average wholesale electricity price plus a premium after 2015.
Danchev et al., argued that, although feed-in tariffs were larger than wholesale prices, the
returns are not attractive [16]. If the investment cost did not decline dramatically after 2015,
it would not be profitable to enter into the Greek PV market.

In general, previous studies have been done on feed-in tariffs in Taiwan from dif-
ferent viewpoints, including policy [17–22], economy [23], financial assessment [24], and
investors [25]. The purpose of this paper is to examine the investability of PV systems in
Taiwan when subsidies and investment costs descend. Unlike the linear degradation rates
used in prior studies, our study considered nonlinear degradation rates and financing costs
when calculating cash flows. Unfortunately, there have been few longitudinal studies. Our
study showed predictions of returns on investment in PV systems with capacities 1 kW to 1
MW from 2021 to 2030. The following sections of this paper contain more details of the FIT
in Taiwan. In order to evaluate whether the entry of PV systems is attractive, this paper
calculated the return on investment from the project and equity perspectives. Then, sensi-
tivity analysis was performed to check how the changes in the values of parameters, policy
and the linearity or nonlinearity of the degradation curve would impact on the results.
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2. Feed-In Tariffs Incentive Scheme

To achieve sustainable development, MOEA lowered the threshold of PV investment
by introducing feed-in tariffs in December 1999, rather than other regulatory policies, such
as electric utility quota obligation, net metering, tradable REC, etc. [26]. In the monopolized
electricity market in Taiwan, a fixed rate for unit power will be fair and will not violate The
Electricity Act [18]. The unit cost varies according to project capacity, allowing large-scale
commercial developers to benefit from economies of scale and creating entry barriers for
citizens or small-scale developers. By setting FIT rates with respect to capacity levels and
taking unit costs into consideration, investors of different scales would receive reasonable
compensations [27,28].

The FIT and its formula are reviewed and announced annually by committee. It
considers several market and technological factors, such as actual market investment costs,
operation and maintenance costs, annual electricity generation, etc. FITs were calculated
by the levelized cost approach and should be larger than the average domestic cost of
fossil-fired power [28].

Investors are compensated with the FIT at the time of signing a power purchase
agreement (PPA) throughout the entire 20 years. By this method, bond-like characteristics
of cash flow offered by PV power plants would be ensured and exempted from price
fluctuations in the energy market [21,29]. FIT not only increases the certainty of cash
inflows but also reduces downside risk, making it more likely for investors to borrow
money from the bank, and eventually reducing the cost of renewable electricity [30,31].

The government proposed several plans to stimulate PV development in Taiwan. The
Million Solar Rooftop PVs project was implemented in March 2012, and the development
of the solar community was subsidized in March 2013 [32]. A short-term goal of 2 years of
PV promotion was set to ensure that the total installed capacity reached 1.52 GW from July
2016 to December 2018. The total capacity installed in Dec. 2018 was 1.7 GW, surpassing
the short term goal. The second phase of the 2-year PV promotion plan was set to ensure
that incremental installed capacities would be 1.5 GW and 2.2 GW, respectively, in 2019
and 2020.

3. Methodology

Researchers have indicated that PV markets become economically viable due to
drops of LCOE [33], but lower LCOE does not guarantee the profitability of PV invest-
ments. Therefore, most firms normally use IRR, NPV, and payback periods in capital
budgeting [34–36]. The IRR is the discount rate that makes the present value of the future
after-tax cash flows equal to the initial cost of the project [37]. The advantage of IRR is that
it calculates profitability as a percentage, indicating the return on each dollar invested.

Two types of IRR, project and equity IRR, will be estimated in this study. Project IRR
considers the overall return of the project, which does not meet the required return of
sponsors. To decide the feasibility of an investment project, project investors may compare
the project IRR with the cost of capital. If the project IRR is larger than the cost of capital,
meaning that the project has the chance to make profits, then project investors would
consider investing. Therefore, the project IRR can be regarded as the bottom line of the
lowest return for the feasibility of an investment project.

The IRR of the project with leverage, like debt, is literally the investors’ return on in-
vestment in a project, namely equity IRR [38]. For ensuring higher equity returns, sponsors
would leverage the project by borrowing money from the bank under the circumstances
that loan interest rates are lower than project IRR. For project developers, project IRR
is an indicator often used to compare different projects [39]. After choosing a project, a
reasonable debt ratio, along with risk exposure, confidence of investors and financing
barriers, will then be considered together to determine an equity IRR [40].

This study predicted returns from 2021 to 2030 based on predicted FITs and projected
capital cost reductions in comparative reference cases from EIA [41]. The predicted FIT
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set by Taiwan government is derived from substituting assumed values into Formulaes (1)
and (2) [15].

FIT =
InvCost × (CRF + OMCost)
Annual Energy Generation

(1)

CRF =
WACC × (1 + WACC)n

(1 + WACC)n − 1
(2)

where InvCost is the initial investment cost; WACC is the weighted average cost of capital,
including debt and equity; CRF is the capital recovery factor, combinations of WACC
and the contract duration; OMCost is the operation and maintenance (O&M) cost ratio,
which is the ratio of annual O&M cost to initial investment cost. Several assumptions
are made by the government as follows: WACC to be 5.25%, annual energy generation
to be 1250 kWh, and OMCost to be the same as year 2020. EIA varied capital costs in PV
technologies, incorporating learning factors for three cases: high renewable, comparative
reference, and low renewable cost cases. In the energy production industry, capital costs fall
according to learning curves, which are defined as the experience improved with a specific
technology [42,43]. With learning factor assumptions, capital costs in the comparative
reference cases declined by 87% of their levels by 2030.

This study calculated the net cash flows for the overall and levered return of the
project between 2012 and 2030. Investors would own the asset, the PV system, for the
whole period with a lifetime of 20 years. Residual value of PV systems is assumed to equal
disposal costs after 20 years. Other assumptions are presented in Table 1.

Table 1. Net cash flow calculations.

Equity IRR Cash Flow C at Time t

− Initial investment cost (EUR/kW)
1. Equity capital is assumed to cover 30% of the initial investment cost
2. The rest is covered by a loan with 15 years duration and 3% interest rate.
3. Different categories and installed capacities refer to the relative initial investment cost according to government estimation.

+ Revenues from electricity sales
Annual electricity production (kWh/kW) * FIT * Installed capacity (kW). According to government estimation, annual
electricity sales start decreasing 1% annually after 11 years [15].

− Loan principal and interest payment
Includes principals and interest payments for the loam, paid monthly.

− Operating and maintenance cost (%)
Assumed to be proportion of initial investment cost per annum, and varied according to categories and capacities. Including
insurance fee and inflation rate (2%)

Depreciation expense
Assumed the investment is equally depreciated throughout the entire operation period. Therefore, depreciation expense is 5% (1/20) of
initial investment.

− Corporate tax
Imposed on total revenues minus interest payments, depreciation expense and operating and maintenance cost. If the profit of
an enterprise is less than 3600 EUR, it will not be taxed; if the profit is between 3600 EUR and 6000 EUR, it will be taxed at
(Profit-3600 EUR)/2; or it will be taxed at 20%.

= Net cash flow

4. Results and Sensitivity Analysis

This section first covers project IRR and equity IRR for the past ten years, along with
predicted equity IRR in the next decade. Then, to provide more information to prospective
investors and decision makers, sensitivity analyses of future IRR are carried out.

Figure 4 presents the project IRRs for rooftop PV systems (PVS) with capacity 1 to
1000 kW from 2012 to 2020, illustrated from different angles by Figure 4a,b. From Figure 4b,
the smaller scales of the PV systems, the higher returns. As commented in Section 2,
smaller PV systems with greater costs per kW are compensated with higher feed-in tariffs,
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corresponding with the long term policies. Nonetheless, it seems like the difference in
returns regarding capacities is overestimated.

1 
 

 
(a) 

 
(b) 

4 
Figure 4. Project IRRs (Internal Rate of Returns) for rooftop PVS with capacity 1 to 1000 kW (2012–
2020), from different angles (a,b) Source: self-elaboration.

Figure 4a shows that project IRRs of capacities lower than 19 kW slightly declined
from 4.96% with the contract date in January 2012 to 4.56% in July 2020. Note that the IRRs
of capacities greater than 19 kW have sharply decreased for 5 years starting from 2015, and
this is caused by FIT adjustments. In the first half-year of 2014, the installation of 10~19 kW
applications was relatively lower than other capacities. In order to encourage the public
to make efficient use of house rooftops, the government has adjusted the first level from
its original range of 1–9 kW to 1–19 kW. Also note that the IRR drop is caused by the FIT
difference between capacity levels. The FIT difference between the first level (1–9 kW)
and second level (10–99 kW) was around 10 % from 2012 to 2014; however, the difference
between the first level (1–19 kW) and second level (20–99 kW) became 21.86% and, hence,
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resulted in a sharper drop. Project IRRs of capacities greater than 150 kW slightly decreased
from 4.00% with the contract date in January 2012 to 3.65% in July 2020. The calculation of
FITs includes O&M costs, while loan interest payment and tax payment are excluded. In
real cases when these payments are considered, the actual unlevered project IRR will be
lower than the WACC (5.25%) in FIT calculation.

Figure 5 illustrates that equity IRRs of capacities lower than 19 kW declined from
7.95% with the contract date in January 2012 to 7.01% in July 2020. IRRs of larger installed
capacity, greater than 150 kW, slightly decreased from 6.46% with the contract date in
January 2012 to 5.61% in July 2020. The majority of the installed capacities were higher
than WACC for the past ten years, which is financially feasible, except for the capacities of
19 to 99 kW from 2015 to 2019. Most rooftop PV systems were profitable for the past ten
years, and capacities 19 to 99 kW were unprofitable from 2015 to 2019. This indicates that
the FIT of 19 to 99 kW is lower than its reasonable value. 

2 

 
(a) 

 
(b) 

5 
Figure 5. Equity IRRs (Internal Rate of Returns) for rooftop PVS with capacity 1 to 1000 kW, from
different angles (a,b) (2012–2020) Source: self-elaboration.
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The IRR of rooftop PV power systems with capacity from 1 kW to 19 kW increased to
10.89% in 2018 as a result of the incentives provided by the government, which proactively
encourage public installations of small distributed rooftop PV systems. There are many
reasons why the government emphasizes small-capacity PV power systems. Generated
electricity could be consumed in close proximity rather than long-distance transmission to
realize local power generation and reduce transmission losses. It could lower unit power
generation costs and further improve the stability of the regional grid.

Figure 6 shows that predicted equity IRRs for rooftop PV systems with capacities
lower than 19 kW are around 7.012%, and more than 300 kW are around 5.605% from 2021
to 2030. Investments in small-sized PV systems remain attractive, and medium-sized PV
systems are less profitable since IRR is slightly greater than WACC, based on previous
assumptions, as the FIT and investment costs descend in the next decade. 

3 

 
(a) 

 
(b) 

6 
Figure 6. Predicted equity IRRs (Internal Rate of Returns) for rooftop PVS with capacity 1 to 1000 kW
(2021–2030), from different angles (a,b) Source: self-elaboration.
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Previous IRR calculations are based on several subjective assumptions. In order to
understand the impact of different parameter variations and consider that changes of the
investment environment or the government policy in the future may result in different
estimates, a sensitivity analysis is performed.

The results of sensitivity analysis for a 250 kW rooftop PVS with the contract in 2030
are presented in Figure 7. The equity IRR is largely sensitive to three parameters, which are
initial investment cost, feed-in tariff and annual electricity generation. The results are the
same with the sensitivity analysis in the USA and Greece [16,44,45]. Large upfront costs and
incentives like feed-in tariffs may cause great impacts on the IRRs [46]. The comparative
reference value of equity IRR with no changes is 5.87%. An initial investment cost lower
than the reference case by 15% would generate an IRR that is higher by 5.81 points. When
the feed-in tariff or annual electricity generation increases by 15%, which means that the
revenue side gets 15% higher than the reference case, it would lead to an IRR that is larger
by 4.92 points.
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Figure 7. Sensitivity of equity IRR for a 250 kW rooftop PVS with the contract in 2030. Source: self-elaboration.

The returns of small-sized PV systems are higher, as shown in Figure 6. From Figure
7, the profitability between small- and medium-sized PV systems were equal, if one of the
following conditions met: initial investment costs are 4% lower, FIT and annual electricity
generation are 4% higher, O&M cost ratio is 15% lower, or debt ratio is 15% higher than
reference case. From the results, the best case for the profitability of an investment is the
combinations with the lowest initial investment cost, the highest feed-in tariff, and the
highest annual electricity generation.

Previous results of predicted equity IRRs summarizes that medium-sized rooftop
PV systems become less profitable in the next ten years. Figure 8 shows the dependence
of predicted equity IRR variation on FIT deviation from the prediction of 2030. As long
as the FITs do not reduce to between 1% to 4% less than current projections in 2030, the
investments in PV systems are financially feasible.
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When making investment decisions, investors are more concerned about IRR. Many
researchers have concluded that nonlinear and linear degradation curves may have a
significant impact on the LCOE [45,47]. It may result in a difference of IRR. Table 2 shows
the degradation rates of different degradation curves with different total degradations. In
the nonlinear degradation case, the curve is at a stable phase, namely the degradation rate is
0, in the first 10 years, followed by a fixed degradation rate in the remaining 10 years; while
in the linear degradation case, the degradation rate is fixed throughout the entire 20 years.
Since the degradation period of the nonlinear case is half that of linear case, the rates of
nonlinear case would then be 2 times that of linear case under the same total degradation.

Table 2. Degradation rates of different cases Source: self-elaboration.

Total Degradation 0.5% 5% 10% 15% 20% 30%

Nonlinear degradation rate (%/year) 0.05% 0.5% 1% 1.5% 2% 3%
Linear degradation rate (%/year) 0.025% 0.25% 0.5% 0.75% 1% 1.5%

Figure 9 displays the IRRs with nonlinear and linear degradation curves. For PV
systems with higher reliability, total degradation less than 15%, the IRR difference between
linear and nonlinear degradation is smaller than 0.9%, and when total degradation is
greater than 20%, the IRR difference becomes larger than 1.4%. It indicates that nonlinear
and linear degradation curves have less impact on the IRRs when using modules with
higher reliability, and have significant impact on the IRRs when using modules with lower
reliability. In the case of equity IRRs for 55 kW rooftop PV systems with contract in 2030,
calculating cash flows by applying nonlinear and linear degradation curves may result in
different investment decisions, when total degradation is larger than 15%.
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Figure 9. Equity IRRs for 55 kW rooftop PVS with contract in 2030 under different cases Source: self-elaboration.

5. Conclusions

With the emerging concerns around climate change, energy transition has become
an unignorable issue. Governments have proposed related policies to support energy
transition. However, while FITs are gradually adjusted to lower levels due to descending
costs, the investability and profitability of renewable energy, such as PV, must be ensured
to make energy transition sustainable.

Unlike previous studies [24,25], this paper has presented longitudinal studies on the
investability of PV systems when subsidies and investment costs descend. It could shed
lights on future possible energy policies and returns which may assist prospective investors
in identifying a potential PV market and making investment decisions. Consistent with
Danchev et al., our study has found that small-sized PV systems have simpler access and
will remain at higher levels of investability; while medium-sized PV systems will be less
attractive over the next decade, even if investment is financially feasible. If the investment
cost of larger capacities PV systems does not fall, entering into the PV market in Taiwan in
the next ten years will not have many incentives. Our analysis has pointed out that the
subsidies policy for medium-sized PV systems may be 4% higher than projections to make
its investment more profitable and hence contribute to energy transition.

The government and prospective investors of PV systems are concerned about how
changes in economic and financial conditions may affect the investability of PV systems.
The factors on which IRR values depend are, from most to least: initial investment cost,
FIT and annual electricity generation, O&M cost ratio, debt ratio, and loan interest rate.
Moreover, our analysis also shows that nonlinear and linear degradations cause slight IRR
differences when using modules with higher reliability, and significant IRR differences
when using modules with lower reliability, which may lead to the diametrically opposed
investment decisions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/en14092728/s1, Table S1. Photovoltaic cumulative installed capacity and power generation,
Table S2. (a) FIT schedule from 2012 to 2020 (b) Investment cost from 2012 to 2020.
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