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Abstract: The Korea Atomic Energy Research Institute (KAERI) has developed the DeCART2D
2-dimensional (2D) method of characteristics (MOC) transport code and the MASTER nodal diffusion
code and has established its own two-step procedure. For design code licensing, KAERI prepared a
critical experiment on the verification and validation (V&V) of the DeCART2D code. DeCART2D
is able to perform the MOC calculation only for 2D nuclear fuel systems, such as the fuel assembly.
Therefore, critical buckling in the vertical direction is essential for comparison between the results
of experiments and DeCART2D. In this study, the B1 theory-augmented Monte Carlo (MC) method
was adopted for the generation of critical buckling. To examine critical buckling using the B1 theory-
augmented MC method, TCA critical experiment benchmark problems were considered. Based on
the TCA benchmark results, it was confirmed that the DeCART2D code with the newly-generated
critical buckling predicts the criticality very well. In addition, the critical buckling generated by the
B1 theory-augmented MC method was bound to uncertainties. Therefore, utilizing basic equations
(e.g., SNU S/U formulation) linking input uncertainties to output uncertainties, a new formulation
to estimate the uncertainties of the newly generated critical buckling was derived. This was then
used to compute the uncertainties of the critical buckling for a TCA critical experiment, under the
assumption that nuclear cross-section data have uncertainties.

Keywords: McCARD; critical buckling; uncertainty/sensitivity analysis; random sampling; SNU
S/U formulation; TCA benchmark; DeCART2D

1. Introduction

In nuclear design and analysis, a conventional two-step procedure, involving assembly-
wise lattice transport and whole core nodal calculations, has been widely and efficiently
utilized. This two-step procedure involves unavoidable approximations, such as energy
group condensation and assembly-wise homogenization. Energy group condensation and
assembly-wise homogenization can be used to establish few group constants (FGCs) from
continuous or ultra-fine energy group cross sections and to simplify cell-wise geometric
information data. These assembly-wise FGCs are utilized to conduct whole-core nodal cal-
culations. Moreover, a correction of the leakage spectrum (e.g., the B1 method) is applied to
the whole-core calculations for improved accuracy. As a part of the localization of nuclear
reactor development in Korea, the Korea Atomic Energy Research Institute (KAERI) devel-
oped the DeCART2D [1] 2-dimensional (2D) method of characteristics (MOC) transport
code and the MASTER [2] nodal diffusion code and established its own two-step procedure.
The DeCART2D code generates assembly-wise FGCs and pin-to-box factors (i.e., pin-wise
power distribution), which are used in the MASTER nodal whole-core calculations. To ap-
ply the DeCART2D/MASTER code system to nuclear design and analyses, KAERI is now
in the progress of licensing the nuclear design analysis code system. Accordingly, KAERI
prepared a critical experiment for verification and validation (V&V) of the DeCART2D
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code. The main purpose of this critical experiment was to check whether the DeCART2D
code could accurately provide the pin-to-box factor.

The DeCART2D code can perform the MOC calculation only for a 2D based nuclear
system. Therefore, to compare the pin-to-box factors from the critical experiment with those
yielded by the DeCART2D code, critical buckling and diffusion coefficients in the vertical
direction are necessary. In a critical experiment with a finite cylinder system, vertical
buckling generally can be obtained using the extrapolation distance from the activation
measurements and the active height of the core.

As an alternative way to obtain the vertical critical buckling, the Monte Carlo (MC)
method [3–5] is an attractive approach because it provides highly accurate and efficient
solutions in the field of nuclear reactor design and analysis. Yamamoto [6,7] developed
the heterogeneous B1 method by introducing a complex-value weight into MC particle
transport simulations. The complex-value-weight-based heterogeneous B1 method can
provide directional diffusion coefficients and critical buckling based on leakage-corrected
keff-eigenvalue calculations. Meanwhile, the B1 theory-augmented MC method can be used
to generate fuel pin cell or fuel assembly FA-homogenized few-group diffusion theory
constants (FGCs) in the same manner as deterministic-based diffusion theory computations
of power reactors [8–11]. In previous studies [8–10], we presented the B1 theory-augmented
MC method for generating homogenized FGCs including diffusion coefficients, critical
buckling, and migration area, and verified the results through a nuclear core design analysis
of Yonggwang Nuclear Unit 4.

In general, a result yielded by an MC calculation always includes stochastic uncer-
tainty, because the MC method uses a finite number of samples (e.g., neutron particles)
through the use of random numbers. Accordingly, the critical buckling by the B1 theory-
augmented MC method may be bound partly to the statistical uncertainties inherent in
the MC method, and partly to the uncertainties of the input data such as the cross section,
geometric data, and material composition. In previous studies, we introduced basic mathe-
matical equations aimed at quantifying the uncertainties of FGCs over burnup. These basic
mathematical equations from the so-called ‘SNU S/U formulation’ [12] can be utilized to
link input uncertainties to output uncertainties. In the same manner as the uncertainties of
FGCs, the SNU S/U formulation can be easily adapted to quantify the uncertainties of the
critical buckling generated by the B1 theory-augmented MC method.

The purpose of this study was to generate critical buckling, based on the B1 theory-
augmented MC method, for DeCART2D calculations and to quantify the uncertainties
of the critical buckling due to stochastic uncertainties and the uncertainties of the input
parameters (e.g., cross section, geometric data, and material composition). In this study,
the critical buckling for the tank-type critical assembly (TCA) benchmark problem [13,14],
which provides the measured values for the critical water level and extrapolation for each
case distance, is generated using the B1 theory-augmented MC method. Furthermore, the
uncertainties of the critical buckling are estimated using the SNU S/U formulation.

Section 2 briefly describes the generation of the critical buckling using the B1 theory-
augmented MC method and the direct fitting method. Section 3 explains how to quantify
the uncertainties of the critical buckling via the B1 theory-augmented MC method using
the SNU S/U formulation. In Section 4, we apply the newly implemented uncertainty
quantification capability to perform the TCA critical facility benchmark for the generation
of the critical buckling. In this section, we present the uncertainties in the critical buckling
that occur due to the uncertainties in nuclear cross section data and the tolerance of the
geometric and material composition data. The conclusions and summations are presented
in Section 5.
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2. Generation of Critical Buckling
2.1. Critical Buckling Generation Using the B1 Theory-Augmented MC Method

This section briefly explains how to obtain the critical buckling via the B1 theory-
augmented MC method. The conventional multi-group B1 equations in a fine group
representation are as below:

Σt,gφg ± iBJg = ∑
g′

Σ0
gg′φg′ + χg

±iBφg + 3αg(B)Σt,g Jg = 3∑
g′

Σ1
gg′ Jg′

,

where αg(B) =


1
3 x2
(

arctan(x)
x−arctan(x)

)
for x2 =

(
B
Σ

)2
> 0

1
3 x2
(

ln((1+x)/(1−x))
ln((1+x)/(1−x))−2x

)
for x2 = −

(
B
Σ

)2
> 0

.

(1)

Here, g and g′ refer to the energy group. Σt,g and Σ f ,g are the macroscopic total and
fission cross-section, respectively. Σn

gg′ (n = 0,1) indicates the zero and first-order moment of
the double differential scattering cross-section. The other notations are standard and φg′ is
normalized to satisfy k = ∑ νΣ f ,g′φg′ , where k is the multiplication factor. The macroscopic
cross-section is expressed by

Σα,g =
1

ϕg
∑
j,m

Nm
j · rm

α,g,j, (2)

where ϕg is the infinite medium spectrum (IMS). Nm
j and rm

α,g,j indicate the number density
and α-type microscopic reaction rate for nuclide j in region m. The microscopic reaction
rate and IMS are calculated using the microscopic cross-section or angular neutron flux, as
given below:

ϕg =
∫

Vm

∫
∆Eg

∫
4π

φ(r, E, Ω)dΩdEdr, (3)

rm
α,g,j =

∫
Vm

∫
∆Eg

∫
4π

σα,j(E)φ(r, E, Ω)dΩdEdr, (4)

where Vm is the volume of the region m, whereas ∆Eg is the energy interval of group
g neutrons. A conventional MC code tallies the microscopic reaction rates and IMS for
the total, fission, and scattering macroscopic cross section calculations using the track
length and collision estimator method. Using the macroscopic cross sections, the multi-
group B1 equations, Equation (1), are solved through iterative adjustments of B2 until
the corresponding k = 1. The solution φg and B2 satisfying k = 1 are the so-called critical
spectrum (CS), φB

g , and the critical buckling, Bc.

2.2. Critical Buckling Generation Using the Fitted Cosine Function

Based on an experiment, the axial buckling [15] for a critical condition can be calculated
using the extrapolated length from its activation measurements. In a finite cylinder reactor,
normalized flux distributions for the vertical axis can be described well using a sinusoid
with the extrapolated length. If a finite cylinder reactor has an extrapolated height H′ and
is centered about z = 0, the vertical flux distribution and geometric buckling can be written
as follows:

φ(z) = α cos(
πz
H′

), (5)

B2
z =

( π

H′
)2

, (6)

H′ = H + λz, (7)

where H is the height of the core in a finite cylinder reactor and λz is the extrapolated
length or distance. In the same manner as the experiment, it is possible to obtain the
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axial critical buckling from the axial flux distribution, φMC, which is calculated using the
3-dimensional MC calculation for the critical condition. The vertical extrapolation length
can be determined through a fitting procedure for a cosine function. The fitting method is
applied to minimize the sum of the squares of the difference between φMC and the value
(φFIT) from the fitted cosine function at the same height position. An R-squared (R2) value
is used to quantify how close the MC-calculated values are to the fitted regression cosine
function. Equation (8) shows the common definition of R2 between φMC and φFIT .

R2 = 1−

N
∑

i=1

(
φi

MC − φi
FIT
)2

N
∑

i=1

(
φi

MC − φi
MC

)2
where φi

MC =
1
N

N

∑
i=1

φi
MC, (8)

where N and i indicate the total number of mesh tallies and the mesh index number,
respectively.

3. Propagation of Uncertainties in Critical Buckling Generation
3.1. Estimation of the Critical Buckling Uncertainties Using the SNU S/U Formulation

Figure 1 summarizes the procedure used to obtain the critical buckling in the B1
theory-augmented MC method. The whole procedure is divided into three steps. The
uncertainty of the critical buckling is calculated step-by-step, because the outputs of any
given step become inputs of the next step. The basic equations linking the uncertainties
of the inputs to those of the outputs were derived in a previous study [12]. Suppose that
Q represents the output parameters at any given step and ui (i = 1, 2, · · · , I) is a set of
uncertain input data for Q calculation. Formally, Q may be written as follows:

Q = Q(u1, u2, · · · , uI), (9)
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Through the deviation of the SNU S/U formulation, linking uncertainties using the
1st order Taylor expansions [8], the uncertainty of Q is expressed by

σ2(Q) = σ2
STATS(Q) + σ2

INP(Q), (10)

σ2
STATS(Q) = lim

K→∞

1
K− 1

K

∑
κ=1

(Qκ − 〈Qκ〉)2, (11)

σ2
INP(Q) =

I

∑
i′=1

I

∑
i′′=1

cov[ui′ , ui′′ ]

(
∂〈Q〉
∂ui′

)(
∂〈Q〉
∂ui′′

)
, (12)

where the angular bracket indicates the expected value of quantity within it and cov[ui′ , ui′′ ]
is the covariance of two uncertain input variables, ui ′ and ui”. The partial derivatives in
Equation (12) are calculated using the following approximation with the direct subtraction
method or the MC perturbation technique.

∂〈Q〉
∂ui

∼=
〈Q(ui + σ(ui))〉 − 〈Q(ui)〉

σ(ui)
, (13)

For the application of Equations (11) and (12) to uncertainty quantifications of any one-
step calculations in critical buckling generation, a functional relation between the uncertain
input/output (I/O) variables such as ui and Q must be established. Table 1 shows the
functional relation between I/O variables for each step in the critical buckling generation
using the B1 theory-augmented MC method. According to the SNU S/U formulation, the
variance of the critical buckling from the B1 calculations at step III, σ2(Bc), is formulated
by using Equation (10) as follows:

σ2(Bc) = ∑
α′′ ,g′′

∑
α′′′ ,g′′′

cov[Σα′′ ,g′′ , Σα′′′ ,g′′′ ]

(
∂Bc

∂Σα′′ ,g′′

)(
∂Bc

∂Σα′′′ ,g′′′

)
. (14)

Table 1. Functional relation between input and output variables for each step in critical buckling
generation using the B1 theory-augmented MC method.

Step Input (I)
Variables

Output(O)
Variables

Functional Relation
Between the I/O Variables

I σα′ ,g′ ,i′ , Nm′
i′

ϕg ϕg = ϕg

(
σα′ ,g′ ,i′ , Nm′

i′

)
rm

α,g,j rm
α,g,j = rm

α,g,j

(
σα′ ,g′ ,i′ , Nm′

i′

)
II Nm

j , rm
α,g,j, ϕg Σα,g Σα,g = Σα,g(Nm

j , rm
α,g,j, ϕg)

III Σα,g Bc Bc = Bc(··, Σα′′ ,g′′ , ··)
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Because there is no statistical uncertainty in solving B1 multi-group equations,
σ2

STATS(Bc) = 0, using the functional relation between I/O variables in step II, one can
obtain the covariance term between macroscopic cross sections, cov[Σ

α′′ ,g′′ , Σ
α′′′ ,g′′′ ], in

terms of new covariance terms involving the uncertain input parameters, namely, number
density, microscopic reaction rate, and IMS, as shown below:

cov[Σα,g, Σα′ ,g′ ]

=∑
j,m

∑
j′′ ,m′′

cov[Nm
j , Nm′′

j′′ ] · ∂Σα,g
∂Nm

j
·

∂Σα′ ,g′

∂Nm′′
j′′

+ cov[ϕg, ϕg′ ] ·
∂Σα,g
∂ϕg
·

∂Σα′ ,g′
∂ϕ

g′

+∑
j,m

∑
j′′ ,m′′

cov[rm
α,g,j, rm′′

α′ ,g′ ,j′′ ] ·
∂Σα,g
∂rm

α,g,j
·

∂Σα′ ,g′

∂rm′′
α′ ,g′ ,j′′

+∑
j,m

∑
j′′ ,m′′

cov[Nm
j , rm′′

α′ ,g′ ,j′′ ] ·
∂Σα,g
∂Nm

j
·

∂Σα′ ,g′

∂rm′′
α′ ,g′ ,j′′

+ ∑
j′′ ,m′′

cov[rm
α,g,j, Nm′′

j′′ ] · ∂Σα,g
∂rm

α,g,j
·

∂Σα′ ,g′

∂Nm′′
j′′

+∑
j,m

cov[Nm
j , ϕg′ ] ·

∂Σα,g
∂Nm

j
·

∂Σα′ ,g′
∂ϕ

g′
+ ∑

j′′ ,m′′
cov[ϕg, Nm′′

j′′ ] · ∂Σα,g
∂ϕg
·

∂Σα′ ,g′

∂Nm′′
j′′

+∑
j,m

cov[rm
α,g,j, ϕg′ ] ·

∂Σα,g
∂rm

α,g,j
·

∂Σα′ ,g′
∂ϕ

g′
+ ∑

j′′ ,m′′
cov[ϕg, rm′′

α′ ,g′ ,j′′ ]·
∂Σα,g
∂ϕg
·

∂Σα′ ,g′

∂rm′′
α′ ,g′ ,j′′

.

(15)

In the same manner, the unknown covariance terms in Equation (15) can be derived
using the functional relations between I/O variables in step I. Equation (16) through (20)
indicate these covariance terms. They can be expressed in terms of covariance terms
involving the uncertain input parameters, such as microscopic cross section and number
density. The partial derivatives are calculated using the direct subtraction method, as
shown in Equation (13).

cov[ϕg, ϕg′ ] = ∑
i′′ ,α′′ ,g′′

∑
i′′′ ,α′′′ ,g′′′

cov[σ
α′′ ,g′′ ,i′′ , σ

α′′′ ,g′′′ ,i′′′ ] ·
∂<ϕg>

∂σ
α′′ ,g′′ ,i′′

·
∂<ϕg′>

∂σ
α′′′ ,g′′′ ,i′′′

+ ∑
i′′ ,m′′

∑
i′′′ ,m′′′

cov[Nm′′
i′′ ,Nm′′′

i′′′ ] · ∂<ϕg>

∂Nm′′
i′′
·

∂<ϕg′>

∂Nm′′′
i′′′

+ ∑
i′′ ,m′′

∑
i′′ ,α′′′ ,g′′′

cov[Nm′′
i′′ ,σ

α′′′ ,g′′′ ,i′′′ ] ·
∂<ϕg>

∂Nm′′
i′′
·

∂<ϕg′>

∂σ
α′′′ ,g′′′ ,i′′′

+ ∑
i′′ ,α′′ ,g′′

∑
i′′′ ,m′′′

cov[σ
α′′ ,g′′ ,i′′ ,N

m′′′
i′′′ ] · ∂<ϕg>

∂σ
α′′ ,g′′ ,i′′

·
∂<ϕg′>

∂Nm′′′
i′′′

,

(16)

cov[rm
α,g,j, rm′

α′ ,g′ ,j′ ] = ∑
i′′ ,α′′ ,g′′

∑
i′′′ ,α′′′ ,g′′′

cov[σ
α′′ ,g′′ ,i′′ , σ

α′′′ ,g′′′ ,i′′′ ] ·
∂<rm

α,g,j>

∂σ
α′′ ,g′′ ,i′′

·
∂<rm′

α′ ,g′ ,j′>

∂σ
α′′′ ,g′′′ ,i′′′

+ ∑
i′′ ,m′′

∑
i′′′ ,m′′′

cov[Nm′′
i′′ ,Nm′′′

i′′′ ] ·
∂<rm

α,g,j>

∂Nm′′
i′′
·

∂<rm′
α′ ,g′ ,j′>

∂Nm′′′
i′′′

+ ∑
i′′ ,m′′

∑
i′′ ,α′′′ ,g′′′

cov[Nm′′
i′′ ,σ

α′′′ ,g′′′ ,i′′′ ] ·
∂<rm

α,g,j>

∂Nm′′
i′′
·

∂<rm′
α′ ,g′ ,j′>

∂σ
α′′′ ,g′′′ ,i′′′

+ ∑
i′′ ,α′′ ,g′′

∑
i′′′ ,m′′′

cov[σ
α′′ ,g′′ ,i′′ ,N

m′′′
i′′′ ] ·

∂<rm
α,g,j>

∂σ
α′′ ,g′′ ,i′′

·
∂<rm′

α′ ,g′ ,j′>

∂Nm′′′
i′′′

,

(17)

cov[rm
α,g,j, ϕg′ ] = ∑

i′′ ,α′′ ,g′′
∑

i′′′ ,α′′′ ,g′′′
cov[σ

α′′ ,g′′ ,i′′ , σ
α′′′ ,g′′′ ,i′′′ ] ·

∂<rm
α,g,j>

∂σ
α′′ ,g′′ ,i′′

·
∂<ϕg′>

∂σ
α′′′ ,g′′′ ,i′′′

+ ∑
i′′ ,m′′

∑
i′′′ ,m′′′

cov[Nm′′
i′′ ,Nm′′′

i′′′ ] ·
∂<rm

α,g,j>

∂Nm′′
i′′
·

∂<ϕg′>

∂Nm′′′
i′′′

+ ∑
i′′ ,m′′

∑
i′′ ,α′′′ ,g′′′

cov[Nm′′
i′′ ,σ

α′′′ ,g′′′ ,i′′′ ] ·
∂<rm

α,g,j>

∂Nm′′
i′′
·

∂<ϕg′>

∂σ
α′′′ ,g′′′ ,i′′′

+ ∑
i′′ ,α′′ ,g′′

∑
i′′′ ,m′′′

cov[σ
α′′ ,g′′ ,i′′ ,N

m′′′
i′′′ ] ·

∂<rm
α,g,j>

∂σ
α′′ ,g′′ ,i′′

·
∂<ϕg′>

∂Nm′′′
i′′′

,

(18)

cov[Nj,m, ϕg′ ] = ∑
j′′ ,m′′

cov[Nm
j , Nm′′

j′′ ] ·
∂<ϕg′>

∂Nm′′
j′′

+ ∑
i′′ ,α′′ ,g′′

cov[Nm
j , σi′′ ,α′′ ,g′′ ] ·

∂<ϕg′>

∂σ
i′′ ,α′′ ,g′′

, (19)
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cov[Nm
j , rm′

α′ ,g′ ,j′ ] = ∑
j′′ ,m′′

cov[Nm
j , Nm′′

j′′ ] ·
∂<rm′

α′ ,g′ ,j′>

∂Nm′′
j′′

+ ∑
i′′ ,α′′ ,g′′

cov[Nm
j , σi′′ ,α′′ ,g′′ ] ·

∂<rm′
α′ ,g′ ,j′>

∂σ
i′′ ,α′′ ,g′′

. (20)

Note that an examination of the uncertainty of the critical buckling, as shown in
Equation (14), ultimately entails calculations of the covariance between number densities
or microscopic cross sections. In this study, only the covariance between cross sections is
considered because the covariance terms directly related to number density are set at 0. The
covariance between microscopic cross sections, cov[σ

α′′ ,g′′ ,i′′ , σ
α′′′ ,g′′′ ,i′′′ ], can be obtained by

processing the covariance files of the evaluated nuclear data library files using the ERRORR
module of NJOY [16].

3.2. Estimation of the Critical Buckling Uncertainties using the Stochastic Sampling Method

The stochastic sampling (S.S.) method, which is often called the brute force method,
provides another approach to determining the uncertainties of the critical buckling. The
mean of the uncertain input parameter, ui, and the covariance between ui and uj uncertain
input data are defined by

ui ∼=
1
K

K

∑
k=1

ui
k, (21)

cov[ui, uj]
∼=

1
K− 1

K

∑
k=1

(uk
i − ui)(u

k
j − uj). (22)

Supposing that Cu is the covariance matrix defined by cov[ui, uj] and that a lower
triangular matrix B is known through the Cholesky decomposition of Cu, we then have

Cu = B · BT , (23)

where BT is the transpose matrix of B. Then, if Cu is symmetrical and positive definite, one
can obtain a sample set by

Xκ = X + B · Z, (24)

where X is the mean vector defined by the mean values from Equation (21) and Z is a
random normal vector calculated directly from a random sampling of the standard normal
distribution using the Box–Muller method. Xκ indicates the sample set generated from a
κ-th sampled Z vector.

4. TCA Benchmark Analysis
4.1. TCA Benchmark Problem

The TCA benchmarks [13,14] are critical experiment series for light-water moderated
lattices using 17 × 17 2.6 w/o UO2 fuel rods arranged in a square array. The fuel rod array
is surrounded by light-water in a 1.8 m core tank, whereas the pin-pitch and fuel pellet
radii are 1.956 cm and 0.625 cm. Basically, the critical sizes were determined by adjusting
the light water level. The TCA benchmark provides various measured parameters, such
as the temperature coefficient, the extrapolation length, and the critical buckling. The
experiments were performed using various configurations between 1963 and 1975. Based
on these experiments, eighteen configurations were provided in the International Criticality
Safety Benchmark Problem (ICSBEP) [13]. Among them, five experimental cases (i.e., case
4–case 8) were selected for this study. Table 2 shows the specifications of the five selected
benchmark problems. Figure 2a,b display the horizontal and vertical cross sections for the
TCA benchmark problems. The 1.8 m water core tank of the critical facility was simplified
as a 30-cm-thick side water reflector in the benchmark model. For each problem, the
critical water level (Hc), measured horizontal extrapolation distance (λh), and vertical



Energies 2021, 14, 2578 8 of 14

extrapolation distance (λz) are obtained from the experimental results. Using the measured
extrapolation distances, the total critical buckling can be calculated as

B2
c = B2

c,x + B2
c,y + B2

c,z

=
(

π
PA+λh

)2
+
(

π
PA+λh

)2
+
(

π
Hc+λz

)2 , (25)

where PA is the pitch of a fuel rod array.

Table 2. Specifications of the selected TCA experiment benchmark problems.

Problem No. Case No. 1 Number of Rods in
One Side (N)

Critical Height
Level (cm)

Extrapolation Length (cm) Total Buckling
(×10−3 cm−2)Vertical (λz) Horizontal (λh)

1 Case 4 17 114.59 ± 1.69 12.2 ± 0.3 13.9 ± 0.8 9.49 ± 0.21
2 Case 5 18 75.32 ± 0.90 12.2 ± 0.3 13.9 ± 0.8 9.47 ± 0.19
3 Case 6 19 60.38 ± 0.21 12.2 ± 0.3 13.9 ± 0.8 9.44 ± 0.17
4 Case 7 20 51.65 ± 0.17 12.2 ± 0.3 13.9 ± 0.8 9.44 ± 0.15
5 Case 8 21 46.01 ± 0.08 12.2 ± 0.3 13.9 ± 0.8 9.44 ± 0.14

1 These are the sub-case numbers of the LCT-006 problem in the ICSBEP benchmark.
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4.2. Critical Buckling Generation for TCA Benchmark Problem

For each TCA benchmark problem, the critical buckling was generated using the
McCARD [3] code, via both the B1 theory-augmented MC method and the direct fitting
method. In the B1 method, the macroscopic cross sections for solving B1 multi-group
equations were generated using MC calculations based on 50 inactive and 100 active
cycles with 100,000 histories per cycle. The ACE-format continuous energy cross section
libraries were processed based on the ENDF/B-VII.1 evaluated nuclear data library. The
47-group structure [1] was adopted for the B1 multi-group calculations. In the direct fitting
method, the vertical extrapolation lengths were calculated using the MC calculations and
the horizontal extrapolation lengths were taken from [13]. For the calculation of vertical
extrapolation length, a single fuel rod located at the center of a fuel array was axially
divided into one hundred meshes, as shown in Figure 3. Figure 4 shows the normalized
vertical flux distributions and their fitted cosine functions for each problem. Table 3
shows the vertical extrapolation lengths determined using the direct fitting method. For
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all problems, the R2 values for their extrapolation lengths were more than 0.999. The
maximum difference in the vertical extrapolation length between the experiment and the
calculation was around 5.0% for problem 5.
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Table 3. Vertical extrapolation lengths of TCA experiment benchmark problems.

Problem
No.

Vertical Extrapolation Length (λz)
by Direct Fitting Method (×10−3 cm−2)

Exp McCARD R2

1 12.2 ± 0.3 12.5 0.9998
2 12.2 ± 0.3 11.7 0.9996
3 12.2 ± 0.3 12.6 0.9993
4 12.2 ± 0.3 12.0 0.9999
5 12.2 ± 0.3 12.8 0.9998
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Table 4 shows the critical buckling of McCARD, calculated using the B1 method and
the direct fitting method. The relative differences in critical buckling between the reference
and McCARD range from 0.1% to 1.1%. The maximum relative difference in the critical
buckling occurred for problem 1. In all problems, the B1 calculations were conducted under
the equivalent geometric data because the B1 method uses an infinite medium bounded by
surfaces with a reflective boundary condition. Accordingly, the critical buckling results
determined by the B1 method were the same, as shown in Table 4.

Table 4. Vertical extrapolation lengths of TCA experiment benchmark problems.

Problem
No.

Critical Buckling (×10−3 cm−2)

Exp
B1 Method Direct Fitting Method

Value C/E 1 Value C/E 1

1 9.492 ± 0.21 9.388 0.989 9.490 0.999
2 9.474 ± 0.19 9.391 0.991 9.488 1.002
3 9.444 ± 0.17 9.389 0.994 9.424 0.998
4 9.443 ± 0.15 9.390 0.994 9.458 1.002
5 9.444 ± 0.14 9.388 0.994 9.379 0.993

1 C/E = (calculated critical buckling)/(experimental critical buckling).

To confirm the accuracy of the criticality prediction, DeCART2D lattice code calcula-
tions were performed using the critical buckling. For the DeCART2D calculation, a ray
spacing of 0.02 cm and two polar angles of 90◦ were used as the ray tracing option. All
the DeCART2D calculations were conducted with the ENDF/B-VII.1 based 47-group cross
section library [17]. Table 5 shows the effective multiplication factors (keff) of DeCART2D
for the five TCA benchmark problems. The maximum differences in keff for the reference is
about 143 pcm whereas that for the B1 method is about 187 pcm. The direct fitting method
gives a maximum error of 217 pcm. It is well known that the general design review criterion
(DRC) of critical boron concentration (CBC) in a typical PWR start-up and operation is 500
pcm. Therefore, it can be confirmed that all DeCART2D results agree with the experiments
within the DRC of CBC.

Table 5. keff of DeCART2D with critical buckling from vertical extrapolation length.

Problem
No.

keff of DeCART2D with Critical Buckling

Experiments B1 Method Direct Fitting Method

keff Diff 1 keff Diff 1 keff Diff 1

1 0.99857 −143 1.00185 185 0.99863 −137
2 0.99915 −85 1.00178 178 0.99868 −132
3 1.00010 10 1.00184 184 1.00071 71
4 1.00012 12 1.00180 180 0.99963 −37
5 1.00011 11 1.00187 187 1.00217 217

Diff (pcm) = (keff − 1)/(keff) × 105.

4.3. Uncertainty Analysis of Critical Buckling Based on Cross Section Uncertainties

The SNU S/U formulations to quantify the uncertainties arising from the statistical
uncertainty and the uncertain input data, which were derived in Section 3.1, were incorpo-
rated into the B1 method-based critical buckling generation module of the McCARD code.
The module was then used to estimate the uncertainties of the critical buckling for the TCA
benchmark problems. The nuclear cross-section data, including the covariance data files
for computing both the critical buckling and their uncertainties, were obtained from the
ENDF/B-VII.1 and ENDF/B-VIII.0 evaluated nuclear data libraries. The covariance data
files of only the two major uranium isotopes (i.e., 235U and 238U) and 16O were considered.
Table 6 presents the percentile relative error (%RE), which is defined as 100× σ(B2

c )/B2
c ,

for each critical buckling. All relative errors of critical buckling caused only by statistical
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uncertainties were less than 0.11% whereas those from both statistical and microscopic
cross section uncertainties for ENDF/B-VII.1 and ENDF/B-VIII.0 were less than 3.18% and
1.49%, respectively. It is clear that the most significant contributor of both evaluated nuclear
data file libraries to σ(B2

c ) is the uncertainties of the 238U capture cross section (MT = 102).

Table 6. Uncertainties of critical buckling based on cross section uncertainties (Problem 1).

Isotope Reaction Type Case
Percentile Relative Errors of Critical Buckling (σ(B2

c)/B
2
c , %RE) 1

ENDF/B-VII.1 ENDF/B-VIII.0

235U
ν ν(235U) 1.22% 0.82%

(n, f ) σf (
235U) 0.32% 0.33%

(n, γ) σγ(235U) 1.01% 0.44%

238U
ν ν(235U) 0.11% 0.11%

(n, f ) σf (
238U) 0.11% 0.16%

(n, γ) σγ(238U) 1.76% 1.04%
16O (n, γ) σγ(238U) 0.11% 0.11%

Total 3.18% 1.49%
1 All uncertainties include the statistical uncertainty (=0.11%).

Figure 5 compares the microscopic cross section uncertainties between the ENDF/B-
VIII.0 and ENDF/B-VII.1 evaluated nuclear data libraries. As mentioned in [18], the change
in the uncertainties in the critical buckling comes from the difference in the evaluations by
each covariance provider. As shown in Figure 5, the uncertainties of the 235U capture cross
section, the 238U capture cross section, and the number of neutrons (v) per 235U fission
(MT = 452) in ENDF/B-VIII.0 are smaller than those in ENDF/B-VII.1 in almost the entire
energy region. By contrast, the uncertainties of the 235U fission cross section (MT = 18)
in ENDF/B-VIII.0 are larger than those in ENDF/B-VII.1 in the thermal and fast energy
regions. Consequently, the decreases (or increases) in each cross section’s uncertainty lead
to decreases (or increases) in the critical buckling uncertainty.
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Figure 5. Comparison of the microscopic cross section uncertainties between ENDF/B-VIII.0 and
ENDF/B-VII.1.

4.4. Uncertainty Analysis of Critical Buckling Based on Input Design Data

The S.S. method can be easily utilized to quantify uncertainties of nuclear design
parameters, including critical buckling, through calculations of the inputs, which are
sampled from the standard deviation or tolerance of the input parameters. The TCA
experiment benchmark provides the uncertainty of input design data such as the uranium
composition, the diameter of the UO2 pellet, the inner and outer diameter of the aluminum
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alloy cladding, the pin pitch, and the density of the UO2 pellet. In this section, the critical
buckling uncertainty based on these uncertainties was estimated using the S.S. method.
All S.S. calculations were performed using McCARD and MIG (McCARD Input Generator)
code [9]. For each case, the 100 McCARD calculations were conducted using the ENDF/B-
VII.1 cross section library. Table 7 presents the uncertainties of the critical buckling from
geometric and material data uncertainties for Problem 1. The percentile relative errors
(%RE) of the critical buckling by the UO2 pellet diameter uncertainty, the aluminum
cladding inner and outer diameter uncertainty, and the pin pitch uncertainty are 0.41%,
0.04%, 0.07%, and 0.12%, respectively. The uncertainties of the critical buckling by the 235U
enrichment uncertainty and the UO2 pellet density uncertainty are respectively 0.15% and
0.28%. Figure 6 displays the distributions of critical buckling from each input design data
sampling. It was observed that the critical buckling increases as the fuel pellet diameter,
pin pitch, fuel pellet number density, or 235U enrichment increases, whereas it slightly
decreases as the cladding inner or outer diameter increases. These linear relationships for
each case depend on the change in the reactivity. The increase in the fuel pellet diameter
leads to an increase in the reactivity, the leakage term for the critical state, and the critical
buckling, in sequence.
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Figure 6. Distribution of critical buckling by (a) sampled fuel pellet diameters; (b) sampled pin
pitches; (c) sampled cladding inner diameters; (d) sampled cladding outer diameters; (e) sampled
fuel mass densities; (f) sampled 235U number densities.
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Table 7. Uncertainties of critical buckling based on geometric and material data uncertainties.

Item Value Percentile Relative Errors of Critical Buckling (σ(B2
c)/B

2
c , %RE)

235U composition (wt.%) 2.596 ± 0.005 0.15%
UO2 pellet density (g/cm3) 10.4 ± 0.05 0.28%
UO2 pellet diameter (cm) 1.25 ± 0.005 0.41%

Al alloy cladding inner diameter (cm) 1.265 ± 0.0005 0.04%
Al alloy cladding thickness (cm) 0.0076 ± 0.0005 0.07%

Lattice pitch (cm) 1.956 ± 0.002 0.12%

5. Conclusions

In this study, the B1 theory-augmented Monte Carlo (MC) method was adopted for
the generation of critical buckling. To examine the critical buckling using the B1 theory-
augmented MC method, five TCA critical experiment benchmark cases were considered.
For each case, the effective multiplication factor of DeCART2D, which was calculated with
the critical buckling determined by the B1 method, agreed with the experimental value
within the well-known general criteria of CBC in a typical PWR start-up and operation.
Therefore, it can be concluded that the B1 theory-augmented MC method can provide
accurate and reliable critical buckling for a practical system.

Moreover, a new formulation to estimate the uncertainties of the critical buckling as
determined by the B1 theory-augmented MC method was derived from the so-called ‘SNU
S/U formulation’, and this can be used to link input uncertainties to output uncertainties.
The SNU S/U formulation was able to explain the uncertainty propagation in the critical
buckling generation. It was then utilized to compute the uncertainties of the critical
buckling for a TCA critical experiment under the assumption that nuclear cross-section
data have uncertainties. This application of the ‘SNU S/U formulation’ also shows that this
formulation can serve as an effective and useful tool to examine the influence of nuclear
data uncertainty on nuclear core design and safety. Moreover, it can be utilized to identify
the significant contributors to the uncertainties of the other nuclear core design parameters.

The procedure involving the new formulation will be particularly useful as a prac-
tical way to provide the uncertainties of the critical buckling required for V&V of the
DeCART2D code.
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Abbreviations

MOC Method of Characteristics
KAERI Korea Atomic Energy Research Institute
MC Monte Carlo
FGCs Few Group Constants
S/U Sensitivity and Uncertainty
S.S. Stochastic Sampling
SNU Seoul National University
IMS Infinite Medium Spectrum
CS Critical Spectrum
ICSBEP International Criticality Safety Benchmark Problem
DRC Design Review Criterion
CBC Critical Boron Concentration
%RE Percentile Relative Errors
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