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Abstract: High-fidelity simulations of turbulent flames are computationally expensive when using
detailed chemical kinetics. For practical fuels and flow configurations, chemical kinetics can account
for the vast majority of the computational time due to the highly non-linear nature of multi-step
chemistry mechanisms and the inherent stiffness of combustion chemistry. While reducing this
cost has been a key focus area in combustion modeling, the recent growth in graphics processing
units (GPUs) that offer very fast arithmetic processing, combined with the development of highly
optimized libraries for artificial neural networks used in machine learning, provides a unique
pathway for acceleration. The goal of this paper is to recast Arrhenius kinetics as a neural network
using matrix-based formulations. Unlike ANNSs that rely on data, this formulation does not require
training and exactly represents the chemistry mechanism. More specifically, connections between the
exact matrix equations for kinetics and traditional artificial neural network layers are used to enable
the usage of GPU-optimized linear algebra libraries without the need for modeling. Regarding GPU
performance, speedup and saturation behaviors are assessed for several chemical mechanisms of
varying complexity. The performance analysis is based on trends for absolute compute times and
throughput for the various arithmetic operations encountered during the source term computation.
The goals are ultimately to provide insights into how the source term calculations scale with the
reaction mechanism complexity, which types of reactions benefit the GPU formulations most, and
how to exploit the matrix-based formulations to provide optimal speedup for large mechanisms by
using sparsity properties. Overall, the GPU performance for the species source term evaluations
reveals many informative trends with regards to the effect of cell number on device saturation and
speedup. Most importantly, it is shown that the matrix-based method enables highly efficient GPU
performance across the board, achieving near-peak performance in saturated regimes.

Keywords: graphics processing units; high-performance computing; chemical kinetics; multi-physics
simulation; neural networks; turbulent combustion

1. Introduction

Computational modeling of reacting flows has become an integral part of the design
and analysis of complex propulsion concepts [1,2]. While a wide variety of tools constitute
the modeling pathways, simulations for reacting flows require detailed models for chemical
reactions. In most applications, the multi-physics behavior stemming from chemical reac-
tions induces a highly complex Arrhenius-based expression for the species source terms,
the nonlinearity of which produces an extremely stiff set of equations for the time evolution
of the reacting chemical species [1-3]. The wide range of timescales in this setting must be
resolved to accurately represent the characteristic turbulence—chemistry interactions.

As a result, efforts to accelerate the computation of turbulent reacting flows with a
focus on the chemical reaction (kinetics) terms have been, and still is, a major research
effort in fields related to turbulent combustion. The efforts can be categorized into two
classes: The first, more traditional class is model-oriented, i.e., an approximation to the
exact formulation for the source terms and the species evolution is constructed with the
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goal of decreasing the time-to-solution. The second class, which is the central focus of this
work, is hardware-oriented, i.e., the computation of the source terms and time-evolution of
the species is accelerated by porting existing exact algorithms to state-of-the-art hardware.
The former is driven by innovations in physical understanding, whereas the latter is
driven by advances in emerging heterogeneous computing architecture. To motivate the
need for the latter, some previous work concerning the former class (traditional modeling
approaches) is first briefly reviewed. Note that both classes are not mutually exclusive—the
tools presented by machine learning (namely neural networks), to be touched on further
below, very much blur the line between the two.

While there has been considerable growth in the physical understanding and the de-
velopment of reliable yet computationally efficient models [1,2], representation of complex
chemical kinetics remains a challenge. In particular, the use of detailed mechanisms that
involve a hundred or more species and an even larger number of reactions in a turbulent
flow configuration remains out of reach [4]. Although progress towards their use in canoni-
cal flows has been reported [5], their use in the simulation of complex geometries is still
limited. When modeling turbulent combustion, manifold methods have overcome this
computational issue by representing multi-step kinetics using a reduced-set of tracking
variables such as mixture fraction and progress variable [6]. However, other combustion
models such as the transported probability density function (PDF) approach [7,8] or the
linear-eddy model [9] require detailed chemistry to be directly evolved. In this regard,
methods and algorithms that allow detailed chemical processes to be included in such
approaches are a critical requirement.

Models that attempt to tackle this issue from a reduction point of view include tabula-
tion methods such as in-situ adaptive tabulation (ISAT) [10] and the PRISM [11] approach.
In these methods, the computationally expensive numerical integration of chemical source
terms, which can be cast as a set of ordinary differential equations (ODEs), is replaced by
a look-up table. In particular, ISAT builds a trust region in thermochemical composition
space using a set of ellipsoids determined by the Jacobian of the source terms. The cost of
building and accessing such tables, however, can become expensive for large mechanisms,
especially on modern high-performance computers (HPCs) that are memory-limited and
use extensive concurrency in computations to reach high throughput efficiency. For these
reasons, alternative data-driven modeling approaches based on artificial neural networks
(ANNSs) [12-16] have become increasingly popular, although they introduce additional
issues related to model robustness and training data quality (the dependence on data is, in
general, a disadvantage in applications for which both the physical constraints are already
well understood and the mechanism sizes are large).

Despite this, the critical enabling tool for ANNSs is the development of hardware for
machine learning (ML) in light of modern exascale computing goals [17]. To conform to
the societal demands of the ML technology, modern state-of-the-art HPCs have moved
almost all compute power into graphics processing units (GPUs) or similar many-core
accelerators, whose hardware architectures enable fast algorithm execution in single-
instruction, multiple-thread (SIMT) environments [18]. Alongside providing much higher
theoretical peak performances, the shift in HPC compute power towards GPUs is also
advantageous due to their increased power efficiency. It has therefore become crucial for
the CFD community to adapt to these changes, though a central issue revolves around the
re-interpretation and re-design of traditional algorithms that have been around for decades
into a GPU-optimal scope [19].

In general, GPUs operate differently from CPUs, requiring the algorithmic imple-
mentations for expensive routines, such as the aforementioned source term computations,
to be altered in order to leverage their specific hardware architecture to extract as much
computational gain as possible. To this end, approaches for GPU-offloading for chemical
kinetics have been explored in detail in recent years to success [20-22], and their implemen-
tation into high-fidelity parallel solvers has also been demonstrated [23]. These approaches
traditionally rely on translation of the exact equations for kinetics and time-integration
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methods into the GPU environment. However, much of the literature in the context of
kinetics offloading has been geared towards either the time-integration aspect of the ki-
netics problem [19,22] or the role of the kinetics offloading in the context of a full reacting
flow solver [23], and not on the computationally intensive evaluation of the source terms
in isolation.

As such, the underlying goal of this work is to provide a GPU offloading strategy for
an alternative, matrix-based viewpoint of the offloading problem for the chemical source
term computation alone. The methodology is designed to supplement other related GPU-
optimal techniques, such as stiff time-integration methods, that rely on the source term
evaluation explicitly. One major thrust is to show how the exact formulations for the species
source terms can be interpreted as neural network layers without the need for any models,
thus facilitating a GPU-optimal matrix-oriented methodology that is both accurate and
well suited for emerging HPC architectures. Another thrust is to assess how the complexity
of the individual reaction mechanisms themselves affects the GPU performance. By means
of a detailed cost and throughput breakdown, the central idea is to illuminate the fact that
certain types of reactions, the set of which constitute a portion of a chemical mechanism
used to parameterize the source term evaluation, are more suitable for GPU offloading
than others. Further, it is shown how the underlying matrix multiplication algorithms can
be modified to enhance GPU performance for very large mechanisms through the use of
sparsity properties that arise from physical constraints tied to the elementary building-
block reactions. Alongside providing a methodology for an efficient GPU-based routine for
chemical kinetics, a subsidiary goal is to hopefully provide information that enables the
design of more GPU-optimal chemical mechanisms for usage in multi-physics CFD solvers
from the get-go.

The remainder of the paper proceeds as follows. In Section 2, the methodology for
the matrix-inspired formulation is presented in the language of artificial neural networks,
and a classification of reaction types that facilitates the GPU performance analysis is
provided. In Section 3, the GPU performance is assessed in detail from a compute time and
throughput perspective, the costs of individual reaction types are assessed, and a pathway
for improving the speedup for very large mechanisms is provided. Concluding remarks
and future directions are given in Section 4.

2. Methodology

This section first summarizes the chemical kinetic equations from a matrix-based
perspective (Section 2.1), and then discusses the data structure and organization of the
matrices used in the GPU computations (Section 2.2). The matrix-based formulations are
presented in the language of traditional artificial neural networks (ANNSs) where appro-
priate. Conveying the exact formulation of the source term computation with ANNSs is
intended to inform the reader that the form of kinetics equations as-is is efficiently described
via neural network layers without any need for training or modeling. For this reason, the
authors believe the ANN connections can lead to valuable insights regarding the general
interpretation and potential design of GPU-optimal chemical mechanisms. Additionally,
the neural network connections open pathways for constrained modeling approaches, here
called “approximate ANNs”, which can be designed to reduce the overall computational
effort undertaken during the exact source term computation at the cost of perfect accu-
racy. Although it does not fall into the main scope of this work, additional details on the
approximate ANN formulation are provided in Appendix A for the interested reader.

Of special importance in Section 2.2, and tied to the matrix data structures explained
therein, is the distribution of different reaction types present in a given mechanism. In
general, different algorithms are required for different reaction types—some allow for
matrix formulations and others do not. As such, a characterization of chemical mechanisms
based on the distribution of these reaction types is presented to provide a pathway for
assessing: (a) how beneficial the matrix representation can be for a particular mechanism;
and (b) how the prevalence of specific reaction types can positively or negatively impact
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the GPU-derived speedup. The main reason for introducing the reaction-type classification
is to bring forward the idea that, in the determination of GPU speedup, mechanism species
and reaction numbers are not the only factors; the complexity of the individual reactions
themselves also plays an important role.

2.1. Matrix-Based Kinetics Equations

In the following, the quantities Nc, Ns, and N denote the batch size (which can be
interpreted as the number of reacting cells in a domain offloaded to the GPU), number of
species, and number of reactions, respectively. Unless otherwise indicated, matrices are
denoted by bold symbols (e.g., A) and vectors by non-bold symbols (e.g., ). The scalar
entry of matrix A in row 7 and column j is denoted A;;; similarly, the scalar ith entry of
vector a is denoted a;. Further, the quantities i, j, and k index N¢, Ng, and Ng, respectively
(ie,i=1,...,N¢,j=1,...,Ng,and k = 1,..., Ng). For the set of species {Sy,...,Sn, }, a
general chemical mechanism is represented as

N, N.
ZS:V'S = iv”‘S =1 N 1)
= kj k ~— = kj kr ] 77 4iNRy

where v/ € RNs*Nk (respectively, v"') is the reactant (respectively, product) stoichiometric
coefficient matrix and v = v” — v/. The formulations below proceed, without loss of
generality, in the context that all Ny reactions are reversible. In practice, as discussed in
greater detail in Section 2.3, this may not be the case.

The molar net production rate (kmol/m3s) for species k in cell i is

Ng
Qie = Y vijQuet;;s 2
=1

where Q) € RNc*Ns contains the source terms and Qy,r € RNc*Nr contains the net reaction
rates. Note that Equation (2) can be expressed concisely through the matrix multiplication
Q = Quv!. The complexity comes from the net reaction rate, which is expressed as

Ng V]/g' Ng V[/c/‘
— — ] ]

Above, Q¢ and Q, € RNc*Nr are the forward and reverse reaction rate matrices,
respectively; Ky and K, € RNc*Nk are the forward and reverse rate constants, respectively;
and C € RNcxNs contains the species molar concentrations. Since Q f and Q, are non-
negative, Equation (3) can be interpreted as a summation of two ANN layers by enabling
matrix multiplications in the logarithm space:

Qyet = exp (log(C)v' +log(Ky)) — exp (log(C)v" +log(K;)). 4)

It can be seen through Equation (4) that the forward and reverse contributions are
ANN layers with exponential activation functions, where the input is the logarithm of
the concentration matrix C, the weight matrices are known stoichiometric coefficients v’
and v, and the biases are the logarithms of rate constants K¢ and K; for the forward and
reverse contributions, respectively. These rate constant bias terms can also be interpreted
as neural network layers and are the subjects of discussion further below.

Figure 1a summarizes the above formulation (Equations (2) and (4)) through an ANN
architecture. Note that the leading matrix dimension of all input and output variables,
which constitutes the batch size in the forward pass, is Nc. This allows for efficient
threading and fast execution in high fidelity settings, assuming optimized linear algebra
libraries (such as cuBLAS [24]) are utilized by the user. The remaining task, described
below, is to obtain the rate constants K £ and K,.
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Figure 1. Illustrations of ANN-based formulations for Nc = 1, Ng = 4, and Ngr = 8. Since
Nc = 1, input/outputs are vectors and cell indices are ignored. (a) Schematic of Equations (2)
and (4). Exponential activation functions are used to produce forward/reverse rates. (b) Schematic
of Arrhenius layer for forward rate constant (Equation (6)), which is interpreted as a bias term for the
output of the forward rate layer in (a) (see Equation (4)). (¢) Schematic of Gibbs layer equilibrium
constant (Equation (11)). The schematics in both (b,c) produce the logarithm of the reverse rate
constant, which is interpreted as a bias term for the output of the reverse rate layer in (a) (see
Equation (4)).

The forward rate constant K¢ € RNc*NR s given by the Arrhenius expression

K —A'Tﬂjex —ﬂ (5)
fz]i J-i p RTZ 4

where A, B, and E are vectors each of size N containing pre-exponential factors, tempera-
ture exponents, and activation energies respectively for the elementary reactions. These
Arrhenius parameters are known to the user through the mechanism files. The natural
logarithm of the forward rate (required in Equation (4)) usefully yields a form that can also
be interpreted as a linear ANN layer,

log(Ks) = X¢Wy + B, where (6)
logTh 1/Th log Aq
logT, 1/T B N log A,
— — R —
=1 Wit eE/R - —EnoR] BT
logTn. 1/Tn, log Anyg

In Equation (6), Xy € RNc*2 g the temperature-dependent input, W r€ R2XNR
is a weight matrix consisting of temperature exponents and activation energies, and
By € RNR s a bias term of pre-exponential factors. In this sense, each row of the layer
output log(K¢) can be interpreted as a set of Ng Arrhenius neurons.

The reverse rate constant K, € RNc*NR is given by

Kr,-]- = Kflj/KCl]/ (7)



Energies 2021, 14, 2710

6 of 28

where K, € RNcXNr contains the equilibrium rate constants. Since the expression for
log(K f) is provided through the Arrhenius neurons (Equation (6)), the task of determining
log(K;) required in Equation (4) is accomplished by considering only log(K,).

The equilibrium constant for cell i and reaction j is [25]

Lk Vkj AS{(T;)  AHi(T;)
_ [ Pref ! J A At A
Ke; = < RTI-> eXp( R RT; ) ®

where AS; and AH; are changes in entropy and enthalpy for reaction j, and p,y is the
reference pressure (1 bar). The logarithm of Equation (8) yields

Ns pref
log(Ke,) = ) vix <_Gik +RT > )
k=1 i

where G € RNc*Ns i the nondimensional Gibbs free energy matrix (hereafter referred
to as the Gibbs matrix) obtained from the nondimensional enthalpy (H € RNc*Ns) and
entropy (S € RNc*Ns) matrices. Each entry in the Gibbs matrix is determined from
NASA polynomials which provide species enthalpy and entropy as tabulated functions of
temperature. The result can be expressed as a matrix multiplication

G =H - S = XgWg + Bg, where (10)
log T T2 T3 T¢ 1/T
g 11 1 1 1 1 11 .- &1 Ng a7
log, T, T3 T3 Ti 1/T a1 ... @2Ng a7,
XG = . . . : . . ’ WG = : .. : 7 BG =
logTne Tne TRe Tie Tne 1/Tne M1 ... 06 Ng a7,N;

In Equation (10), Xg € RNc*® is the input consisting of various functions of tem-
perature and & € R”*Ns is a matrix of polynomial coefficients; the first six rows of « is
the weight matrix W and the last row is the bias B;. Note that, although not shown in
Equation (10) for conciseness, the quantities in & (and in turn W and Bg) are also functions
of the cell temperature T; and the species index. This is because the species polynomial
coefficients change based on a cutoff temperature (usually 1000 K). Regarding practical
implementation, in the case that the NASA cutoff temperature is the same for all of the
species (say 1000 K), it is possible to treat the evaluation of Equation (10) (the first layer in
Figure 1c) with linear algebra libraries (i.e., cuBLAS operations) by populating two copies
of a based on the cutoff threshold. However, this approach is only feasible in the case when
the NASA cutoff temperature is the same for all of the species. In the more general case
where the cutoff temperature varies with the species index, it is much more convenient to
directly treat the evaluation of Equation (10) using a custom matrix multiplication kernel
that computes the polynomial directly—with conditional logic that populates the values
in & on-the-fly based on the cell temperature—instead of a using the cuBLAS (or other
similar) routines. The convenience here outweighs the hit on GPU optimality, and, as
such, this is the approach used in the GPU implementation profiled in Section 3. It should
be noted that a principle advantage in considering the matrix form for the evaluation of
NASA polynomials (as in Equation (10)) comes with the approximate ANN framework (see
Appendix A)—the framework overcomes the conditional logic limitations imposed by the
NASA coefficients by designing a neural network to essentially discover new polynomials
such that the equilibrium rate constants can be recovered, but the coefficients” dependence
on temperature is removed.

Inserting Equation (10) into Equation (9) gives

log(K¢) = —(XgWg + Bg)v, (11)
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where the standard concentration term p,.r/RT; has been integrated into the bias Bg.
Equation (11) can be interpreted as a linear two-layer ANN. The parameters of the first
layer (the Gibbs layer) are the temperature-dependent W and B¢ and those of the second
layer are the net stoichiometric coefficients v. The intermediary neurons (i.e., hidden layer
neurons) here are referred to as the Gibbs neurons.

Mlustrations of both the forward and the equilibrium rate constant formulations
as neural network-inspired architectures are shown in Figure 1b,c, with Arrhenius and
Gibbs neurons highlighted. Alongside the formulations provided above, however, some
additional complications arise when considering the forward rate constant in detailed
reaction mechanisms and the treatment of zero concentrations. These are considered in the
present work and brief descriptions on their implementation are described below.

To handle three-body reactions, the quantity log(M) is added to log(Ky), where
M € RNcXNR js a matrix of third-body concentrations for each reaction (M;; is 1 if reaction
j does not include a third body). The entries in M can be obtained through the matrix
multiplication M = CE, where E € RNs*Nk js a matrix of third-body efficiency factors.
In practice, for computational savings, the third body concentration matrix equation is
evaluated only for the subset of total reactions Ny, since third body concentration terms
are generally not present in every single reaction.

Additionally, falloff and pressure-log reactions, which constitute two of the reaction
types discussed further below in Section 2.2, are treated separately from standard Arrhenius
reactions as defined in Equation (6). In summary, they modify the standard matrix-based
formulation of the forward rate constant logarithm by incorporating much more complex
and arithmetically intensive expressions. As such, pressure-log and falloff formulations
such as that of Lindemann, Troe, or SRI are handled on the GPU in a custom non-matrix
fashion. More information on the mathematical implementation expressions for these
reactions can be found in the Cantera and Chemkin documentation [26,27].

Lastly, it is necessary to acknowledge that the treatment of kinetics in the logarithm
space introduces scenarios in which logarithms of zero concentration are required. There
are several ways to treat this with effectively zero propagating error—some options are
listed below.

1.  Let the GPU handle the zero concentrations natively. For example, CUDA supports
the operation of exp (1og(0))=0 through the Inf floating point placeholder. That is,
CUDA ensures that the operation 1log(0)=-Inf, and that exp (-Inf)=0.

2. Replace either the zero concentrations or mass fractions with an extremely small
positive number and then proceed with the computations. This number should be
small enough (i.e., 1.0e-300) to effectively produce a huge negative number upon
taking the logarithm.

3. Replace the logarithm of the zero concentrations directly with a huge negative number,
e.g., through a re-definition as log(0)=-1.0e300.

It should be noted that errors are indeed introduced from all of the above treatments
of the zero logarithm, as it is mathematically undefined and the numerical treatments incur
some truncation penalties. However, these errors are microscopic relative to other error
sources that are encountered in a reacting flow simulation and are unnoticeable in practice.
The reader is referred to Appendix B for additional verification, which provides sample
results using the second option.

2.2. Organization of Data

The notion of N¢, Ny, and N introduces three matrix types that represent the back-
bone of the methodology discussed above: an N¢ x Ny reaction matrix, an N¢ X Ng species
matrix, and an Ng X Ny (or the transpose) stoichiometric matrix. As per the formulations
in Section 2.1, reaction matrices are used to define quantities such as rate constants and
reaction rates, whereas species matrices are used to define concentrations, mass fractions
and species net production rates. Stoichiometric matrices can be interpreted as tools that
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transform a matrix from the species representation to the reaction representation or vice
versa.

Assuming the matrices occupy contiguous blocks of memory, there are two ways to
go about their storage: a row-major or a column-major representation. As an example,
consider some given N¢ x Ng matrix A (a reaction matrix). In the row-major format,
the reaction matrix is represented as an Nc-sized stack of 1 x Ng row vectors. On the
other hand, in the column-major format, the matrix is interpreted as an Ng-sized stack of
Nc x 1 column vectors. This difference is shown in Figure 2a. There are a few reasons
the column-major representation is more beneficial here. First, in most realistic high-
fidelity applications, we have the condition Nc > Nr > Ns. From a GPU efficiency
perspective, it is important to have memory coalescence along the highest dimension N¢,
which necessitates a column-major storage format for A. (Good coalescence ensures that,
for a given number of floating point operations (FLOPs) in the kernel, the FLOPs executed
by the GPU per byte of transferred global memory (arithmetic intensity) is as high as
possible. Arithmetic intensity is used as a general metric to assess GPU performance, and it
is discussed further in Section 3.1. For more information on the specifics of global memory
coalescence, the reader is referred to the CUDA toolkit documentation.) Second, the
practical implications of designing a matrix as a collection of N¢ x 1 vectors is appealing—
it allows for naturally extracting contiguous N¢ X Ny subsets of the A matrix, where
Nx < Ng. This becomes especially useful when dealing with different reaction types as
discussed in Section 2.3. Lastly, the column-major format allows for seamless integration
with cuBLAS, a highly efficient GPU-based linear algebra library.

Column major Row major _ Irreversible Reversible
P ] . - === T\ e\
———
20 oh
o ke k<) =
L g o § E 5
o i=1 =1 =
Ne Ne g & E & £ %
J U U ———— T _JJIu_JC___JC
NR NR NR,irv NR,rev
(@ (b)

Figure 2. (a) Interpretations of a matrix in column major (left) and row major (right) formats. The
gray shapes within the matrices show the storage method as a stacking of Ng column vectors (for
column major) or N¢ row vectors (for row major). (b) Decomposition of a reaction matrix into Ng
irreversible and N ,,, reversible sub-matrices, each with another set of sub-matrices corresponding
to standard, falloff, and pressure-log reaction types.

2.3. Reaction Decomposition and Classification

As mentioned in Section 2.1, not all reactions need to be reversible in a given mecha-
nism. Oftentimes, Arrhenius parameters for reverse rate constants are provided directly, in
which case a physically reversible reaction is supplied to the user through the mechanism
files as two irreversible (forward) reactions parameterized by the corresponding Arrhenius
constants. In this scenario, the computation of the equilibrium rate constant (Equation (9))
for one reaction is effectively traded for an additional Arrhenius rate constant evaluation
(Equation (6)).

With this in mind, any given reaction matrix A initialized as a contiguous column-
major matrix of size Nc X Ny is constructed such that it decomposes into two sub-matrices:
one for irreversible reactions and the other for reversible reactions. More formally, in gen-
eral, there are Ny ;, and N ;¢ irreversible and reversible reactions, respectively, where
NR = NRry + NR rep- The matrix A is then partitioned into two smaller matrices along
the reaction axis as A = [Ajy;; Areo|, where A, is the N¢ x N j;, sub-matrix of A corre-
sponding to irreversible reactions, Ay, is the N¢c X NR e, sub-matrix corresponding to
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reversible reactions, and [;] is a concatenation operator. This separation is advantageous
in practice because additional matrix operations are required for reversible reactions (i.e.,
the equilibrium rate constant evaluations of Equation (9)) that are absent from irreversible
reactions. Since these operations are expensive, performing them on the full matrix A
is wasteful for mechanisms that observe a large number of irreversible reactions. Fur-
thermore, the column-major data structure ensures that the two sub-matrices A;,, and
A,y are still contiguous in memory, a necessary requirement for GPU-optimized matrix
multiplication algorithms. As a result, the arrangement of a reaction matrix as two concate-
nated sub-matrices allows for efficient matrix operations on both subsets, or the full matrix,
whenever necessary.

In a similar process, each sub-matrix A;, and A,,, can again be decomposed into a
set of smaller sub-matrices categorized by specific reaction types. As mentioned above, in
this work, the three most commonly encountered reaction types are considered:

1. Standard reactions utilize the standard Arrhenius equation for the forward rate constant
(Equation (6)). They may or may not include third body contributions.

2. Falloff reactions employ significantly more complex expressions of the forward rate
constant computation for reactions involving third bodies. Falloff reactions can be Lin-
demann, Troe, or SRI type, each with slightly different implementations. The reader is
referred to the Cantera [26] or Chemkin [27] documentation for mathematical details.

3. Pressure-log reactions add pressure dependence into the computation of the forward
rate constant through an interpolation routine. They may or may not include third
body contributions. The reader is referred to the Cantera or Chemkin documentation
for mathematical details.

In the most general case, for each set of reversible and irreversible reactions, the
decomposition into reaction types ensures

NR,irv = ng,irv + Nllg,irv + Nllg,irv' (12)
NR,rev = NISQ,rezz + Nllg,rev + Nllg,rev' (13)
where the superscripts S, F, and P indicate standard, falloff, and pressure-log reactions
respectively (e.g., N3 . . is the number of irreversible, standard-type reactions in the mecha-

nism). Additionally, the total number of reaction types present in the mechanism discount-
ing reaction reversibility is given by

s s s

N = NRirp + NR revr (14)
F F F

Nr = NR,irv + NR,rev/ (15)
p P p

Ng = NRiro + NRrevr (16)

such that Ny = N Ig + N 15 +NP =N Riro T NRrep- In practice, for memory coalescence
reasons, the matrices Aj,, and A, are again partitioned in a similar manner as described
above, creating a two-level hierarchy. The top-most level, to reiterate, is A = [Aj;,; Arer].
The second level then provides A;, = [AS ;AL -AP 1and A, = [AS,; AL ;AL A
schematic of this decomposition is provided Figure 2b.

For a given mechanism, the above decomposition (or classification) into reaction
types applies to all reaction matrices, i.e., matrices that are of size Nc X Ng. Note that
this is a by design an overly general classification. Most mechanisms do not contain
every aforementioned reaction type. For example, one mechanism may only contain
reversible reactions (Ng ;», = 0), and another may contain both reversible and irreversible
reactions, but no falloff reactions (N£ = 0). Each chemical mechanism can therefore
be characterized not only by the total number of reactions, but also by the distribution
of the reaction types. The mechanisms considered in this work are detailed in Table 1,
and their corresponding reaction type distributions are visualized in Figure 3. Section 3
shows how knowledge of these distributions gives additional insight into the speedup and
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GPU performance behavior, since each reaction type brings forward a different amount of
numerical complexity.

Table 1. List of mechanisms used throughout this work arranged in ascending order of Ni. They
are grouped into three classes based on Ny for ease of reference. Class A is for smaller mechanisms
(Ng = 0(10)), Class B for medium-sized mechanisms (N = ©O(100)), and Class C for large
mechanisms (Ng = O(1000)). Note that the mechanism labeled C1 is unrelated to the jet fuel of the

Same name.

Class Reference Description Ng Nr
Al Mueller et al. [28] Hydrogen/Air 9 21
A2 FFCMy-12 [29,30] Methane/Oxygen 12 38
Bl FFCMy-30 [29] Ethylene/Air 30 231
B2 UCSD [31] Hydrogen/Air 57 268
B3 FFCMy-40 [29] Ethylene/Air 41 361
C1 AramcoMech 1.3 [32] - 253 1542
C2 LLNL [33] - 654 4846

Al A2 B1 B2 B3 Cl Cc2 Legend
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Figure 3. Reaction distributions shown as pie charts for the mechanisms listed in Table 1. The
top row shows proportions of reversible and irreversible reactions, whereas the bottom row shows
proportions of standard, falloff, and pressure-log reactions. Indicated for each wedge is the proportion
(reaction number normalized by total number of reactions) as a percentage, and the absolute reaction
number in parentheses. The significant difference in the reaction distribution for C2 with respect to
reversibility is due to the fact that most of the reversible reactions were parameterized with Arrhenius
expressions for both forward and reverse components (see the introductory comments of Section 2.3).

3. GPU Performance Analysis

This section characterizes the GPU performance trends derived from the matrix-
oriented methodology described in Section 2. In particular, speedup and saturation behav-
iors are assessed with respect to: (a) the chemical mechanisms in Table 1; (b) the leading
matrix dimension N (here interpreted as the number of reacting cells in a computational
domain assigned to one GPU); and (c) the reaction distributions provided in Figure 3. The
performance analysis is based on trends for absolute compute times and throughput for
the various arithmetic operations encountered during the source term computation. Cost
breakdowns for different reaction types and specific advantages of the matrix-based formu-
lation in light of mechanism sparsity properties are also explored. The goal is ultimately to
provide insight into how the computationally intensive source term calculations scale with
the reaction mechanism complexity (Sections 3.1 and 3.2), which types of reactions benefit
the GPU formulations most (Section 3.3), and how to exploit the matrix-based formulations
to provide optimal speedup for large mechanisms (Section 3.4).

GPU performance in this work is assessed purely from the perspective of the source
term computation in isolation. The GPU-enabled speedup for an entire reacting flow solver
can drastically vary depending on: (a) the chemistry time-integration algorithm; (b) GPU
treatment of convective/diffusive fluxes; (c) GPU treatment of boundary conditions and
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domain decomposition communication steps; and (d) the amount (and implementation of)
CPU-GPU data transfers. Since the methodology in Section 2 exists independently from
these factors, the GPU speedup and performance trends are also treated independently.

The methodology described in Section 2 was implemented on the GPU with a C++
library serving as a high-level API to call lower-level CUDA and cuBLAS routines. The
APl is a part of a larger GPU-based library used for offloading computationally intensive
routines commonly found in high-fidelity unstructured multi-physics solvers; details of
the full library will be provided in a future manuscript. Further, since the formulations pre-
sented in Section 2.1 are exact, a meticulous verification study for the GPU implementation
is not included here. For the sake of brevity, simple verification tests that are intended to
convince the reader of the integrity of the implementation are provided in Appendix B.

The calculations used in the analysis below were performed in double precision on
an ORNL Summit node consisting of IBM Power9 CPUs and NVIDIA V100 GPUs. All
performance-related quantities were obtained from the nvprof profiling tool [34]. When
constructing the performance profiles, species mass fractions were obtained arbitrarily
using a random sampling procedure and a normalization step to ensure sums of unity—the
choice of mass fractions (and species concentration) has no effect on the profiling results,
as the algorithm arithmetic and global memory read/write points are independent of
the species mass fraction distributions. Lastly, it should be noted that absolute values of
speedup will of course depend on the node hardware as well as the user implementation
of GPU functions—for these reasons, the saturation and throughput trends (i.e., a measure
of how well the GPU resources are being utilized with respect to the theoretical limits) are
more valuable overall, as they better isolate GPU performance dependence on mechanism
complexity over compute architecture.

Note that the results below are geared solely towards the computational performance
of the matrix-based GPU evaluation of the chemical source terms. Comparisons to more
conventional GPU approaches for evaluating the source terms (non-matrix approaches) are
provided in Appendix C, as are more detailed descriptions of the utilized algorithms.

3.1. Compute Times and Throughput

Absolute GPU compute times for source term evaluation as a function of the leading
matrix dimension (or number of cells) N¢ are shown in Figure 4. Each curve is characterized
by three sequential features present in all GPU-based profiles: the pre-saturated regime,
the saturation point, and the saturated regime. In the pre-saturated regime, the compute
time curve observes a near-zero slope with increasing computational complexity, where
the effective knob for computational complexity for a given reaction mechanism is here
available through Nc. In other words, in the pre-saturated regime, the compute cost is
independent of N¢, implying that the GPU resources are not fully utilized. On the other
hand, the saturated regime is characterized by a “filling-up” of the GPU resources where
the compute time increases roughly linearly with increasing Nc¢. Finally, the saturation point
is the marker that indicates the onset of saturated regime, i.e., the point N¢ at which the
curve roughly begins to adhere to the linear trend.

In light of these three features, Figure 4 reveals many useful trends with regards to
reaction mechanism complexity. Perhaps the most apparent is the expected behavior of
increased GPU compute time with increasing mechanism complexity for any given Nc—in
other words, as one traverses from mechanism Al to C2 with N fixed, the compute time
increases. Another more subtle trend lies in the N¢-locations of the indicated saturation
points. Namely, the saturation point is correlated almost uniquely with the number of
reactions, Ng, as opposed to the number of species, N5. As Ny increases by an order
of magnitude (as one moves from mechanism class A to B to C), the saturation point
decreases in N¢ by roughly the same order of magnitude factor. A similar trend is seen
in the saturated regime, where, for a given Nc (say 10°), the average compute time for
each mechanism class increases by order of magnitude intervals, i.e., in proportion to the
increase in N. Interestingly, the Nr-based correlation is absent in the pre-saturated regime;
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the general trend of increased compute time is indeed present, but, prior to saturation,
increases in compute time are not proportional to same degree of increase in Ng. This
behavior is characterized the dominance of the computational budget in the saturated
regime by dense matrix multiplications involving very large reaction matrices, and is
discussed in more detail in Section 3.4 to motivate the usage of sparse algorithms.

GPU Compute Time
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— 10}
o
g
[_4

10°F

107 ‘

10 10’ 10° 10° 10° 10° 10°

Number of Cells, N

Figure 4. Absolute compute time (time-to-solution) as a function of cell number N¢ for the GPU
evaluation of the species source terms for the mechanisms listed in Table 1. Saturation points for each
mechanism group are indicated by the black arrows.

The information obtained from raw compute times in Figure 4 becomes much more
valuable when contextualized with a direct representation of GPU performance relative
to the theoretical limits of the hardware in question. This is the primary purpose of the
Roofline model [35], which is the de-facto judge in the GPU computing literature for
assessing saturation, GPU utilization, and throughput behavior for any given application.
Figure 5a shows a typical Roofline plot. Before delving into the details of the figure, the
basics of the model are first described. The reader already familiar with Rooflines may skip
the next two paragraphs.

Briefly, there are two primary goals of the Roofline model. The first is to assess whether
or not a GPU kernel (or function) is bandwidth-limited or compute-limited, and the second
is to inform whether or not the theoretical limits of the hardware have been reached by
the kernel. The Roofline model illuminates both of these goals in a single plot through the
arithmetic intensity (x-axis of Figure 5) and throughput performance (y-axis). For a given GPU
kernel, arithmetic intensity is the ratio of floating point operations (FLOPs), as defined by
the kernel arithmetic, to the amount of data (in bytes) transferred to and from the global
memory source, as defined by the kernel inputs/outputs. On the other hand, throughput
performance is the ratio of kernel FLOPs to execution time in seconds. In summary,
arithmetic intensity has units FLOPs-per-byte and throughput performance has units of
FLOPs-per-second (typically, the performance is given in units of GigaFLOPs-per-second).

Theoretical peak performance of the GPU (the horizontal black line in Figure 5a) is
available only when kernels have sufficiently high arithmetic intensity; otherwise, the
kernels are bandwidth-limited. The cutoff point at which a kernel goes from bandwidth
to compute-limited is the Roofline elbow—for arithmetic intensities below the elbow, the
maximum achievable performance decreases at a linear rate defined by the hardware
(typically measured in Gigabytes-per-second). The effective GPU utilization for a kernel
can then be visualized directly by plotting the two attributes of the kernel (throughput
performance versus arithmetic intensity) and comparing with the theoretical device limits.
Ideally, all kernels should approach the throughput limits of the hardware regardless of
arithmetic intensity. Lastly, it should be noted that the Roofline model concerns rates
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and not absolute quantities (i.e., throughput performance and execution time are not
interchangeable). In other words, kernels that are compute-limited do not necessarily run
faster in physical time than those that are bandwidth-limited.

(a) Roofline Model for All Kernels

(b) DGEMM
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Figure 5. (a) Roofline model for mechanism B3 for all kernels encountered during the source term
computation. Each marker represents a unique kernel evaluated for the number of cells N indicated
by its color. (b) Roofline model for the DGEMM kernel. (c) Roofline model for the Troe falloff kernel.
In (b,c), the different colors represent different mechanisms (see Table 1) and the distribution of
points of the same color comes from the various N values.

Proceeding with the analysis, Figure 5a shows a Roofline plot for all GPU kernels
encountered during the source term evaluation using different N¢ values for a single
chemical mechanism (B3) for brevity, as global Roofline trends with respect to N¢ for
all mechanisms are similar. Each point represents a kernel (i.e., matrix multiplication
operation, Gibbs matrix computation, exponentiation, etc.), and the color of the point
in Figure 5a denotes the N¢ for which the kernel was evaluated. It is apparent that: (a)
most of the kernels are bandwidth-limited; and (b) the kernels approach near-theoretical
limits in all cases as N¢ reaches the saturation point. In general, increasing the value N¢
moves a kernel defined for a particular arithmetic intensity vertically on the Roofline plot,
eventually saturating the GPU and achieving theoretical efficiency. Thus, for a large-scale
application, one should allocate the MPI resources to accommodate a high enough N¢ per
GPU in order to ensure that node resources are utilized to their fullest extent.

Examples of Rooflines extracted for individual kernels are shown in Figure 5b,c. In
these figures, the points are colored by reaction mechanism instead of N¢ to assess direct
effects of mechanism complexity. The spread of points for a single mechanism (a single
color) represents the various N¢ values at which the kernel was computed.

Figure 5b shows the progression of the double-precision general matrix multiplication
(DGEMM) operation provided by the cuBLAS backend, which is the main driver for
the matrix-based formulation implemented in this work. Immediately apparent is an
increase in arithmetic intensity with Ny (i.e., the points are cleanly clustered by reaction
mechanism). The Class C mechanisms in particular allow for the DGEMM operation to
access peak performance for most N¢ values. The smaller mechanisms are near the tail-end
of the bandwidth-limited region, though they still achieve theoretical peaks for sufficiently

Figure 5c¢ shows analogous results for the Troe falloff kernel, which is one of the most
arithmetically intensive routines encountered during source term computation (the Troe
falloff kernel results of Figure 5c also represent the results for other similarly complex
kernels such as Lindemann/SRI falloffs, Pressure-log reactions, and Gibbs free energy
evaluations). Interestingly, the mechanism-based clusters seen for DGEMM are entirely
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absent here. As per the complexity of the kernel, all mechanisms lie in the compute-limited
region and reach near peak performance. The consequence of the complexity of the Troe
falloff kernel, however, lies in the high amount of variance in performance for a given
mechanism (spread in the y-axis) as compared to the simpler, more optimized DGEMM
routine. This is especially evident for mechanism C2: the complexity of the Falloff function
has effectively traded the horizontal spread at peak performance seen in DGEMM (desired
behavior) with vertical spread at near-peak performance (less desired). A primary cause for
this behavior is implied by reaction distributions of Figure 3. Since, for a given mechanism,
the DGEMM kernel is utilized on a higher proportion of the total number of reactions
than the falloff kernel (this is evidenced by the standard versus falloff percentages in the
reaction type distributions), the theoretical device limits are expected to be achieved for
a wider range of N¢ for the DGEMM kernel. Additional causes include both the lack of
GPU-optimality of the form of the analytic falloff functions itself, and the fact that the
falloff kernels must be implemented as custom CUDA routines; that is, the advantages of
using a highly optimized backend such as cuBLAS are simply less fruitful for a mechanism
containing more falloff (and other similarly complex) reactions or functions.

3.2. Speedup

The corresponding GPU speedup curves are shown in Figure 6 in both logarithmic
(left) and linear (right) scales. The CPU baseline from which the speedup is derived is
the C++ Cantera function getNetProductionRates evaluated with one MPI rank. The
speedup is intended to capture the tangible offloading effect for a single MPI rank (or
OpenMP thread) in the common case of a one-to-one correspondence between MPI process
and GPU. Although the Cantera CPU baseline does not present the fairest comparison
here (the arithmetic operations in Cantera are not vectorized in the same way as those
defined in Section 2.1), it is routinely used in numerical reacting flow simulations for
kinetics and thermodynamics routines. As such, using this baseline to derive the GPU
speedup provides valuable information on the practical impact of a CPU-to-GPU offload
for many existing applications that use Cantera or comparable libraries such as Chemkin.
Although the CPU reference values used to compute the speedup in Figure 6 come from
the Cantera functions, the matrix-based forms were also evaluated on the CPU to assess
the effect of the Cantera implementations on the perception of GPU speedup. It was found
that for the same mechanisms, the matrix-based formulations implemented on the CPU
provided roughly a factor of 2 speedup over the CPU-based Cantera functions for most
cell counts. In other words, the GPU speedup discussed below drops by roughly a factor
of 2 when comparing against the matrix-based formulation on the CPU instead of the
Cantera function, though the saturation trends remain the same. To reiterate, the speedups
themselves are secondary to the relative trends displayed between the individual reaction
mechanism curves.

As shown in Figure 6, the speedup increases linearly with cell number until the
saturated regime is reached, wherein the speedup stagnates at reasonably high values
across the board. This general trend is expected since the saturated regime is defined by a
GPU compute time that increases linearly with N¢ (Figure 4). The consequence is that the
maximum speedup is reached for lower values of N as mechanism complexity increases,
as per the location of the saturation point. The converged speedup values are high overall,
varying between 100 to 500 at their maximum. However, due to the dependence on the
CPU implementation, the mechanism trends with respect to speedup are not as intuitive
as those present in the absolute compute time curves of Figure 4. For instance, the pre-
saturated regime (e.g., Nc = 10) shows increasing speedup with mechanism complexity,
but this trend is absent in the saturated regime.

Instead, in the saturated regime, the behaviors can be split into two groups. The first
group concerns mechanism Classes A and B, which concentrate in the regions of 400-500 x
speedup. For these mechanisms the speedup trends are related directly to the reaction
mechanism distributions seen in Figure 3. In other words, for Classes A and B, similar
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distribution types converge to similar saturated speedups. For example, Mechanisms B1
and B3 converge near 500 and observe near-identical reaction distributions—the same is
true for Mechanisms A1l and B2, which converge near 400x. The implication is that the
GPU based speedup relies not only on the number of reactions, but also on reaction types
encountered in the mechanism. This is the central focus of Section 3.3.

The second group is tied to the larger mechanisms of Class C, where the aforemen-
tioned trends break down. Though still high, the saturated speedups in Figure 6 progres-
sively drop from C1 to C2. This drop relates directly to the connection between: (a) the
presence of the overbearing reaction matrix (Nc x Nr matrix) multiplications encountered
in Equation (2), which constitute a bottleneck for large mechanisms; and (b) the mechanism
sparsity as measured by the number of elements in the matrix v. The details of the interplay
between these two elements, which leads to a significant improvement in the Class C
speedups observed in Figure 6 by overcoming the mentioned bottlenecks, are postponed
to the end of this section (Section 3.4). The discussion hereafter continues in the context of
the speedups shown in Figure 6 as they stand.

GPU-derived Speedup (Log Scale) GPU-derived Speedup (Linear Scale)

Number of Cells, No Number of Cells, N

Figure 6. (Left) GPU-derived speedup in log-scale with respect to the Cantera-based CPU baseline for all mechanisms listed

in Table 1. (Right) Same as left but with linear-scale in the y-axis.

3.3. Cost of Reaction Types

The above sections described general speedup and performance trends for the GPU in
light of the matrix-oriented methodology of Section 2.1. As per the classifications presented
in Section 2.3, a more detailed investigation into the GPU cost of individual reaction types in
the pre-saturated and saturated regimes can better illuminate both the sources of speedup
behavior and the types of mechanisms that are more suited for GPU offloading.

To better isolate the GPU effects of individual routines and reaction types, the quantity
of interest here is defined as the cost per reaction. The cost per reaction is measured by
taking the compute time of a specific kernel (or routine composed of a set of kernels) and
normalizing by the size of the subset of total reactions on which the routine acts. For
example, in the case of reversible reactions, the computation of equilibrium rate constants
occur on the subset of total reactions of size N ,,,. To get a measure on the total time
per reaction taken during the computation of log(K¢), the corresponding routine time is
divided by Ng ,ev. This effectively provides an averaged measure on the cost impact for
individual reaction types or routines encountered in a given mechanism.

Figure 7 compares the cost per reaction for log(Ky) and log(K,) routines for the three
Mechanisms A2, B3, and C1. The log(Ky) routine consists of the following: Arrhenius-
based matrix multiplication (Equation (9), uses a DGEMM kernel), evaluation of third body
concentrations if present (DGEMM kernel), falloff rate constant evaluations if applicable
(custom kernels), and pressure-log rate constant evaluations if applicable (custom kernels).
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The log(K,) routine consists of the evaluation of Equation (9), which utilizes a first custom
kernel to fill the Gibbs matrix and a second DGEMM kernel to recover the rate constants.

In the pre-saturated regime, the cost per reaction of the log(Ky) routine consistently
outweighs that of log(K.). However, the behavior is different in the saturated regime as
mechanism complexity grows. An interesting feature is the consistent spike in cost per
reaction for log(K,) at the saturation points (see Figure 4) of the respective mechanisms.
For the smaller mechanisms, this jump leads to a convergence in the difference between
log(Ky) and log(Kc) costs in the saturated regime. For the large Mechanism C1, this jump
at the commencement of saturation near Nc = 107 brings the log(K_) cost per reaction to a
higher value than the log(Ky) cost (though not shown here, this effect is exacerbated for
mechanism C2). The implication is that more complex mechanisms (as determined by Ng
and Ng) incur a higher penalty for log(K,) evaluations in the saturated regime. As such,
in the case of very large mechanisms, a useful driver to design mechanisms that are more
“GPU-optimal” in the saturated regime is to minimize the presence of reversible reactions,
i.e., to steer the mechanism distribution towards something akin to that of C2 (see the top
row of Figure 3).
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Figure 7. Cost per reaction for forward rate constant (log(Ky)) and equilibrium constant (log(Kc)) routines as a function of
Nc for: Mechanism A2 (left plot); Mechanism B3 (middle); and Mechanism C1 (right).

Analogous costs for the three individual reaction types described in Section 2.3—
standard, pressure-log, and falloff—are shown for all mechanisms in Figure 8. Recall
that these reaction types modify the computation of the forward rate constant whenever
applicable (i.e., they are sub-components of the log(Ky) computation). The trends can
again be characterized by behaviors in the pre-saturated and saturated regimes. For all
reaction types, the cost per reaction decreases with respect to mechanism complexity, most
notably for the standard reactions. This is likely the cause of the inverse trend in speedup
(Figure 6) seen in the same pre-saturated regions. Further, when comparing across reaction
types, standard reactions (based on the cuBLAS DGEMM) are significantly cheaper than
pressure-log and falloff counterparts. This is expected due to the inherent differences in
arithmetic complexity and also to the optimized implementations of the cuBLAS backend.
In-line with the Roofline-derived findings of Section 3.1, mechanisms that attempt to
minimize the presence of non-standard reactions are likely to achieve a greater Nc-range
of cost efficiency.

A prominent feature in Figure 8 is the convergence, for a specific reaction type, of
all mechanism curves to the same cost per reaction in the saturated regime. This implies
that, for the reaction types considered during the evaluation of log(Ky), the cost advantage
due to mechanism complexity per reaction only applies in the pre-saturated regime. The
fact that the cost per reaction mechanism curves converge here in the saturated regime is
consistent with the compute time trends seen earlier in Figure 4—namely, that the overall
time-to-solution in the saturated regime increase with each mechanism by the same factor
of increase in Ng.
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Figure 8. Cost per reaction for all mechanisms for: standard reactions (left); pressure-log reactions (middle); and falloff

reactions (right). See Table 1 for mechanism information.

3.4. Improving Speedup for Large Mechanisms

A valid concern related to the speedup in Figure 6 is the decreasing trend for Class
C mechanisms. A procedure to remove this speedup deterioration for these larger mech-
anisms is provided here. Put briefly, the procedure relies on taking advantage of the
inherent sparsity that characterizes mechanisms with high Ng and Ny values. This concept
is first motivated by a computational budget analysis of the original routines leading to
the speedups shown in Figure 6. It is then shown that a simple replacement of several
problematic dense matrix multiplications with sparse counterparts very usefully recovers
the “lost” speedup for the Class C mechanisms.

The computational budget, measured as the proportion of total compute time spent
in the respective routines, is provided in Figure 9 for the same three mechanisms shown
in Figure 7. For each mechanism and N, the budget is split into four main components
encountered during the source term computation:

1. The preprocessing routine consists of kernels that: (a) recover the primitive species mass
fractions from conserved values; (b) normalize the species mass fractions in each cell
to sum to unity; and (c) obtain molar concentrations from the mass fractions.

2. The forward rate constant routine for log(Ky) computes Equation (6) along with any

other non-standard reaction types that modify the forward rate (three-body, pressure-

log, and falloff).

The equilibrium rate constant routine for log(Kc) is outlined in Equation (9).

4. The species net production rate routine for (), given by Equation (2)—the cost of evaluat-
ing the net reaction rates Q,; required to recover Q) (Equation (4))—is also included
for this component.

®

A revealing result is that, for all mechanisms, upon entering the saturated regime,
the budget is dominated by Component 4 (evaluation of the production rates). In fact, its
contribution in both pre-saturated and saturated regimes grows with larger mechanisms,
and the effect of saturation on the budget itself (i.e., the amount that the contribution of
Component 4 changes upon entering the saturated regime) is diminished when moving
from mechanism Class A to Class B and then to Class C.

Therefore, it can be concluded to good confidence that the main culprit for the dimin-
ishing speedup seen in large mechanisms in Figure 6 is derived from Component 4. This is
the direct cause of prohibitive dense cuBLAS DGEMM operations involving the exceedingly
large reaction matrices (matrices of size Nc x Ng) found in Equations (2) and (4). Such
operations involve matrix multiplications with the net, forward, and reverse stoichiometric
matrices v, v’ and v”.
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Figure 9. Computational budget (routine time normalized by total compute time) for the preprocessing routine

(Component 1, blue curve), forward rate constant routine (Component 2, green curve), equilibrium rate constant rou-

tine (Component 3, red curve), and net production rate routine (Component 4, yellow curve). The results are shown for the

same three mechanisms as in Figure 7.

As alluded to above, with the contribution of Component 4 on the budget in mind,
the diminishing speedups can be alleviated by recognizing that the common denominator
in the prohibitive routines—the stoichiometric matrices—are predominantly sparse for
large mechanisms due to the physical constraints of elementary reactions that serve as the
building blocks. This effect can be visualized through the inherent correlation between
mechanism sparsity, as measured by the ratio of the number of zero to total elements in the
net stoichiometric matrix v, and the N¢-averaged budget contribution for component 4 (the
sparsity of the net stoichiometric matrix is a conservative estimate for overall mechanism
sparsity, since the forward and reverse stoichiometric matrices individually are generally
more sparse). This correlation is shown in Figure 10 (left). The implication is that the
primary reason for the rise in Component 4 budget, and thus the main contributor to the
diminishing speedup for large mechanisms observed in Figure 6, is the sparsity. Figure 10
shows that the sparsity: (a) is quite significant (roughly 60%) even for small mechanisms;
and (b) converges to nearly 100% with increasing Ng.

The high sparsity for large mechanisms implies an abundance of wasted arithmetic
taking place in cuBLAS-based DGEMMs, which are dense operations, used for the large
reaction matrix mutiplications involving the stoichiometric matrices. Therefore, a natural
step is to consider different matrix multiplication algorithms that are tailored towards
sparse-dense matrix products for the larger mechanisms. This brings forward one of the
most useful qualities of the matrix-oriented formulations of Section 2.1—the mechanism
sparsity can be integrated into the source term computation without altering the underlying
matrix-based methodology. Instead, the backend used for the matrix multiplications
affected by sparsity (i.e., Equations (2) and (4)) can simply be changed from cuBLAS [24] to
cuSPARSE [36], a GPU-based linear algebra library optimized for sparse computations.

The speedup achieved when moving to a sparse (driven by cuSPARSE) from a
dense (driven by cuBLAS) matrix multiplication algorithm for Equation (2) is shown in
Figure 10 (right). (Sparse-dense matrix multiplications are actively researched in the field
of GPU computing, and there are many algorithms available. The one used here is based on
the double-precision block sparse row-format matrix-multiplication (DBSRMM).) Note that
the speedup shown in Figure 10 (right) compares two routines both executed on the GPU.
Without delving into the specifics, the ultimate goal when switching to sparsity-based
routines is that the savings in FLOPs should outweigh the new costs arising from algorith-
mic complexities and data retrieval. Based on these constraints, a general rule-of-thumb
is to only use sparse algorithms when the sparsity is roughly above 95%. This quality is
observed in Figure 10, which showcases significant matrix multiplication speedups for
Mechanisms C1 (2x) and C2 (4x) in the saturated regime. Note that, when computing
the sparse-to-dense speedup, the sparse compute times also include a necessary matrix
transpose operation due to the fact that the cuSPARSE algorithm supports sparse-dense
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and not dense-sparse matrix multiplications (i.e., Equation (2) is transposed in order to use
the cuSPARSE algorithm, and then the output is again transposed to conform to the data
structures used in the authors” API—all of this is taken into account when computing the
speedup in Figure 10).

1o Comparing Sparsity and Component 4 Budget Sparse Matrix Multiplication Speedup
—&— Sparsity = Al
100 —e— Average Component 4 Budget T g]z
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Figure 10. (Left) Mechanism sparsity and average component 4 budget (the budget corresponding to the evaluation of
Equations (2) and (4)) versus number of reactions Ny. (Right) Dense (cuBLAS) to sparse (cuSPARSE) matrix multiplication
speedup (dense compute times divided by sparse compute times) for evaluating Equation (2) shown for all mechanisms
with respect to N¢. See Table 1 for mechanism information.

The translation of the results in Figure 10 into overall GPU-to-CPU speedup analogous
to the original Figure 6—but instead using cuSPARSE as the backend for operations
involving stoichiometric matrices—is shown in Figure 11. The results show that taking
into account the mechanism sparsity alleviates the speedup deterioration seen before for
the larger mechanisms of Class C. More importantly, all mechanisms regardless of size
converge to similar speedup values in the saturated regime. Overall, it is encouraging
that the relatively simple cuSPARSE backend modification significantly improves the GPU
behavior for larger mechanisms. This warrants a more detailed analysis of the sparse
algorithms themselves in relation to the stoichiometric matrix sparsity structures, since
the distribution of non-zero values in the sparse matrix also affects the speedup. Such an
analysis is left for future work.

GPU-derived Speedup Using Sparsity
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Figure 11. Updated GPU-to-CPU speedup values when taking into account the mechanism sparsity
(analogous to Figure 6).

4. Conclusions

In this work, a GPU investigation for a matrix-based formulation of chemical kinetics is
presented. Since the target of the technique is isolated to the source term computation alone,
the methods presented here are intended to supplement other related GPU-optimized
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techniques, such as stiff time-integration methods, that rely on the source term evaluation
explicitly. Overall, the GPU performance for the species source term evaluations revealed
many informative trends with regards to the effect of cell number on device saturation and
speedup. Most importantly, by assessing the behavior of an ensemble of mechanisms with
varying complexity, it was shown that the matrix-based method enables highly efficient
GPU performance across the board, achieving near-peak performance in saturated regimes.

Of notable significance in the analysis was the classification of the different reaction
types encountered in the mechanisms. This classification facilitated a detailed GPU cost and
throughput analysis that revealed the impact of specific reaction types on the performance.
In other words, this characterization of chemical mechanisms based on the distribution of
reaction types presented in Section 2.3 provided a pathway for assessing: (a) how beneficial
the matrix representation is for a particular mechanism; and (b) how the prevalence of
specific reaction types can positively or negatively impact the GPU-derived speedup. The
main reason for introducing the reaction-type classification was to bring forward the idea
that, in the determination of GPU speedup, mechanism species and reaction numbers are
not the only factors; the complexity of the individual reactions themselves also plays an
important role. A common theme which came from this analysis was the tendency of the
GPU to favor simplicity above all else, which conforms to the single-instruction multiple-
thread nature of the hardware—the implication is that designing larger mechanisms with
more standard, irreversible reactions is more favorable in GPU settings.

A prominent feature of the matrix-based formulation is its ability to intrinsically
support sparse algorithms. In particular, it was found that the high amounts of sparsity
characterizing larger chemical mechanisms could be directly taken advantage of by chang-
ing the matrix multiplication backend from cuBLAS to cuSPARSE routines. This quality
brought forward an advantageous aspect of the matrix-oriented formulations of Section 2.1;
namely, the mechanism sparsity can be integrated into the source term computation with-
out altering the underlying matrix-based methodology. In summary, taking into account the
mechanism sparsity alleviated the speedup deterioration seen larger mechanism classes.

The results of this study open many pathways for future work. For example, the
performance-related findings discussed here can be used to directly translate, or even
reduce, existing mechanisms into more GPU optimal descriptions. Further, the findings
related to sparsity warrants a more detailed analysis of the sparse algorithms themselves
in relation to the stoichiometric matrix structures, since the distribution of non-zero values
in the sparse matrix also affects the speedup. Additionally, the opportunities presented by
neural network interpretations (as presented in Section 2.1 and Appendix A) are promising
routes by which even more computational gain can be extracted.
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Appendix A. Substitution with Approximate Artificial Neural Networks

In Section 2.1, the matrix based formulations of the kinetics routines are exact and
perform at high efficiency on GPUs as they stand. The ANN interpretations of these exact
formulations, however, illuminate pathways where additional computational efficiency
can be extracted by utilizing so-called “approximate ANNs"” as drop-in replacements for
the “exact ANN” architectures described in Figure 1. At the cost of perfect accuracy, such
replacements allow for direct control over computational cost through a customized ANN
architecture whose parameters are trained with data. The end goal is that the execution
time of the approximate ANN should be faster than the exact ANN counterparts (to clarify,
“exact ANN" here refers to the exact matrix-based formulations of Section 2.1).

Many pathways to this end are available. For the sake of demonstrating how this
technique can be applied, the replacement of the exact ANN for the logarithm of the
equilibrium rate constant (Figure 1c) with an approximate ANN counterpart is explored.
In other words, in this demonstration, the modeling goal of the approximate ANN is to
recover accurate representations of log(K.) and not the species production rates  directly.

Narrowing the approximate ANN scope to log(K,) brings forward two key advan-
tages. The first is that the equilibrium rate constants do not depend on the species concentra-
tions, but rather only on nonlinear functions of temperature. This means that the sampling
of an Ng-dimensional phase space to develop a training dataset—a huge bottleneck in
many existing ANN-based source term modeling techniques that becomes prohibitive for
large mechanisms—is not required in the training phase. The second advantage is that
known physical constraints to recover the source terms, such as the relationship between
concentrations and net reaction rate (Equation (4)), as well as Arrhenius forms for the for-
ward rate (Equation (6)), are preserved in the overall computation, ensuring high accuracy
and physical consistency. Additionally, the exact ANN architecture for log(K,) (shown in
Figure 1c) is complex enough to warrant a reduction based on an approximate ANN—there
is more than one layer in the exact form, which is not the case for the forward rate constant
architecture. This is crucial because the design of the approximate ANN must be driven by
reducing computational effort. In other words, the exact ANN form should serve as an
upper bound for the computational complexity (in terms of a cost metric such as FLOPs,
for example) of the approximate ANN.

In general, an ANN layer takes the following form:

Xl+l ZO'Z(XIWZ-‘r-Bl), 1=0,...,Np, (A1)

where X; is the layer input, X;. is the layer output, W, is the weight matrix, B; is the
bias vector, ¢ is an activation function, and N, is the total number of hidden layers. Note
that, unlike in Section 2.1, the parameters (weights/biases) are assumed unknown in this
setting and are found through a training procedure. As with the exact formulations, the
leading dimension (batch size) for these input and output matrices is N¢. For a given N,
the hidden layer dimension Ny (or number of neurons per hidden layer) is assumed to be
fixed for the sake of this walk-through, but this does not have to be the case in general.

The ANN input is X € RNc*Nin and the output is Xy, 11 € RNC*Nr = log(K¢). The
main task is to train the ANN such that log(K.) ~ log(K.). The only restrictions are
that the input features are functions of temperature and the output dimensionality is Ng
(assuming without loss of generality that all reactions in the mechanism are reversible).
To highlight key points, two examples of approximate ANN architectures are shown in
Figure Al. Architecture 1 uses the same input features as the exact ANN but allows for
variation Nj and Ny (referred to as the modified Gibbs neurons). Architecture 2 is similar
but only utilizes one input feature, namely log(T).

Nonlinearity is imposed in both architectures through the activation functions cj. In
Architecture 1, since several functions of temperature are already included in the input, a
simple rectified linear unit (relu) activation function can be used:

Vx € R, o5(x) = relu(x) = max(0, x). (A2)



Energies 2021, 14, 2710

22 of 28

On the other hand, since Architecture 2 utilizes only log(T) in the input layer, the
more expensive exponential linear unit (elu) activation can be used [37] to allow the model
to extract dependence on powers of T as needed during the training process:

X ifx>0
Vx e R, o =el = = A3
* /(%) = elu(x) {e" -1 ifx<O. (A3)

In the above scenario, it is reasonable to expect that the computational advantage
offered by the smaller input size of Architecture 2 is offset by the more expensive activation
function. In light of this, Architecture 2 can be modified to use the relu activation, although
this lessens the expressive power of the ANN. For example, with only log(T) as the input,
an ANN using Equation (A2) throughout cannot easily represent a function composed
of polynomials of T; its architecture must be modified to at least include T itself as an
additional input (akin to Architecture 1). Moreover, Architecture 2 can be modified to
include 1/T as an additional input, and Architecture 1 can be modified to remove the
higher order temperature terms (T2, T?, and T*). In the tests conducted by the authors,
such modifications were found not to significantly affect the end results—all variations
were sufficiently accurate when trained until convergence using a mean-squared error loss
function on log(K,).
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Figure A1. Illustrations of ANN representations for log(K¢): (Left) exact ANN (same as Figure 1c); (Middle) approximate
ANN, Architecture 1; and (Right) approximate ANN, Architecture 2. The number of modified Gibbs neurons changes
through Ny and N (Ng = 2 here for illustrative purposes).

The key takeaways are that the formulation of the approximate ANN for the equi-
librium constants involves reductions and re-castings of the exact form in a few major
aspects: (1) the re-interpretation of the exact Gibbs neurons (Figure Al, left) into the
modified Gibbs neurons (Figure A1, middle and right); (2) the fact that the approximate
ANN evaluation is not treated in distinct temperature partitions (in the exact setup of
Equation (9), the polynomial coefficients for a particular species, which are interpreted
as the weights, are temperature-dependent whereas the approximate ANN weights are
not); and (3) the customized form of the input layer and nonlinearity in the approximate
ANN. Such reductions and changes are necessary to motivate the approximate ANN from
a computational efficiency and simplicity aspect with respect to the exact form.

The above concepts were presented in the context of replacing the equilibrium rate
constant with an approximate ANN, but the same techniques can be applied for other
components such as the forward rate constant. For example, using an approximate ANN to
consolidate the standard, falloff, and pressure-log forward rate constant computations into
a single matrix multiplication operation could be a promising application of the technique.

Appendix B. Verification of GPU Implementation

As a simple verification for the GPU implementation, scatter plots for the source
terms as compared with the baseline CPU Cantera implementation (obtained from the
function call getNetProductionRates) are shown in Figure A2a,b for mechanisms B3 and
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C2, respectively; the results are analogous for all other mechanisms. The source terms were
computed by randomly sampling ensembles of species mass fractions, temperatures, and
pressures. Additionally, ignition delay time verification for mechanism B3, which contains
all the mechanism complexity considered in this work (i.e., the distribution, as shown in
Figure 3, contains reversible, irreversible, standard, falloff, and pressure-log reactions), is
shown in Figure A2c. Cantera and GPU-based mass fraction time series profiles obtained
from a mechanism B3 ignition simulation for several intermediary species are also provided

in Figure A2d,e.
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Figure A2. (a) Scatter plots comparing GPU (y-axis) and CPU-based Cantera (x-axis) species source term values for
mechanism B3. Dashed black line represents the exact solution. (b) Same as (a), but for mechanism C2. (c¢) Constant-volume
ignition delay times for mechanism B3 using the GPU formulation (squares) and Cantera (circles). For the initial condition,
an ethylene-air mixture was used at an equivalence ratio of unity with an initial pressure of 10 atm. (d) Intermediary
species profiles from a constant-volume ignition simulation (same conditions as specified in (c) with initial temperature of
1800 K) using the GPU implementation (dashed colors) and Cantera (solid black). (e) Same as (d), but in logarithmic scale
on the y-axis.

In all cases, the matrix-based GPU implementation of Section 2.1 and the CPU-based
Cantera results are indistinguishable. It should be noted that, since the equations are
programmed differently in terms of algorithmic implementations and the compilers vary,
some small expected truncation-related errors that are not apparent in the scatter plots do
appear; however, these errors are on the order of machine precision and do not propagate.

Appendix C. Performance Comparison with Non-Matrix Approaches

The results presented in Section 3 focus solely on the GPU performance of the matrix-
based formulations. The discussion below, on the other hand, provides comparisons
between the matrix-based approach and two baseline, more conventional approaches
that do not utilize the matrix formulations. The algorithmic details of these conventional
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methods are provided further below. Ultimately, through a direct comparison of evaluation
times, the primary goal is to isolate the gain in performance when moving from a more con-
ventional kinetics offloading approach to the matrix-based approach. The secondary goal is
to present clearly the GPU offloading algorithms, for both matrix-based and conventional
approaches, in terms of the organization of GPU kernels.

It should be noted that the definition of “conventional” is less obvious when dealing
with GPUs. This is because GPU offloading introduces the kernel launch aspect as an
additional degree of complexity in the algorithm design: one has to decide how many GPU
kernels to break the function evaluation into. In this vein, the so-called kernel “fissioning”
process must be established. Fissioning refers to the way in which a function evaluation
offloaded to a GPU can be broken down into a set of smaller function evaluations to expose
more parallelism. Essentially, for a given complex function with many internal stages such
as the source term evaluation considered in this work, the unfissioned approach casts the
function as a single very large GPU kernel with one principle vectorization direction (i.e.,
one kernel to replace the main loop over the number of cells, for example), whereas the
fissioned approach breaks the function down into a set of smaller GPU kernels to potentially
expose multiple vectorization directions and higher thread concurrency (i.e., a given kernel
in the fissioned approach may replace a sub-function comprised of a nested for loop that
iterates over both cells and species). As detailed below, the matrix-based algorithm profiled
in Section 3.1 by design adopts the fissioned approach.

Diagrams for the three GPU algorithms are provided in Figure A3. Figure A3a is the
conventional unfissioned algorithm, Figure A3b is the conventional fissioned algorithm,
and Figure A3c is the matrix-based fissioned algorithm. All three approaches utilize
the same inputs and produce the same output Q (see Section 2.1). The general inputs
are the thermodynamic data for each cell (mass fraction, temperature, and density) and
chemical mechanism information (stoichiometric matrices, reaction parameters, reaction
type indicators, polynomial coefficients, etc.). The key difference is that these inputs are
distributed over several kernel launches in the fissioned approach (Figure A3b,c), whereas,
in the unfissioned approach (Figure A3a), all inputs are fed into one kernel. Additional
relevant details for each approach are discussed below.

The algorithm in Figure A3a is labeled as “conventional” because it does not operate
in the logarithm space—it evaluates the source term using the standard equations. Further,
it is “unfissioned” because the source term evaluation is represented as a single large
kernel. More precisely, Figure A3a captures the effect of threading a direct source term
function evaluation over the number of cells, N¢, without taking advantage of the reaction
and species matrix data structures outlined in Section 2.2. Instead, on each function call,
each thread in this algorithm operates on a single cell and loops through every reaction to
accumulate the source term contribution for the set of species involved in that particular
reaction. As such, within the reaction loop over N, there are several species loops over
N (red bullets in Figure A3a) that represent this accumulation of species information
(reductions) by means of the stoichiometric matrices. Overall, Figure A3a is a useful
baseline because it resembles the impact of sending a CPU-type approach directly to the
GPU without any underlying algorithmic changes. Note that Figure A3a is demonstrative
and is not expected to be GPU-optimal, because: (1) the kernel launch overhead is high;
and (2) there are many distributed global memory access points and conditional statements
scattered throughout the kernel.

The algorithms in Figure A3b,c are fissioned representations of Figure A3a—the single
large kernel of Figure A3a has been effectively decomposed into a set of smaller kernels,
each playing an isolated role in the source term evaluation. The approach in Figure A3b is
the conventional analog to the matrix-based approach in Figure A3c: the multidimensional
threading advantages provided by the data structures in Section 2.2 are retained, with the
key difference being the matrix-based calculations (i.e., GEMMs) for the rate constants
and net production rate evaluations are not utilized. In summary, the advantages of the
matrix-based approach (Figure A3c) can be assessed by directly comparing its performance
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with the Figure A3b algorithm, and the advantages of the fissioning approach for this
particular problem can be assessed by comparing the algorithms in both Figure A3b,c with

that of Figure A3a.
(a) Conventional unfissioned algorithm (b) Conventional fissioned algorithm (c) Matrix-based fissioned algorithm
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Figure A3. (a) The conventional unfissioned algorithm. The gray box denotes the scope of the CUDA kernel. The notation
“1D grid over N¢” means the kernel is launched on a one-dimensional grid of thread blocks defined by the number of cells
Nc. The yellow box denotes the per-thread reaction loop. The steps marked in red denote locations where a loop over
the number of species N is required (arithmetic in a species loop is only performed for a species involved in the given
reaction). (b) The conventional fissioned algorithm to be read top-down. Each gray box denotes a single kernel launch.
For each kernel, the arrow indicates the dimensionality of the kernel launch (i.e., vectorization directions). (c) Same as (b),
but instead shows the matrix-based fissioned algorithm as profiled in Section 3.1 (the primary contribution of this work).
Black stars denote kernels that can be evaluated using cuBLAS and red stars denote kernels that allow for cuSPARSE calls if

desired (see Section 3.4).

Figure A4 shows the GPU source term evaluation times obtained from the respective
algorithms in Figure A3. Note that the matrix-based algorithm times in Figure A4c come
from the dense cuBLAS GEMM routines and are identical to those shown previously in

Figure 4.
(a) Conventional unfissioned algorithm (b) Conventional fissioned algorithm (c) Matrix-based fissioned algorithm
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Figure A4. GPU source term evaluation times for: (a) the conventional unfissioned algorithm; (b) the conventional fissioned
algorithm; and (c) the matrix-based fissioned algorithm.

It is apparent that the conventional unfissioned algorithm (Figure A4a) observes signif-
icantly altered saturation and compute trends when compared to the fissioned counterparts.
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Due to the fact each thread directly iterates over a reaction loop, the unfissioned algorithm
is characterized by roughly vertical shifts of the compute time curve in proportion to the
increase in Ny for the entire set of N¢, not just in the saturated regime. This ultimately
means that the unfissioned algorithm becomes prohibitively slow as the mechanism size
increases for all values of N¢. This is due not only to the increased arithmetic, but also
to the increase in inefficient global memory transactions performed by each thread as the
mechanism size increases. For example, for the class-C mechanisms, Figure A4a shows
a smaller relative increase in compute time with an increase in Nc—this implies that the
execution time is dominated by inefficient memory accesses and high kernel launch over-
head (i.e., non-arithmetic operations). The deviation of the saturation point trends in with
respect to the fissioned algorithms in Figure A4b,c likely stems from the same cause, but
requires further investigation.

The trends in Figure A4b,c are very similar—the characteristic approach to the satura-
tion point is retained by the conventional fissioned algorithm. The effect of transitioning
from the conventional fissioned approach to the matrix-based fissioned approach is better
visualized in Figure A5, which shows the speedup provided by the matrix formulation
(time in Figure A4b divided by time in Figure A4c). The speedup curves show how the
matrix-based approach gives increasingly higher performance boosts as both the mecha-
nism size and number of cells increases. Interestingly, for the smaller class-A mechanisms,
the conventional non-matrix algorithm is more efficient (speedup of 0.5, or roughly twice
as fast) in the pre-saturated regime. This likely comes from the additional expensive arith-
metic operations, such as element-wise exponentiations and logarithms, present in the
matrix-form that are avoided in the conventional evaluation—essentially, for cases where
the speedup is below unity, the cost of these additional complexities is not offset by the
efficiency of the linear algebra routines. As the GPU saturates, this effect is diminished,
and the performance boost provided by the matrix-based algorithm is recovered even for
small mechanisms. Note that the speedups shown in Figure A5 do not include the effect of
cuSPARSE acceleration for large mechanisms. This effect can be derived directly from the
analogous curves in Figure 10 (right)—essentially, the performance boost provided by the
matrix-based algorithm when taking sparsity into account provides roughly an additional
factor of 24 speedup for large mechanisms.

Speedup over conventional fissioned algorithm
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Figure A5. Speedup provided by the matrix-based fissioned algorithm over the conventional fis-
sioned counterpart (evaluation times in Figure A4b divided by times in Figure A4c).
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