
energies

Article

Short-Term Wind Power Forecasting at the Wind Farm Scale
Using Long-Range Doppler LiDAR

Mathieu Pichault 1,* , Claire Vincent 2 , Grant Skidmore 1 and Jason Monty 1

����������
�������

Citation: Pichault, M.; Vicent, C.;

Skidmore, G.; Monty, J. Short-Term

Wind Power Forecasting at the Wind

Farm Scale Using Long-Range

Doppler LiDAR. Energies 2021, 14,

2663. https://doi.org/10.3390/

en14092663

Academic Editor: Sergio Martínez

Received: 13 April 2021

Accepted: 26 April 2021

Published: 6 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, The University of Melbourne, Parkville 3010, Australia;
grant.skidmore@unimelb.edu.au (G.S.); montyjp@unimelb.edu.au (J.M.)

2 School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Parkville 3010,
Australia; claire.vincent@unimelb.edu.au

* Correspondence: mpichault@student.unimelb.edu.au

Abstract: It remains unclear to what extent remote sensing instruments can effectively improve the
accuracy of short-term wind power forecasts. This work seeks to address this issue by developing
and testing two novel forecasting methodologies, based on measurements from a state-of-the-art
long-range scanning Doppler LiDAR. Both approaches aim to predict the total power generated at
the wind farm scale with a five minute lead time and use successive low-elevation sector scans as
input. The first approach is physically based and adapts the solar short-term forecasting approach
referred to as “smart-persistence” to wind power forecasting. The second approaches the same
short-term forecasting problem using convolutional neural networks. The two methods were tested
over a 72 day assessment period at a large wind farm site in Victoria, Australia, and a novel adaptive
scanning strategy was implemented to retrieve high-resolution LiDAR measurements. Forecast
performances during ramp events and under various stability conditions are presented. Results
showed that both LiDAR-based forecasts outperformed the persistence and ARIMA benchmarks
in terms of mean absolute error and root-mean-squared error. This study is therefore a proof-of-
concept demonstrating the potential offered by remote sensing instruments for short-term wind
power forecasting applications.

Keywords: remote sensing; short-term forecast; wind power ramps

1. Introduction

Worldwide energy markets are undergoing a rapid shift towards low carbon tech-
nologies and renewable energy sources. Driven by the latest technology advancements
and the associated reduction in investment costs [1], wind power has recently gained
considerable traction with more than 60GW installed in 2019 alone, bringing the total
installed capacity worldwide to 651GW [2]. These increasingly large wind penetration
levels present new technical challenges due to the stochastic and intermittent nature of
wind, together with the inability of wind farms to provide reserve power [3,4]. Intra-hourly
(i.e., within an hour) variability in regions where a large number of wind turbines are
condensed over a small spatial extent is of particular concern, due to correlated fluctuations
amongst neighbouring groups of turbines or wind farms [5,6]. Rapid increases or decreases
of wind power generation over a short amount of time, also called “ramp events”, are
especially challenging to forecast and represent a threat to electric systems’ security [7].
Upward ramps often incur energy losses through curtailment, whereas downward ramps
can lead to significant power disruptions due to the lack of backup generation [8]. In ad-
dition, a growing number of energy markets are moving towards shorter dispatch and
pricing time frames in an effort to limit spot price fluctuations and ensure system reliability.
In countries such as Belgium, France, Germany [9] and Australia [10], markets operate on
a five minute basis, and forecasts at this time scale are required to reduce the uncertainty
and costs associated with ancillary services. Accurate and timely short-term wind power
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forecasts are therefore a key component to mitigate the aforementioned issues and increase
the control and integration of wind farms [11,12]. The terminology “short-term” used in
this study relates to prediction horizons up to one hour, which is sometimes also referred
to as “very short-term” or “ultra-short-term” in the literature.

In particular, ground-based optical remote sensing instruments measuring the in-
coming wind field such as LiDARs, sodars and radars have become increasingly popular
and are considered of great potential for wind power forecasting applications [12–14].
Theoretically, a priori knowledge of the incoming wind field provides valuable information
on the forthcoming conditions at the wind farm site.

This paper introduces and assesses the performance of two new methodologies to
predict wind power with a five minute lead time based on LiDAR data, herein referred to
as the “LiDAR-based forecasts”. The study also presents an innovative dynamic scanning
strategy designed to improve the sampling frequency of the incoming wind field. The paper
is organised as follows. Section 2 introduces the LiDAR technology and reviews the state-
of-the-art in remote sensing forecasting. The forecasting methodologies and evaluation
frameworks are established in Section 3. The models are tested using real data over a
72 day assessment period, and their forecasting skills are compared against persistence
and autoregressive integrated moving average (ARIMA) benchmarks in Section 4. Finally,
conclusions and a discussion of future work are presented in Section 5.

2. Background
2.1. Doppler LiDAR Working Principle

Pulsed-coherent Doppler LiDARs (referred to as “Doppler LiDAR” herein) probe the
flow through the atmosphere by means of pulsed light beams, with a measurement range
extending horizontally up to 30 km [15,16]. Scanning Doppler LiDARs allow the posi-
tioning of their beam in any direction within a hemisphere through a revolving scanning
head and mirrors system. The term “range gate” refers to the distance from the LiDAR
along the line-of-sight (LOS), and the “elevation angle” denotes the LOS incline relative to
the horizontal plane located at the height of the LiDAR head. The fundamental scanning
configuration most relevant to short-term forecasting is the plan position indicator (PPI)
scan, in which the laser beam sweeps over a circular conic surface of interest with a fixed
low elevation angle (Figure 1).

The working principle of Doppler LiDARs relies on detecting minor frequency shifts
in back-scattered light, induced by the movement of aerosol particles (i.e., soot, dust,
pollen, sand, sea salt) transported by the wind in the direction of the laser beam. Doppler
LiDARs hence only measure the radial (or “along-the-beam”) component of the wind, and
post-processing is required to retrieve the horizontal wind speed and direction across the
area of interest.
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Figure 1. Representation of a PPI scan. The figure also displays the wind analysis spherical system
(defined by the azimuth angle φ and the elevation angle θ) along with the Cartesian coordinate
system (defined by the coordinates x, y and z). The blue dots along the LiDAR beam illustrate the
range gates over which the radial velocities are averaged.

2.2. Wind Field Remote Sensing for Wind Power Forecasting

Several studies have presented methodologies for predicting wind speed or wind
power based on wind field remote sensing. Reference [17] forecast wind power solely
based on scanning Doppler LiDAR observations, using spatial correlations between mea-
surements at various upwind distances from the LiDAR as a propagation model. In [18],
two long-range LiDARs were placed in a row to forecast wind speeds over flat terrain
with look-ahead times between five and 45 min. Reference [19] used a dual-scanning
LiDAR system configuration (two LiDARs separated by 4 km scanning the same domain)
to predict wind speeds over the Danish North Sea five minutes in advance. Their proposed
methodology, which included forward propagation of wind vectors and local terrain correc-
tions, could outperform the persistence and ARIMA benchmark under stable and neutral
stability conditions. Reference [20] presented various model formulations for short-term
wind speed forecasting using a single LiDAR setup. Of particular interest is the use of
machine learning methods such as the convolutional long short-term memory (ConvLSTM)
neural network [21] to directly process raw radial velocity measurements from the LiDAR,
hence bypassing the need for wind field reconstruction and the associated computational
costs. The methodology was shown to yield an improvement over persistence for lead
times less than four minutes, but failed at the five minute horizon, possibly relating to the
limited measurement range of the scanning LiDAR used in the study (4 km).

Achieving high prediction skills is inherently more challenging within complex terrain
as opposed to flat sites (coastal/offshore). Indeed, rugged topography and local terrain
roughness often lead to complex wind flows, which are more difficult to model. In [22],
a long-range LiDAR was used to predict wind power ramps for a single reference turbine
under complex topography conditions. The resulting forecast could not outperform the
persistence benchmark for the lead times considered in the study (up to 20 min).

The forecasting approaches described above are deterministic by nature, i.e., they
provide a single estimate of the most likely conditions at the time of forecast. Probabilistic
forecasts, which also provide information about the uncertainty of the forecast, have gained
increasing traction due to the additional support they provide to decision-makers [23–25].
Recent studies presented a probabilistic framework to forecast offshore wind power gener-
ation using dual radar measurements [26,27]. Reference [26] focused on predicting power
generation five minutes ahead for a small number of turbines (first wind-facing row of
the wind farm) under a precise set of conditions (wind speed less than 16 ms−1 and wind
direction between 191 and 282◦). Building on this approach, Reference [27] extended
the methodology to the entire wind farm by including efficiency correction factors for
wake-affected turbines. The method could outperform the probabilistic persistence bench-
mark during specific ramp events, but was unsuccessful for longer assessment periods.
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Reference [28] applied a similar methodology to forecast the wind power generation of
seven free-flow offshore wind turbines, also with a five minute lead time. The proposed
forecast exceeded its persistence counterpart during unstable conditions, although it failed
to yield improvements under stable and neutral stability conditions. The author attributed
the larger errors observed under these conditions to uncertainties in extrapolating the wind
speed to hub height.

Uncertainties remain about the extent to which knowledge of the incoming wind
velocity field can effectively increase the accuracy of short-term wind power forecasts,
as techniques for the best use of remote sensing data are still under development. Most
of the effort to date has focused on predicting wind speeds or power generation from
a limited number of turbines under specific atmospheric conditions. The present study
builds on existing research by proposing and evaluating two new methodologies to predict
power generation at the wind farm scale.

3. Methodology
3.1. The Site and Data Collection

Data for this study originated from the Mount Mercer wind farm. The site is located in
central Victoria, Australia, and is comprised of 64 Senvion MM92 wind turbines (2.05 MW
rated power model) distributed over an area of 2650 ha. All data presented in this study were
collected with a second-scale resolution over a year-long measurement campaign, ranging
from 1 November 2019 to 1 November 2020. An exception to this are the data used for in situ
power curves, typically requiring a more extensive data set (see Section 3.3.2). The forecast
assessment period extended over 72 days between 20 August 2020 and 1 November 2020,
while data collected between 1 November 2019 and 19 August 2020 were used for model
formulation and training (see Section 3.3).

The topography in the vicinity of the Mount Mercer wind farm is of moderate com-
plexity and generally slopes towards the south, from 255 m above the Australian height
datum (m AHD) in the southwest corner to 370 m AHD in the northwest corner. The site’s
highest point is located on top of Mount Mercer (northwest corner of the site), at 427 m
AHD. The wind farm is bordered to the west and north by forests extending towards the
northwest. The region is also characterised by diverse wind regimes, with frequent shifts
from the north to the west or southeast and vice versa. The wind rose for the assessment
period is shown in Figure 2, indicating preferred wind directions from the north, west, and
southeast sectors.

Wind farm power data were collected from each turbine. Outliers and periods of
abnormal operation (i.e., external curtailment, negative generation and outages) were
removed from the data set. These corresponded to 4.50% of the initial assessment period.
A time series of the number of turbines available for generation was also retrieved. Wind
and temperature sensors were installed on two 80 m high met masts, denoted MM1 and
MM2, which are respectively located in the northwest and southeast corner of the site
(Figure 3). Wind speed data were collected from cup anemometers installed at 80 m AGL
on both met masts. Similarly, wind direction and temperature data were retrieved from
sensors installed on each met mast at 35 m and 76 m AGL (wind direction) and 2.2 m
and 76 m AGL (temperature). Additional sensors placed on both met masts at 76 m AGL
measured pressure and relative humidity. Missing data were interpolated using simple
linear interpolation. Topography data were sourced at a 90 m spatial resolution from the
Shuttle Radar Topography Mission (SRTM) database [29].
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Figure 2. Distribution of the ten minute average wind measured at the on-site met masts between 1
November 2019 and 1 November 2020.

1 km

MM2

MM1

LIDAR

Figure 3. Mount Mercer wind farm location plan. The location of the 64 turbines, 2 met masts, and
the LiDAR are designated by the turbine symbols and green and blue markers, respectively. Site
boundaries are shown in red. Topography lines (1m contour interval) are shown in black.
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A scanning-head pulsed-coherent Doppler LiDAR manufactured by Leosphere (Wind-
Cube 400S) is located at the top of Mount Mercer (latitude: −37.81961, longitude: 143.86365;
point of highest topography). The locations of the LiDAR, met masts and turbines, along
with the topography of the area are shown in Figure 3. The LiDAR is installed on a 2 m high
platform, with its lens sitting at approximately 430 m AHD. The LiDAR is set up so as to
perform continuous low-elevation PPI sector scans (i.e., sweeps over a segmented conical
area). An elevation angle of 0.6◦ was adopted so that the LiDAR beams were undisturbed
in most directions while being as close to the horizontal as possible. The rotation speed
of 3◦s−1 with an accumulation time of 1 s was chosen as a trade-off between spatial and
temporal resolution. The range gate length (LOS distance over which wind speeds are
averaged) and the display resolution (LOS distance between two measurements) were
150 m and 75 m, respectively. In this configuration, the LiDAR’s maximum range gate
under undisturbed conditions was 12.25 km, and each scan comprised 4770 observation
points (30 azimuth angles × 159 range gates). For illustrative purposes, Figure 4a shows
the sampling elevation of the LiDAR (i.e., distance between ground level and sampling
height) and its maximum range gate (12.25 km). The main LiDAR features and scanning
parameters are summarised in Table 1.

An adaptive scanning methodology was implemented in an effort to increase the
sampling frequency of the incoming wind field while maintaining sufficiently fine spatial
resolution. To do so, one full rotation was performed every 11 min and the average wind
direction was computed using the velocity azimuth display method applied to each range
gate (see Section 3.2.2). The starting and final azimuth angles were then automatically
updated to perform 80◦ sector scans centred on the calculated upstream wind direction.
The dynamic scanning strategy implemented in this study meant that the time required to
sample the incoming wind field was reduced from 123 s (full PPI scan) to 33 s. To the best
of the authors’ knowledge, the implementation of a dynamic scanning strategy constitutes
a major innovation of this study as such an application has not been reported in the current
body of literature. The LiDAR data set is publicly available [30].

Table 1. LiDAR scan specifications.

Parameter WindCube 400S

Beam wavelength 1.54 µm
Pulse repetition frequency 10 kHz

Accumulation time 1 s
Rotation speed 3◦s−1

Velocity range −30 to +30 ms−1

Elevation angle 0.6◦

Starting azimuth angle variable
Final azimuth angle variable
Display resolution 75 m
Range gate length 150 m
Number of gates 159
Maximum range 12,250 m

Wind field sampling period 33 s
Dynamic scanning adjustment period 11 min
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Figure 4. (a) LiDAR sampling altitude relative to the ground (the map accounts for topography and altitude changes
resulting from non-horizontal scanning). (b) Reconstructed wind field on 1 November 2019 at 22:38:40 (UTC+10). The red
circle in (a) represents the maximum range gate of the LiDAR. The black dots in (b) show the 64 turbine locations, and the
red lines delineate the wind farm area.

3.2. LiDAR Data Preprocessing
3.2.1. Filtering

First, spurious data within each scan were removed. The carrier-to-noise ratio (also
sometimes called the signal-to-noise-ratio) (CNR) is commonly used to filter out noisy data
associated with low signal quality [31–34]. In this study, all data associated with a CNR less
than −32 dB (low signal quality at far ranges; [35]) or higher than 0 dB (hard-target) were
rejected. Data flagged as erroneous by the manufacturer’s internal quality status were also
excluded. The maximum valid range was then calculated for each scan as the last range
containing at least 50% of valid data, and data from all farther range gates were discarded.

Given that scans associated with poor visibility conditions tend to produce erroneous
wind field estimation leading to large forecast errors [31,36], a quality flag was attributed
to each scan before further processing. A scan was considered as a suitable input for
the LiDAR forecasts if the maximum valid range exceeded 3 km and at least 80% of the
observed range was valid. All scans failing to meet these criteria were flagged as erroneous
and discarded. The 3 km threshold was established based on the minimum clear vision
distance necessary to probe wind conditions five minutes ahead assuming wind velocities
averaging 10 ms−1. Out of the 641,189 scans in the initial data set, 92,926 (14.49%) were
removed following the filtering process outlined above.

Finally, missing values remaining within the maximum valid range were interpolated
using a 2-dimensional (2D) nearest neighbour interpolant [37].

3.2.2. Wind Field Reconstruction

As LiDARs only measure radial velocities, a single point measurement would lead
to an infinite number of possible combinations of the Cartesian velocity components [38].
Three-dimensional reconstruction of the wind vectors therefore requires additional models
or hypotheses about the flow.

The wind field reconstruction method implemented in this study relies on the assump-
tion that wind direction is homogeneous within every range gate. First, the average wind
direction within each range gate ωrg was calculated using the velocity azimuth display
(VAD) technique [39]. Briefly stated, the radial velocity was expressed solely as a sinusoidal
function of the azimuth angle [40], and the mean horizontal wind speed was retrieved
from the best fit function on the radial velocities from each range gate circle. Second,
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the horizontal wind vectors VH were calculated for each grid point through projection of
the radial velocities onto ωrg:

VH,rg =
Vr,rg

cos(φ−ωrg)
(1)

in which φ is the azimuth angle following the conventions shown in Figure 1.
This wind field reconstruction method has the advantage of being robust and computa-

tionally inexpensive. On the other hand, the method will likely fail to characterise complex
flow features due to its underlying homogeneity assumption [41]. For illustrative purposes,
Figure 4b shows the reconstructed wind field based on a sector scan on 1 November 2019
at 22:38:40 (UTC+10). The figure displays conditions shortly before a large upward ramp
associated with a cold front and characterised by a power generation increase of 121 MW
(92 % rated power) in 33 min.

3.3. Forecast Algorithms
3.3.1. Benchmarks: Persistence and ARIMA

The LiDAR forecasts were compared against two standard time series models: per-
sistence and ARIMA. Both benchmarks were based on a one minute resolution power
generation time series. The persistence model (P) simply assumes that conditions at the
time of the forecast are the same as the current conditions.

Owing to the strong temporal auto-correlation of winds over short time scales [20],
the persistence method tends to produce more accurate predictions than most statistical
and physical models with a very short-term horizon (seconds to a few minutes; [42]) and
remains the industry standard for short-term forecast evaluation to this day [22].

The ARIMA (autoregressive integrated moving average) model [43] uses previous
observations (AR) and errors (MA) as predictors for future outcomes, as well as differ-
encing operations to ensure stationary transformations (I). Model order estimation was
performed automatically using the auto-ARIMA method [44]. The method first assesses
stationarity using the augmented Dickey–Fuller test, a standard statistical method used to
test non-stationarity in time series through unit root testing [45]. A grid search approach
was then implemented to find the optimal set of model parameters minimising the AIC
(Akaike information criterion; [46]). In short, the AIC is a model evaluation metric that
rewards goodness-of-fit, but penalises over-fitting. The optimum model found was an
ARIMA(4,0,2) [47]. The model coefficients were then fit to the training set (1 November
2019–19 August 2020) using the conditional sum of squares likelihood maximisation ap-
proach. Finally, out-of-sample predictions were produced using the test set (20 August
2020–01 November 2020), and the value corresponding to a forecast horizon of five minutes
was retained.

3.3.2. Smart Persistence

Smart persistence models were first introduced for solar power forecasting applica-
tions [48–50]. These models incorporate easily predictable solar power generation drivers
such as the clear-sky index into the persistence model to improve forecast accuracy. In this
study, we extended the concept to LiDAR-based wind power forecasting.

The core principle is to estimate the wind farm ramp rate, i.e., the rate of power gener-
ation change over a forecasting window, and to adjust the persistence model accordingly.
Mathematically, the smart persistence (SP) is defined as follows:

Pt+h|t = Pt + αβh (2)

where Pt+h|t is the future power generation for time t + h at time origin t (MW), α is a
damping parameter, β is the predicted ramp rate (MW min−1) and h is the forecast lead
time (min) (five minutes). The ramp rate is calculated as follows.

First, the wind fields from the five sector scans closest to the forecast time t and
associated with a “valid” quality flag are retrieved. Next, wind vectors are propagated
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five minutes forward in time using Taylor’s frozen turbulence hypothesis [51,52], which
assumes that turbulent structures (“eddies”) are transported at the rate of the mean wind
speed. In other words, wind vectors are propagated forward whilst preserving the same
wind speed and direction over time. Similar propagation models in which wind vectors
maintain the same wind speed and direction over time have been applied in numerous
remote sensing forecasting studies (e.g., [19,22,26,28,53] and [27]).

Propagated wind vectors are then spatially averaged before being converted to turbine-
equivalent power generation (TEPG) using an in situ power curve. The approach that
consists of converting forward-propagated wind fields to turbine generation using in situ
power curves was first implemented in a study by [26]. In this study, the power curve
was generated using ten minute averaged turbine generation and met mast wind speed
measurements collected from 06 April 2017 to 12 January 2019 and grouped into 0.5 ms−1

bins (Figure 5). A ten minute averaging window was required to ensure converged power
values. We then computed the wind farm generation by multiplying the TEPG by the
number of turbines actively generating. This accounts for times when not all turbines are
available for generation, e.g., when a portion of the wind farm is under maintenance.

The steps above were carried out for all five LiDAR scans, and the predicted ramp
rate β was determined as the slope of the best linear fit of the resulting power estimates
with respect to time. Finally, the optimum value for the damping parameter α (0.27) was
derived empirically, minimising the mean absolute error based on the training data set
(1 November 2019–19 August 2020).

Figure 5. In situ power curve. The ten minute average data points used to establish the power curve
are shown in green. The mean and standard deviation of the power binned in a 0.5 ms−1 wind speed
interval are shown in black. The dashed lines represent the manufacturer’s power curve.

3.3.3. Deep Convolutional Neural Network

The second approach tackles the same short-term forecasting challenge using con-
volutional neural networks (CNNs). Briefly stated, a neural network is a computational
model that uses back-propagation algorithms [54] to update its parameters (weights and
bias) so as to minimise a given cost function. The fundamental building blocks of a neural
network, also called “nodes”, connect an input variable to an output variable via a transfer
function (e.g., rectified linear activation function or “ReLU”; [55]). The overall tendency is
towards deeper and more intricate model architectures [56], hence the denomination “deep
convolutional neural networks” (DCNNs).
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The DCNN architecture developed as part of this study is shown in Figure 6. Just like
for the SP forecast, the DCNN model uses as inputs the wind fields from five valid sector
scans, the power generation (“Pt”) and the number of turbines available (“num_WT”),
with the output being the wind farm generation at time t + h (‘Pt+h|t’). The wind fields are
stacked together to form a 2D image of shape 30× 159× 5 (each wind field comprises wind
speed data from 30 azimuth angles and 159 range gates). Given that the wind sector being
probed by the LiDAR cannot be learned directly from the input images, wind direction
data (“wd”) is provided separately as numerical input. All data were then normalised
to a [0, 1] range to improve model convergence and training time [57]. The LiDAR scan
images were processed through seven two-dimensional convolution layers (Conv2D) with
3 × 3 convolution kernels. The number of filters within each layer ranged between 16
and 128. Such a model design was inspired by previous research suggesting deep model
architectures combined with small receptive fields of a 3 × 3 convolution window yield
superior outcomes [58]. To reduce the number of trainable parameters and the risk of
over-fitting, the first two layers of the CNN were down-sampled using a 2DMaxPooling
layer [59] with a 2 × 2 kernel. A second input channel processed the remaining numerical
data through a standard multi-layer perceptron (MLP). Finally, the two model branches
were combined and connected to the output via a regression node with linear activation.
The resulting DCNN comprised 669,577 trainable parameters.

The data set was split into training, validation and test segments following recommen-
dations in [59]: 60% was used for model training (1 November 2019–07 June 2020), 20% for
validation (08 June 2020–19 August 2020) and the remaining 20% for testing (20 August
2020–01 November 2020). The division into the training, validation and test set was done
chronologically because wind field properties are strongly auto-correlated over short time
scales and randomising results in over-fitting. The DCNN forecast was implemented
through the Keras framework [59] using Tensorflow [60] as the backend engine. The model
was trained with an HPC-Cloud Hybrid System [61] utilising a single graphics processing
unit (GPU) core with 64 GB memory. Different optimizers were tested for the iterative
update of the network’s weights based on the training data set, including RMSprop [62],
stochastic gradient descent [63], Adam [64] and Nadam [65]. The Adam algorithm with a
learning rate of 1e-5 and using the mean absolute error for loss function was empirically
chosen. The model was trained over 200 epochs with a batch size of 64. Scaled forecasts
were obtained by processing the inputs from the test data set using the model weights
associated with the lowest validation loss. The output was finally converted back to power
through inverse feature scaling.
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Figure 6. Architecture of the DCNN. The number in brackets after the fully-connected (FC), Conv2D
and dropout layer refers to the hidden layer node number, the convolution filter number and the
dropout rate, respectively.

3.4. Model Evaluation

Figure 7 shows in green the distribution of valid forecast times throughout the assess-
ment period (20 August 2020–01 November 2020). These account for 84.19% of the series in
terms of temporal coverage. Periods discarded from the assessment period included (1)
times when less than five valid sector scans could be retrieved over a five minute window
(11.31%) and (2) periods of abnormal wind farm operation (4.50%).

Figure 7. Distribution of valid forecast times throughout the assessment period (green lines; 84.19%).
The black lines depict periods when less than five valid LiDAR scans could be retrieved within five
minutes before forecast (11.31%). The red lines represent periods of abnormal wind farm operation
(outages and negative or curtailed generation; 4.50%).

As discussed in Section 3.3.1, the novel LiDAR-based forecasts (SP and DCNN) were
assessed against P and ARIMA to determine in which proportion they could improve
over these techniques. All forecasts were computed at one minute resolution, and the gain
relative to the benchmarks was quantified as follows:

%Impbench,ε =
εbench − εLF

εbench
× 100 (3)

where εLF and εbench are the errors from the LiDAR-based forecasts and the benchmarks,
respectively. There is currently no consensus on which error metric is superior when it
comes to forecast evaluation. In this study, the forecasts were assessed using the two most
frequently used error metrics, namely the mean absolute error (MAE) and the root-mean-
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squared error (RMSE). The main advantage of the MAE is as an intuitive characterisation
of the average forecast error [66]. In contrast, the RMSE tends to give higher weight to
the larger errors and is especially valuable when significant errors are highly undesirable.
Another model evaluation metric used in this study is the daily outperformance percentage
(%DO), defined as the percentage of days recording improvement over the benchmark
within the assessment period.

We also assessed the performance of the forecasts under various atmospheric stability
regimes. In order to estimate stability conditions at the site, the Monin–Obukhov length
(L) was calculated from the Richardson number. Since only wind speed measurements at
one height were available throughout the reporting period, we calculated the surface-layer
Richardson number (RIs) as follows [67]:

RIs =
g(∆θ̄v/∆zθ)

θ̄v(Ū/∆zu)
2 (4)

in which g is the gravitational constant, θ̄v is the virtual potential temperature, Ū is the
wind speed measured at 80m AGL, ∆zθ = 75.8 m and ∆zu = 80 m. We then related RIs to L
using [68]:

L =

{
zm(1−5RIs)

10RIs
if 0 ≤ RIs < 0.2

zm
10RIs

if RIs < 0
(5)

in which zm is the geometric mean of the heights used for calculating RIs. L was calculated
every ten minutes using wind speed and temperature measurements averaged over a ten
minute moving window. Atmospheric stability conditions at the site were determined
using Monin–Obukhov lengths divided into 3 classes: conditions at the site were considered
stable if 0 m < L < 200 m, unstable if −200 m < L < 0 m and near-neutral in all other
cases [69].

We further evaluated the performance of the forecasts independently during wind
power ramps, i.e., when large forecast errors were likely to occur. The ramp identification
approach followed that of a previous study at the site focusing on ramp characterisation
[70], where ramps were identified as the 1% strongest variations of the wind power time se-
ries based on continuous wavelet analysis. Further details about the ramp characterisation
can be found in [70]. We used three binary ramp detection statistics, namely the forecast
accuracy (FA), ramp capture (RC) and critical success index (CSI), defined as follows [7]:

CSI =
TF

TF+FF+MR
(6)

FA =
TF

TF+FF
(7)

RC =
TF

TF+MR
(8)

in which TF (true forecast) refers to the correct identification of a ramp event (prediction = 1,
truth = 1), FF (false forecast) is the number of false positives (prediction = 1, truth = 0)
and MR (missed ramp) is the number of ground truth ramp events not detected by the
forecast (prediction = 0, truth = 1). We further examined the ramp detection skill using the
amplitude error εa, duration error εd and timing error εt defined by:

εa = ∆Ppred − ∆Ptruth (9)

εd = ∆Tpred − ∆Ttruth (10)

εt = tpred − ttruth (11)

in which ∆P is the ramp amplitude, ∆T is the ramp duration (rise time) and t is the ramp
time at the centre of the ramp.
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4. Results and Discussion

The distribution of five minute power changes throughout the assessment period is
displayed in Figure 8. The histogram provides valuable insights on the degree of volatility
expected in the forecasts. For example, it is shown that |∆P5min| < 1 MW corresponds to
42% of the time series in terms of temporal coverage. The relatively narrow distribution
observed in Figure 8 also supports the use of P as a benchmark in this study.

Figure 8. Frequency distribution of five minute power changes at the Mount Mercer wind farm
during the assessment period (20 August 2020–01 November 2020). The bin width is 1 MW.

The key results for all forecasts (P, ARIMA, SP and DCNN) are presented in Table 2. It is
shown that the MAE and RMSE of the LiDAR-based forecasts were lower compared to their
benchmarks. The DCNN model exhibited superior accuracy for all error metrics presented
in Table 2, with notably 90% of the days reporting improvement over persistence in terms
of RMSE. ARIMA and SP showed a similar %DOP according to the RMSE, and ARIMA
outperformed SP according to the MAE.

Table 2. Key forecast errors and daily outperformance percentages over P (%DOP) and ARIMA
(%DOARIMA).

Metric P ARIMA SP DCNN

Err (MW) 2.87 2.79 2.71 2.59
MAE %DOP - 84.93 79.45 87.67

%DOARIMA 15.07 - 67.12 71.23

Err (MW) 4.75 4.60 4.48 4.26
RMSE %DOP - 80.82 80.82 90.41

%DOARIMA 19.18 - 65.75 75.34

To better understand the features driving LiDAR-based forecast accuracy, Table 3
presents the gains relative to the benchmarks broken down into wind sectors, stability
conditions and periods (all/ramp/no-ramp). %ImpP and %ImpARIMA were positive for all
presented categories, demonstrating the effectiveness of the LiDAR-based models. We also
observed that the DCNN model always outperformed SP except for two cases shown in
bold in Table 3.
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Table 3. Improvement over persistence (%ImpP) and ARIMA (%ImpARIMA) expressed in terms of
the MAE and RMSE. Forecasts performances are broken down by wind sector, atmospheric stability
condition and period. Instances where the performance of DCNN < SP are shown in bold.

%ImpP, MAE %ImpP, RMSE %ImpARIMA, MAE %ImpARIMA, RMSE
SP DCNN SP DCNN SP DCNN SP DCNN

Period
All 5.74 9.74 5.82 10.37 3.12 7.22 2.61 7.31

Ramp 12.02 18.59 9.21 14.07 4.00 11.17 2.57 7.79
No-ramp 4.93 8.58 4.62 9.06 3.01 6.74 2.62 7.16

Wind
Sector

North 3.36 4.92 3.87 5.73 2.00 3.58 1.41 3.31
East 5.28 4.92 5.88 6.09 2.09 1.72 3.08 3.30

South 5.40 11.30 6.33 13.50 1.80 7.93 2.04 9.54
West 7.89 14.73 6.96 13.55 4.69 11.77 3.42 10.26

Stability
Condition

Stable 5.36 8.03 4.63 7.57 2.33 5.09 1.27 4.32
Unstable 5.46 10.68 5.19 11.44 1.72 7.15 1.24 7.75
Neutral 7.10 13.04 9.14 15.83 6.74 12.71 6.89 13.74

Results in Table 3 suggest improved performances of the LiDAR-based forecasts under
westerly and southerly wind regimes. Figure 9 shows the complex relationship between
daily %ImpP and wind direction in greater detail. We hypothesised that the observed
variability was due to a combination of three factors. First, differences in LiDAR sampling
elevation influenced the LiDAR-forecast performance. Figure 4a indicates the sampling
height of the flow field was approximately 100 m AGL for north- and east-facing scans,
but could reach up to 400 m AGL for southward scans. Secondly, the forests and the hilly
topography to the north were likely to induce complex surface layer flows that might
not be adequately captured by the LiDAR-based models. Thirdly, easterly winds were
characterised by little variability compared to other wind sectors. Only two out of the
96 identified-ramps were associated with easterly winds, whereas 43 originated from
the west sector. As persistence inherently performs well over stationary wind regimes,
lower %ImpP with easterlies was expected. Note the prevalence of westerly ramps was
associated with mesoscale and synoptic-scale frontal systems characteristic of southeast
Australia [70]. The considerations above underline the potentially critical role of terrain
roughness, topography and synoptic-scale meteorology, adding another layer of complexity
to short-term forecasting.

Table 3 also indicates that the LiDAR-based forecast skill was generally lower under
stable atmospheric conditions than under unstable and neutral conditions. Much like for
easterly winds, we attributed this behaviour to differences in power variability. Indeed,
the standard deviation of power generation under stable, neutral and unstable conditions
was 38 MW, 40 MW and 45 MW, respectively. Therefore, the lower %ImpP under stable
conditions could be explained by a reduced variability benefiting the P forecast. We also
generally observed lower performance improvements under unstable conditions compared
to neutral conditions. A possible explanation for this is that changes occurring ahead of the
wind farm are less likely to be transmitted downwind under unstable conditions due to the
erratic nature of turbulent eddies [71]. Again, we wish to point out the interpretations above
are only speculative, and further investigations are required to verify these postulates.
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Figure 9. Daily MAE (top) and RMSE (bottom) improvement over persistence as a function of the
wind direction for the SP and DCNN models. The blue dots and red crosses represent days where
the forecasts outperform the persistence benchmark and vice versa. The wind direction is measured
clockwise from True North.

A total of 96 ramps were identified throughout the assessment period, amongst which
43 were downward ramps. The ramp amplitudes (maximum power change) and rise times
varied between 21% and 88% of the rated capacity and 5 to 56 min, respectively, as seen
in Figure 10. Results in Table 3 indicate the performance of the LiDAR-based forecasts
was significantly higher during ramp conditions, with 18.59% %ImpP, MAE reported for
the DCNN model. This behaviour resulted from both an increased ability of the models
to predict ramps combined with a reduced performance inherent to P during variable
conditions. To further investigate the effect of ramps on forecast performances, Table 4
presents a comprehensive list of ramp-specific statistics. By definition, P will detect the
exact same ramps as the ground truth with a lag equal to the forecast horizon. Such a
behaviour is reflected in Table 4, where P reports a five minute timing error, near-perfect
binary ramp detection metrics and near-zero amplitude and duration errors. Note the
deviations from the theoretical values were due to falsely-identified ramps (FF) resulting
from communication outages. Despite being associated with a lower MAE and RMSE,
the LiDAR-based forecasts exhibited worse performance relative to their benchmarks
in terms of FA, RC, CSI, εa, εt and εd. This illustrates the inability of the models to
accurately predict changes in the sign of the rate of power change (“turning points”). That
is, the LiDAR-based forecasts were limited by their tendency to under- and over-shoot at
turning points, albeit being of superior overall accuracy during ramps.
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Figure 10. Ramp rise time (∆T) versus ramp amplitude (∆P) for the 96 ramps identified throughout
the assessment period. The ramp amplitude is expressed as a percentage of rated capacity (131.2 MW).
The black circles and green crosses designate upward and downward ramps, respectively.

Table 4. Ramp detection and forecasting statistics for the four methods, including the MAE, RMSE,
forecast accuracy (FA), ramp capture (RC), critical success index (CSI), as well as average amplitude
(εa), timing (εt) and duration error (εd).

MAE RMSE FA RC CSI εa εt εd
(MW) (MW) (%) (%) (%) (MW) (min) (min)

P 9.91 13.41 97.73 100 97.73 0.18 5.05 0.16
ARIMA 9.08 12.50 95.56 100 95.56 2.73 4.82 1.96

SP 8.72 12.18 89.66 90.70 82.11 3.30 5.47 3.52
CNN 8.06 11.53 86.05 86.05 75.51 4.89 5.73 4.23

Finally, we assessed the forecast residuals. Figure 11 shows the box-plot distributions
of the forecast errors (observations minus predictions) for the four methods, where the
edge of the boxes indicates the 25th and 75th percentiles and the whiskers extend from the
fifth to the 95th percentiles. P exhibits the widest distribution, followed by ARIMA and SP.
In line with previous analyses, the DCNN model displayed the smallest margins, with a
[5th, 95th]percentile range of [−6.31 MW, 6.11 MW]. The near-zero (<0.1 MW) average
reported for all methods suggested none of the models presented suffered from significant
over- or under-estimation bias.

The normality of the LiDAR-based forecasts’ residuals was further assessed through
Q-Q (quantile-quantile) plot analysis. Figure 12 shows the relationship between the distri-
bution of the residuals (sample quantiles) and a normal distribution (theoretical quantiles)
for the SP and DCNN forecasts. The graph demonstrates the errors from both forecasts
were following a generally normal, light-tailed, distribution. The analysis above suggested
that the model errors were normal and uncorrelated, which is a good indication of the
effectiveness of the proposed approaches.
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Figure 11. Box-plot histograms of the forecast residuals. The boxes show the median, 25th and 75th
percentile. The whiskers indicate the fifth and 95th percentiles. The red crosses indicate the mean of
the distribution.

Figure 12. Normal Q–Q (quantile-quantile) plot of the forecasts residuals for SP and DCNN.

5. Conclusions

Intermittent power generation sources such as solar and wind present technical
challenges associated with their inability to contribute to electric system security (i.e.,
providing frequency control, dispatchability and inertial response). Accurate wind power
forecasts could help overcome this issue by making the wind farm a more controllable
resource. This work introduced two novel methodologies using LiDAR remote sensing to
predict power generation at the wind farm scale with a lead time of five minutes. The first
builds upon the so-called “smart persistence” approach and uses multiple near-horizontal
sector scans to retrieve the wind farm ramp rate, i.e., the expected rate of power generation
change over the forecast window. The second addresses the same forecasting problem
through the development and training of a deep convolutional neural network. The two
models presented were shown to outperform the persistence and ARIMA benchmarks in
terms of the MAE and RMSE. The effectiveness of the proposed methods was particularly
evident during ramp events, during which a 19% MAE improvement over the persistence
benchmark was notably reported.

The study endeavoured to objectively assess the performance of LiDAR-based fore-
casts throughout an extended time period and is one of the first studies to predict onshore
power generation at the wind farm scale using remote sensing. This approach contrasts
with previous studies, which generally focused on wind power from a limited number of
turbines under ideal conditions. This work also implemented a dynamic scanning strategy
to acquire high-resolution upfield wind field measurements. The methods presented in this
paper could be applied to different wind farms with a similar setup, provided a sufficient
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amount of data is available for model training. In particular, the LiDAR-based forecasts are
expected to perform at least equally well at offshore wind farm locations, where the effects
of topography are less significant.

While this study presented a compelling argument for integrating remote sensing
measurements into short-term wind power forecasts, some limitations need to be consid-
ered. A significant limitation is the varying measurement range of the LiDAR depending
on atmospheric conditions. In the present research, scans associated with poor visibility
accounted for up to 11.31% of the LiDAR data set. During this time, the LiDAR was
essentially “blind”, and fallback mechanisms must be implemented. In addition, the Taylor
frozen turbulence hypothesis used for the SP forecast may not accurately reflect the com-
plexity of atmospheric processes within a semi-complex topography. Such a model could
be improved using computational fluid dynamics modelling. Further improvements of the
method could also come from incorporating data from the upstream edge of the farm in
the models. Finally, the present study only focused on five minute-ahead predictions, and
future studies should also target other lead times.

The innovative nature of remote sensing forecasting can be viewed as both an oppor-
tunity and a challenge. The opportunity is that the full potential of remote sensing for
minute-scale forecasting is yet to be discovered. As a result, more efforts should be directed
towards exploring various model formulations to identify the best performing approaches.

Author Contributions: All authors contributed to the design and implementation of the research
and the analysis of the results. M.P. wrote the manuscript with input from C.V., G.S. and J.M. All
authors read and agreed to the published version of the manuscript.

Funding: This research was funded by the Australian Renewable Energy Agency (ARENA) Grant
Number 2018/ARP16. The APC was funded by The Department of Mechanical Engineering at The
University of Melbourne.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The LiDAR data set was published in [30]. Remaining wind farm data
are confidential and therefore not publicly available.

Acknowledgments: This study was partly funded by the Australian Renewable Energy Agency
(ARENA) in the context of the Market Participant 5-min forecast (MP5F) initiative undertaken by
the Australian Renewable Energy Agency (ARENA) and the Australian Energy Market Operator
(AEMO). We would like to thank Meridian Energy Australia for providing the data presented in
this study. We also thank Michael Brear (Melbourne Energy Institute) and James Bailey (Melbourne
School of Engineering) for the useful discussions and support for this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. EIA. Annual Energy Outlook 2019 with Projections to 2050; Technical Report; U.S. Department of Energy: Washington, DC, USA,

2019.
2. GWEC. Global Wind Report 2019, Annual Market Update; Technical Report, GWEC: Brussels, Belgium, 2020.
3. Kariniotakis, G. Renewable Energy Forecasting: From Models to Applications; Woodhead Publishing: Cambridge, UK, 2017.
4. Wu, Z.; Gao, W.; Gao, T.; Yan, W.; Zhang, H.; Yan, S.; Wang, X. State-of-the-Art Review on Frequency Response of Wind Power

Plants in Power Systems. J. Mod. Power Syst. Clean Energy 2018, 6, 1–16. [CrossRef]
5. Vincent, C.L.; Trombe, P.J. Forecasting Intrahourly Variability of Wind Generation. In Renewable Energy Forecasting; Kariniotakis,

G., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2017; pp. 219–233. [CrossRef]
6. Naemi, M.; Brear, M.J. A Hierarchical, Physical and Data-Driven Approach to Wind Farm Modelling. Renew. Energy 2020,

162, 1195–1207. [CrossRef]
7. Gallego, C.; Cuerva-Tejero, A.; Lopez-Garcia, O. A Review on the Recent History of Wind Power Ramp Forecasting. Renew.

Sustain. Energy Rev. 2015, 52, 1148–1157. [CrossRef]
8. Tayal, D. Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning.

Renew. Sustain. Energy Rev. 2017, 80, 1537–1543. [CrossRef]

http://doi.org/10.1007/s40565-017-0315-y
http://dx.doi.org/10.1016/B978-0-08-100504-0.00008-1
http://dx.doi.org/10.1016/j.renene.2020.07.114
http://dx.doi.org/10.1016/j.rser.2015.07.154
http://dx.doi.org/10.1016/j.rser.2017.07.040


Energies 2021, 14, 2663 19 of 21

9. EPEXSPOT. Basics of the Power Market, Intra-Day Lead Times. 2020. Available online: https://www.epexspot.com/en/
basicspowermarket (accessed on 13 May 2020).

10. AEMC. Five Minute Settlement, Final Determination; Rule Determination ERC0201; Australian Energy Market Comission: Sydney,
Australia, 2017.

11. Tascikaraoglu, A.; Uzunoglu, M. A Review of Combined Approaches for Prediction of Short-Term Wind Speed and Power. Renew.
Sustain. Energy Rev. 2014, 34, 243–254. [CrossRef]
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