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Abstract: Zinc–air batteries feature high energy density, but they usually suffer from their short
storage life after they start working, restricting their commercial applications. In the past, scholars did
not reach an agreement on the influencing factors of the performance degradation of zinc–air batteries
when exposed to air. Here, a series of comparative experiments were conducted to confirm the
changes of the battery during storage after being exposed to air. The morphology and composition of
the components of the battery were characterized by scanning electron microscopy (SEM) and X-ray
diffraction analyses. SEM images revealed that with the increase of storage days, the corrosion of the
zinc anode gradually deepens, but the surface morphology of the air cathode does not change much.
The electrolyte of the batteries stored for different periods was examined through inductively coupled
plasma spectroscopy and titration. After 20 days of storage, the concentration of CO3

2− reached
2.694 mol L−1, which indicates that more than 80% of the OH− in the electrolyte was consumed.
The results show that after being exposed to air, the carbonation of the electrolyte is the main cause
of the battery capacity decay.

Keywords: zinc–air batteries; storage life; deterioration; corrosion; carbonation

1. Introduction

With the development of society and the economy, humans’ demand for energy has
been growing rapidly [1–6]. Therefore, it is very important to develop clean, efficient and
environmentally friendly energy storage devices. In recent years, zinc–air batteries (ZABs)
have aroused widespread interest [7]. Due to their unique semi-open structure, zinc–air
batteries have a very high theoretical energy density (~1086 Wh kg−1), which is about
threefold higher than that of lithium-ion batteries [8–11]. Moreover, compared with other
metal–air batteries, zinc–air batteries have the advantages of low cost, high safety and low
pollution, so it is one of the most promising energy storage devices [12,13].

To promote the commercialization of zinc–air batteries, many research studies have
been conducted to improve the energy efficiency and cycle life of zinc–air batteries. How-
ever, only a few works focus on the storage life of the zinc–air battery when exposed to
air, which is also important for the commercialization of zinc–air batteries. For example,
after being exposed to air for 15 days, a flexible zinc–air battery based on the gel KOH-PVA
(poly(vinyl alcohol)) electrolyte was found to decrease by more than 90% of its cycling life,
which made it unsuitable for the subsequent operation [14]. For the entire future use of
commercial secondary zinc–air batteries (e.g., applied in large-scale grid energy storage
systems or small electronic devices), it is not always possible to close the air holes to extend
its shelf life. Therefore, identifying how to inhibit the self-discharge reaction and extend
the storage life of the battery when it starts working is one of the major challenges for the
commercialization of zinc–air batteries.
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Scholars have put forward various opinions on the causes that lead to the performance
degradation of zinc–air batteries. Some scholars believe that zinc corrosion and H2 evolu-
tion can affect battery life [15–17]. Henninot et al. [18] stated that gassing may occur before
use of the battery, i.e., during its shelf life. This typically occurs after partial discharge.
Dongmo et al. [19] analyzed the zinc–oxygen battery during its operation. By means of
DEMS, they observed that the ion–current signal of hydrogen is higher during charge than
during discharge. Hydrogen is mainly produced by harmful electrochemical reactions at
the anode. Li et al. [20] found that the corrosion and dendrite growth of the zinc anode
played a major role in battery failure. By replacing the components of the failed battery,
they found that the battery using a disassembled Zn anode from the failed battery showed
the shortest cycle life. Moreover, the air cathode is another important factor that affects the
performance of a zinc–air battery [21]. Min et al. [22] stated that when the cell is recharged
at high potentials, carbon corrosion will cause the degradation of the electrode. By contrast,
other scholars believe that the effect of CO2 is the most important factor affecting the
storage life of zinc–air batteries [23,24]. Jörissen’s work [25] showed that the electrolyte
is sensitive to CO2 because of the zinc–air battery’s semi-open structure, which can react
with hydroxide to form carbonates. The working life of the air electrode operating in pure
O2 was 10 times that of the electrode in CO2 containing gas. To analyze the impact of the
surrounding air composition, Schröder and Krewer [26] developed an isothermal mathe-
matical model of a secondary zinc–air battery with alkaline liquid electrolyte. The results
showed that the impact of the surrounding CO2 content is the strongest. Furthermore, a
one-dimensional model for both porous electrodes was developed by Stamm et al. [27].
This model was parametrized and validated with a commercial zinc–air coin cell. Accord-
ing to the results, the authors believed that battery lifetime is limited by carbon dioxide
absorption into the aqueous alkaline electrolyte. Yang et al. [28] reported that loss of water
by evaporation through the air holes was inevitable due to the semi-open structure of the
zinc–air battery, and when the water was depleted, the battery ceased to operate.

Although meaningful research studies have been conducted, the inconsistent evalu-
ation standards and benchmarks also seriously hinder the commercialization of zinc–air
batteries. For example, Zhang et al. [29] pointed out that the majority of previous studies on
rechargeable zinc–air batteries were tested with a small current density and under very shal-
low cycling depths. Such experimental conditions would not effectively display the actual
cycling performances of air cathodes. Hopkins et al. [30] found that some rechargeable zinc–
air electrode materials may already be capable of enabling system-level specific energies
between 200 and 450 Wh kgsys

−1. Rechargeable zinc–air batteries will be commercialized
if they can achieve such projected specific energy values and demonstrate long cycle lives.
Stock et al. [31] analyzed 70 studies of alkaline Zn anodes for application in electrically
rechargeable zinc–air batteries reported in the last 20 years based on seven descriptors.
They revealed that only a small number of studies provided the data necessary to assess
the performance metrics. Inconsistent evaluation standards and benchmarks will mislead
scholars’ research direction and slow down the commercialization of zinc–air batteries.

Herein, a systematic analysis of each component of the zinc–air battery stored in open
air for various days was conducted. Batteries with a sandwich structure were assembled
and stored at room temperature to simulate the storage process of secondary zinc–air
batteries. To determine the cause of the battery’s failure during storage, the anode and
cathode of the stored batteries were characterized by X-ray diffraction (XRD) and scanning
electron microscopy (SEM). Inductively coupled plasma spectroscopy (ICP) was used to
characterize the electrolyte. Moreover, electrochemical impedance spectroscopy (EIS) was
used to investigate the overall self-discharge behavior of zinc–air batteries.

2. Materials and Methods
2.1. Assembly of Zinc–Air Unit Cell

Figure 1 shows the components of the zinc–air battery used in this work. All the
batteries were assembled using a commercial zinc–air battery test device (Changzhou
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Youteke New Energy Technology Co., Ltd., Changzhou, China) with a width of 7 cm,
a height of 6 cm, a reaction area of 3 cm2, and an electrolyte loading of 6 mL. The anode
material used was a 0.5 mm thick, 99.9% pure zinc sheet, and the cathode material was a
commercial MnO2 air electrode (Changzhou Youteke New Energy Technology Co., Ltd.,
Changzhou, China). A 6 mol L−1 KOH solution was used as the electrolyte. Before battery
assembly, the zinc sheets were polished with 400 grit sandpaper and ultrasonicated in
deionized water for 2 min. At the same time, the test mold was also thoroughly cleaned
with deionized water.
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Figure 1. Component images of a unit type zinc–air battery.

In the battery assembly process, follow the sequence from left to right in the schematic
diagram to assemble the components one by one, and finally tighten them with nuts.
Two O-rings are clamped in the electrolyte container’s grooves and the plates clamp the
cathode and anode. For further research, top covers with different air hole sizes were
designed to meet different experimental requirements.

2.2. Material Characterization

X-ray diffraction (XRD) patterns of the cathode and anode were obtained on an X-ray
diffractometer (D8 Advanced, Bruker) with Cu Kα radiation, in the range of 10◦ and 90◦ at
a scan rate of 6◦ min−1. The microstructures and composition of the cathode and anode
were observed using a field emission scanning electron microscopy (FESEM, JSM-7800F,
JEOL, Tokyo, Japan). Inductively coupled plasma (ICP) analysis was performed using
an inductively coupled plasma emission spectrometer (Optima 2100DV, PerkinElmer).
The content of CO3

2− is determined by titration using saturated BaCl2 solutions.

2.3. Electrochemical Characterization

The discharge data (measured at a constant current of 20 mA) of the fabricated
batteries stored for different periods were evaluated using a LAND CT2001A eight-channel
automatic battery test system. The storage life of the zinc–air batteries was measured at
the same discharge condition after different storage times under the packaged condition.
The electrochemical impedance spectroscopy (EIS) of the fabricated batteries was obtained
using an electrochemical workstation (CHI 660E, Shanghai Chenhua), with an initial
potential of 1.2 V.

3. Results and Discussion
3.1. Whole Battery Analysis

Figure 2a shows the discharge curves of the batteries after storage for 2, 4, 7, 10,
and 20 days. It can be seen that with the increase of storage time, the discharge time of the
battery is significantly shortened, and the voltage of the battery is reduced. This demon-
strates that the zinc–air battery does have a self-discharge problem. After 10 and 20 days of
storage, battery capacity has been reduced by about 40% and 80%, respectively.
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To further determine the cause of battery performance degradation, electrochemical
impedance spectroscopy (EIS) tests were also carried out on the batteries stored for different
periods. Figure 2b shows the Nyquist plots of the impedance. The equivalent circuit is in
the inset. Ro represents the total ohmic resistances and the contact resistance of the device
with an external circuit. Rint represents the interfacial resistance between the electrodes
and the electrolyte and Rct is the charge transfer resistance [32]. It can be observed that
as the storage time increases, the impedance curves of the batteries shift to the right
continuously, and the semicircular arcs in the intermediate–low frequency region also
expand significantly. Larger X-intercept and semicircular arcs in the intermediate–low
frequency region of the plot usually indicate a larger Ro and Rct. The Ro, Rint and Rct values
of the batteries were calculated, respectively, based on the equivalent circuit model, and the
results are shown in Table 1. The increase of Ro indicates an increase in the resistance of
the electrode material and/or electrolyte. Meanwhile, a higher Rct usually means slower
kinetics processes in the charge transfer process of the electrode material [33]. The increase
in resistance will cause a decrease in the output voltage of the batteries, which is consistent
with the discharge curves in Figure 2a.
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Figure 2. (a) Discharge curves of the batteries stored for various days. (b) Nyquist plots of the impedance of the batteries
before storing and after being stored for various days at a potential of 1.2 V, with an equivalent circuit used in this experiment
in the inset.

Table 1. Impedance data obtained by fitting the equivalent circuit diagram in the inset of Figure 2b.

Storage Time Ro/Ω Rint/Ω Rct/Ω

before storing 1.148 0.1854 0.635
2 days 1.327 0.2109 0.749
4 days 1.411 0.2178 0.876
7 days 1.495 0.2531 1.011
10 days 1.788 0.2819 1.200

The key factors resulting in the failure of the zinc–air battery remain unclear and are
critical for developing zinc–air batteries with long storage life. Thus, in-depth investigations
were carried out to clarify the potential reasons for the failure of the battery. Three batteries
were fabricated in the same condition and stored for 10 days. After the storage test, the three
batteries were replaced with a zinc anode, an air cathode and an electrolyte, respectively,
and then discharged at a constant current of 20 mA. As shown in Figure 3, after 10 days of
storage, the discharge capacities of the battery with the replacement of a zinc anode or an
air cathode are 94.3 mAh cm−2 and 81.0 mAh cm−2, respectively, which is even lower than
the battery without changing the component (121.3 mAh cm−2, green line in Figure 2a).
In contrast, after replacing the electrolyte, the discharge capacity of the battery significantly
increases by about 76.6 mAh cm−2 (197.9 mAh cm−2, blue line in Figure 3), which is
close to the discharge time of a fresh battery (203.3 mAh cm−2, black line in Figure 2a).
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This experiment shows that the deterioration of the electrolyte plays an important role in
the capacity loss of the battery during storage. To systematically analyze the changes in
each component of the zinc–air battery in the storage process, we characterized the anode,
cathode, and electrolyte of the stored battery, respectively.
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3.2. Anode Analysis

To determine the morphological changes of the zinc sheets during the storage period,
we disassembled the batteries after the storage time of 2, 4, 7, 10, and 20 days and compared
the zinc anodes with a fresh one using a scanning electron microscope (SEM). Figure 4a–f
shows the SEM morphology of the zinc anode stored for various days. As shown in
Figure 4a, the surface of the fresh zinc sheet is smooth and flat. After being stored for
4 days, corrosion pits appear on the entire surface of the zinc sheet (Figure 4c). More obvious
holes appear on the zinc sheet after 10 days of storage (Figure 4e). After 20 days’ storage,
the surface of the zinc sheet has changed from a dense structure to a porous structure
(Figure 4f). The results show that in the fabricated battery, the zinc sheets reacted with the
electrolyte without an external circuit, causing corrosion of the zinc sheets. This is mainly
attributed to the fact that zinc has a more negative reduction potential than hydrogen [34].

The surface morphology of the zinc anode in the battery stored for 20 days was further
investigated by a high magnification SEM. As shown in Figure 5a, the formed holes on the
zinc sheet have lamellar inner walls, indicating the continuous corrosion of the zinc anode.
The sectional view of the zinc anode is shown in Figure 5b. It can be observed that the
corrosion of the zinc anode is not only on the surface but continuously extends downward
through the formed holes.

As shown in Figures 4 and 5, the corrosion of the zinc anode seems to be continuous
during the entire 20-day storage process. However, regarding the discharge of the zinc–air
battery without storage, the termination of the discharge would happen in just a few days.
The discharge capacity is far lower than that of the theoretical capacity of the zinc anode,
which indicates that there is a large amount of zinc not being used. It is widely accepted
that in the process of battery discharge, the reaction on the anode consists of two parts [35]:

Zn + 4OH− → Zn(OH)4
2− + 2e− (1)

Zn(OH)4
2− → ZnO + H2O + 2OH− (2)

As shown in Equation (2), the produced Zn(OH)4
2− would decompose into ZnO and

cover the surface of the zinc anode when it reaches its saturation, which will eventually
lead to the passivation of the anode and the termination of the discharge. Because the
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barrier created by the ZnO is enough to slow the transport of OH− and Zn(OH)4
2− between

the electrode surface and the bulk of the electrolyte, the reaction cannot be sustained [36].
To explore the cause of this phenomenon, X-ray diffraction (XRD) measurements were
conducted to characterize the phase and composition of the zinc anode after storage and
the result was compared with the zinc anode in a discharged battery.
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Figure 5. High magnification SEM Images. (a) SEM images of the surface morphology of the zinc anode in the battery
stored for 20 days (top view). (b) SEM images of the surface morphology of the same zinc anode (sectional view).

Figure 6 shows the XRD patterns of the zinc anodes of a battery discharged without
storage and batteries stored for different periods without discharge. It can be observed
that with the increase of storage time, the XRD patterns of the stored battery do not show
significant change. The peaks at 36.34◦, 39.04◦, 43.27◦, 54.30◦, 70.08◦, 77.05◦, 82.10◦ and
86.53◦ are assigned to the (002), (100), (101), (102), (103), (004), (112), (201) reflections of
Zn (JCPDS No. 99-0110). Moreover, in the XRD pattern of the zinc anode of the freshly
discharged battery, the peaks detected at 31.78◦, 34.35◦, 36.27◦, 47.58◦, 56.56◦, 62.78◦,
67.92◦, and 69.09◦ are attributed to the (100), (002), (101), (102), (110), (103), (112), and (201)
reflections of ZnO (JCPDS No. 99-0111). ZnO would be formed on the anode surface
after discharge, which is consistent with previous reports [37–39]. However, there are
no evident peaks of ZnO on the XRD patterns of zinc anodes in the stored batteries.
The possible reason for this could be that the oxidation rate of zinc anode is relatively high
during the discharge progress. Thus, excessive Zn(OH)4

2− will be formed on the anode
surface to reach its saturation, which leads to the decomposition of Zn(OH)4

2− and the
formation of ZnO [40]. In contrast, the oxidation degree of the zinc anodes during storage
was significantly reduced. As the corrosion product, the Zn(OH)4

2− cannot reach its
solubility limit, thereby ZnO could hardly be generated on the anode surface. Without the
protection of the ZnO passivation layer, the fresh zinc surface is continuously exposed
to the electrolyte, causing severe corrosion across the anode [41]. The corrosion of the
zinc anode will cause the loss of active material. However, according to the experiment
mentioned above (Figure 3), the corrosion of the anode is not the main factor causing the
decrease of the discharge capacity. This is because there is excess zinc in our battery system.
The influence of the zinc anodes is reduced.

3.3. Cathode Analysis

To determine whether the composition or morphology of the air cathode changed
during storage, XRD and SEM measurements were conducted on the fresh air cathode and
air cathode stored in the battery for 20 days. As shown in Figure 7a, the two XRD curves
are in good agreement with almost no peak shift, indicating that the composition of the
air cathode has hardly changed after 20 days of storage. Moreover, Figure 7b,c shows that
after storage, the surface morphology of the air cathode remains unchanged. This also
explains why in Figure 3, changing the air cathode cannot improve the discharge capacity
of the stored battery.
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3.4. Electrolyte Analysis

The result in Figure 3 shows that the deterioration of the electrolyte is an important
factor that affects the discharge capacity of the battery after storage. To explore the changes
of the electrolyte during the battery storage, the concentration variation of CO3

2− and Zn2+

in the electrolyte was measured. As shown in Figure 8a, with the increase of storage time,
the concentration of Zn2+ in the electrolyte keeps increasing, reaching about 0.450 mol L−1

after 20 days of storage. Moreover, the concentration of CO3
2− reaches 2.694 mol L−1
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on the 20th day, which means that most of the OH− in the 6 mol L−1 KOH solution was
consumed. The result indicates that during the storage of zinc–air batteries, the zinc anode
reacts with the electrolyte continuously. Simultaneously, CO2 in the air enters the battery
and reacts with the electrolyte, causing serious carbonation. The massive consumption of
OH− leads to a sharp decline in the discharge capacity of the battery. This also explains
why replacing the electrolyte of the stored battery can significantly extend the battery
discharge capacity (Figure 3).
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To prove this point, batteries with different air hole sizes (0 cm2, 0.03 cm2 and 0.3 cm2)
were designed and performed the same discharge experiment after storing them in the
same condition for 20 days (The air hole size of the batteries used in Figures 1–7 is 3 cm2).
The results are shown in Figure 8b. It can be observed that the smaller the hole size is,
the longer the discharge life of the battery. Moreover, after 20 days of storage, we character-
ized the electrolyte of the batteries with air hole sizes of 0 cm2 and 3 cm2. The concentration
of CO3

2− in the battery with air hole sizes of 0 cm2 is significantly lower than the other
one. EIS tests were also carried out on the two batteries. Figure 8d shows the Nyquist plots
of the batteries with the air hole sizes of 0 cm2 and 3 cm2 after being stored for 20 days.
In the battery with the air hole sizes of 0 cm2, both Ro and Rct are much lower than in the
3 cm2 one. This is mainly due to the fact that OH− (20.64 × 10−8 m2 s−1 V−1) has mobility
several times higher than CO3

2− (7.46 × 10−8 m2 s−1 V−1) [42]. The electrolyte with the
lower CO3

2− concentration noticeably has smaller ohmic resistances and charge transfer
resistance. In summary, according to the results of this experiment, we find that the carbon-
ation of the electrolyte is a key factor leading to the reduction of battery capacity during
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storage. This work will help to shape future research activities toward the development of
zinc–air batteries with an extended lifetime. More attention should be paid to the carbon
dioxide separators or absorbents in order to inhibit the carbonation of electrolyte.

4. Conclusions

To verify the causes of performance degradation of zinc–air batteries exposed to
air, we used the same mold to perform characterization and electrochemical tests on
batteries after storage for different periods. Through the experiment, it was found that
the carbonation of the electrolyte is the key factor affecting the storage life of zinc–air
batteries. Changing the electrolyte can significantly increase the discharge capacity by
about 76.6 mAh cm−2. Moreover, after 20 days of storage, more than 80% of the OH− in
the electrolyte was consumed, which corresponds to the results that the battery stored
for 20 days lost 81% of its capacity. To further extend the storage life of zinc–air batteries,
we suggest that researchers should pay more attention to mitigating the electrolyte’s
carbonation. In addition, it is suggested to select suitable criteria when evaluating the
performance of the batteries. This is due to there being a misunderstanding in predicting the
performance of the Zn-based battery tested on lab-scale research in a half-cell configuration.
Establishing uniform evaluation standards and benchmarks can help scholars to find the
real shortcomings that limit the life of zinc–air batteries.
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