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Abstract: This paper presents a modified global energy production computation formula that replaces
the traditional Performance Ratio (PR) with a novel Solar Reliability Factor (SRF) for mobile solar
tracking systems. The SRF parameter describes the reliability and availability of a dual-axis solar
tracker, which powers a smart home automation system entirely by using clean energy. By applying
the SRF in the global energy production formula of solar tracking systems, we can predict the
energy generation in real time, allowing proper energy management of the entire smart home
automation system. Regarding static deployed Photovoltaic (PV) systems, the PR factor is preserved
to compute the power generation of these devices accurately. Experimental results show that the
energy production computation constantly fluctuates over several days due to the SRF parameter
variation, showing a 26.11% reduction when the dual-axis solar tracker’s availability is affected
by system errors and maximum power generation when the solar tracking device is operating in
optimal conditions.

Keywords: solar reliability factor; solar tracker; smart home automation system; fault coverage;
hybrid testing; global energy production

1. Introduction

This section presents insight regarding new perspectives on computing the global
energy production of mobile PV systems by substituting the Performance Ratio (PR) factor
with a novel Solar Reliability Factor (SRF) parameter, as well as a detailed overview of
solar-powered smart home automation systems.

1.1. The Performance Ratio of Static and Mobile PV Systems

Due to recent advancements in the Internet of Things (IoT) domain, a plethora of smart
electronic devices have been implemented in different domains, improving the quality
of life for many people around the world [1], with a report from Statista forecasting that
the IoT’s global market share will reach 1.6 trillion U.S. dollars by 2025 [2]. This demon-
strates the importance of IoT in the future of communication between humans and smart
objects. These smart objects (e.g., smart sensors, actuators, and cameras) are often found
in automation systems such as security and home automation systems. Regarding smart
home automation systems, their main advantages compared to other automated systems
are the comfort and flexibility given by remote features such as switching the lights, voice
control, and monitoring security cameras in real time. The sensor’s energy management
is an essential aspect of smart home automation systems due to their constant energy
consumption specifications and dependability on the power grid [3]. When considering
the recent efforts made by many countries towards the goal of replacing carbon-based
emissions with renewable energy sources by the year 2050 [4], the need for using clean
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energy sources for powering smart home automation systems is of significant importance
for lowering the cost of energy consumption and for a sustainable future.

The most efficient clean energy collectors are considered to be the dual-axis solar
tracking systems, which can gather the maximum amount of solar energy when compared
to their static counterparts due to their mobility on both the horizontal and vertical axis.
One of the quality indicators for a durable and robust solar tracking device is given by the
PV panel’s energy production. The energy management can be directly linked to the energy
production of energy-harvesting devices such as fixed-tilted PV panels, solar concentrators,
and solar trackers, to name only a few. The energy production estimation can be computed
with the help of a variety of parameters such as the total surface area and the yield of a PV
panel [5], solar radiation [6], and Performance Ratio (PR) factor [7].

However, regarding solar tracking devices, the parameters mentioned above for
calculating the energy production are not sufficient since the electrical equipment of a
mobile solar tracking device can be affected by hardware, software, and in-circuit errors [8],
which can alter its long-term performance and durability. Regarding this aspect, in this
paper we make use of a set of reliability metrics to calculate the Solar Reliability Factor
(SRF) parameter of a solar tracking device that will be further used in a solar-powered
smart home automation system’s energy production global formula.

The reliability-oriented metrics make use of a precomputed Solar Test Factor (STF),
which targets quantifying the fault coverage using data from various test scenarios (soft-
ware, hardware, and in-circuit testing (ICT)). The experimental data are collected over
two weeks with the help of testing equipment coupled to the dual-axis solar tracking
system. The SRF parameter will be only used to calculate the power generation of mobile
PV systems equipped with dual-axis solar tracking devices. Simultaneously, the traditional
PR factor will be preserved for computing the energy production of static deployed PV
systems. A comparison between the SRF parameter and the PR factor is also provided in
this paper to demonstrate the validity of the reliability-oriented metrics.

1.2. Solar-Powered Internet of Things (IoT)-Based Smart Home Automation Systems

Current advancements in the IoT domain show a growing interest in developing
solar-powered smart home automation systems [9–15], as well as employing reliable and
efficient energy production formulas, which are used to optimize the energy management
of future smart green homes.

Sustainable home automation with advanced security features and powered entirely
by green energy has become a feasible solution for today’s social standards. The authors
in [9] propose IoT-based smart home automation equipped with sensors for motion, fire,
and gas leak detection. Their smart home design makes use of an Arduino mini and
Node Microcontroller Unit (MCU) for monitoring the entire solar-powered sensor network.
Additionally, the employed equipment can be controlled via Wi-Fi capabilities with a
phone application such as Blynk or Alexa. Similarly, the authors in [10] propose a solar-
assisted advanced smart home automation that integrates a solar module, composed of a
PV array, DC-DC converter, Battery Charge Controller, and Battery Bank, which is tethered
to the home automation module comprising a mobile device (smartphone), Dual-Tone
Multi-Frequency (DTMF) decoder, an Arduino 16 MCU, sensors, relay modules, and the
connected loads for experimental purposes. Their results obtained from the Proteus soft-
ware environment show that the proposed design ensures high security against data and
power theft since all home appliances are protected via an implemented password system.

To further increase the energy supplies for smart home environments, static solar
panels were replaced by mobile PV systems that optimize their position depending on
the Sun’s movement during daylight cycles. A.D. Asham et al. [11] connected a dual-axis
solar tracker to an Egyptian smart green home design where energy consumption is a
persisting challenge. To address this issue, the authors proposed a two-folded methodology
that targets power consumption monitoring and a dedicated solar power supply system
that reduces the power consumption from the National Power Grid. Their proposed
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system comprises a wireless network of controllers distributed in different areas of the
home to monitor the energy consumption via a TFT Touchscreen actively. A similar smart
home solution is found in [12], where a variety of deployed IoT devices (light switches,
power plug, temperature sensor, gas sensor, water flow sensor, water level sensor, and
motion sensors) are powered directly from sun-tracking solar panels. The feasibility
and effectiveness of the author’s proposed system demonstrate that future greenhouses
will soon benefit entirely from solar energy, therefore becoming independent from the
traditional power grid.

The previously described research efforts show that energy management remains a
crucial element in intelligently distributing clean energy to power modern IoT-connected
devices deployed in solar-powered smart home automation systems. A novel smart home
energy management system is presented in [13], which relies on two algorithms, the Cost
Saving Task Scheduling algorithm and the Renewable Source Power Allocation algorithm.
By combining the two above-listed strategies, the authors achieve, with their proposed
approach, an energy cost saving between 35% and 65% compared to test scenarios where
automatic control is absent. A more optimized energy management strategy is presented
in [14] where the authors propose a modern Home Energy Management System (HEMS)
to economically manage the operation of a Home Energy Storage System (HESS), as well
as minimize daily household energy costs, optimize PV self-consumption, and increase
consumer benefits. Their proposed HEMS employs an optimization-based rolling horizon
technique to determine the optimum HESS settings based on real-time measurements.
The optimization process is run every two minutes to update the HESS settings. The
experimental results of their design show a yearly household payment reduction of 32%
and a yearly PV self-consumption of up to 87%. Finally, in [15], the authors propose a Smart
Power Management (SPM) that aims to distribute power across consumers connected
to a microgrid of interconnected Solar Home Systems (SHS) to improve the reliability
and affordability of the supplied energy. Their experimental results show significant
improvements in the reliability of power supplies within the microgrid infrastructure.

This paper distinguishes itself from the previous works by proposing a modified
global energy production computation formula that replaces the traditional PR factor
with a novel SRF parameter, which describes the reliability and availability of our solar
tracking device. Hence, by varying the SRF parameter, we analyze the energy production
equation in different scenarios, demonstrating that reliability-oriented metrics significantly
improve the accuracy of predicting the energy production outcome and optimize energy
management strategies of solar-powered smart home automation systems.

2. Proposed Energy Management Solution for the Smart Home Automation System

In this section, an efficient energy management diagram is proposed to improve
the power distribution and achieve self-sufficiency for our solar-powered smart home
automation system. The energy management design is constructed around two major
modules: (a) solar tracking module with energy storage solution; (b) home automation
model with energy storage solution and smart switching relay modules.

2.1. Solar Tracking Module with Energy Storage Solution

According to the literature review, one of the most important facilities of solar-powered
smart home automation systems is the ability to power all deployed IoT-connected devices
with clean energy to reduce the energy consumption of sensors, actuators, DC motors,
etc. As shown in the top layer of Figure 1, we distinguish the Dual-Axis Solar Tracker
block, which is composed of the PV panel, and the electrical equipment that optimizes the
payload’s position every hour during daylight cycles. The PV panel’s role is to generate
electrical energy for charging the power banks and other connected devices. The Solar
Tracker block is linked to the INA219A module used to monitor the amount of energy
produced by the solar panel by reading parameter values such as current, voltage, and
power every 60 min.
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Figure 1. Proposed Energy Management Block Diagram for the Solar-Powered Smart Home Automation System.

The next element in the diagram is the Solar Charge Controller, which is utilized to
regulate the energy flow from the PV array and to transfer it directly to the power banks as
a DC-coupled system. The Solar Charge Controller provides energy for many components
of the diagram, one of them being the ESP MCU (ESP 8266 or ESP 32) that sends data to
Google Sheets, a cloud-based system that stores information obtained from the monitoring
of energy generation of the PV panel, energy consumption of the smart home appliances,
and the charging level of the power banks. The Solar Charge Controller is connected to a
Relay module block, which transfers the solar panel’s energy to the ESP MCU, the central
power bank, and the secondary power bank.

The secondary battery’s role is two-folded: first, it provides voltage supplies to the
electrical equipment of the solar tracker; secondly, the surplus of stored energy can be used
to power other devices such as smartphones and tablets, to name only a few. For clarity,
the connections between the depicted elements in Figure 1 were labeled in the following
manner: power supply lines were highlighted with red color, signal lines were marked
with blue color, and transistor power supply lines were highlighted with green color.

2.2. Home Automation Model with Energy Storage Solution and Smart Switching Relay Modules

The second module of the energy management solution can be observed in the bottom
part of Figure 1 (inside the purple dotted box) and continues with the main power bank
description. The primary battery offers 3 USB ports and provides energy to 3 main devel-
opment boards: Arduino Mega 2560 MCU, ESP 32 Thing Plus, ESP 32 MCU, and all sensor
modules mounted inside the smart home automation system. The INA219B IoT device is
used to monitor the main battery’s discharging level and gives proper feedback to the ESP
MCU from the Solar Tracking module layer. The Arduino Mega 2560 is the main MCU and
is used to control the sensors, micro servo motors, and the other devices installed inside
the House Model. On the other hand, the ESP32 MCU is connected to the sensor modules
and enables remote control via a smartphone with Wi-Fi capabilities.



Energies 2021, 14, 2541 5 of 23

The ESP 32 Thing Plus is deployed to control a pair of relay modules remotely: Relay
A, which is used to turn on and off the Arduino Mega 2560 MCU, and Relay B is utilized to
turn on and off the ESP 32 MCU. The smart switching relay method will ensure proper
maintainability when one sensor module becomes faulty during operation and requires
replacement. Additionally, BS250 PMOS transistors are distributed between several block
elements of the diagram to maintain a constant voltage flow. Finally, the House model
contains a series of sensor modules: MQ5 gas sensor (gas leakage detection), water sensor
(flood detection), DHT22 sensor (temperature and humidity monitoring), flame sensor
(fire detection), light sensor (level of light inside the home), piezoelectric sensor (for
detecting movement inside the house), and motors (MG 90 S servo motor which is used to
automatically open and close the door if a valid tag with access rights is presented to the
RFID module).

3. Proposed Reliability-Oriented Metrics for Computing the Energy Production of the
Solar-Powered Smart Home Automation System

In the following, we detail the proposed reliability-oriented metrics necessary for
computing the energy production of the solar-powered home automation system seen
earlier in Figure 1, as well as alternative formulas for establishing the energy generation of
state-of-the-art PV systems.

3.1. Reliability-Oriented Metrics Applied in the Global Energy Production Formula

Reliability and availability metrics are essential quality indicators for evaluating the
performance of modern solar tracking systems. More precisely, our novel reliability metrics
proposed in [16] employ an STF, which aims to use data from different test scenarios
(software, hardware, and ICT) for computing the fault coverage, as well as an SRF that
generates a probabilistic reliability parameter based on the precomputed STF.

As formulated in [16], the general form of the STF parameter is presented in Equation (1):

STF =
NE × TV

TP × 2N (1)

where TV denotes the number of executed test vectors, NE denotes the number of errors
per test case, TP denotes the total number of test patterns, and N denotes the number of
similar devices used for error detection. At the same time, its variations depend mainly on
the nature of test scenarios. For instance, in the case of hardware error detection, we can
quickly adapt the general formula as depicted in relation (2) [16]:

STFH =
NE × TV

TP × 2D (2)

where D stands for the total number of flip-flops used in Built-In Self-Test (BIST) routines.
Similarly to hardware testing, when considering software test case scenarios, we can modify
the general formula as presented in Equation (3) [16]:

STFS =
NE × TV

TP × 2B (3)

where B represents the number of software functions/breakpoints implemented in White-
Box Software Testing (WBST) routines. Moreover, when employing ICT test scenarios, the
general STF formula is written according to Equation (4) [16]:

STFI =
NE × TR

NR × 2P (4)

where NR represents the total number of test rounds, and P designates the number of
equipped probes during the ICT method. To include all test scenarios into one compact
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global equation set, we apply a unified metrics system, as described in [8], according to
equation set (5):  STFG = STFH+STFS+STFI

n

STFG =

NE×TV
TP×2D +

NE×TV
TP×2B +

NE×TR
NR×2P

n

(5)

where STFG represents the global solar test factor for mixed test scenarios, measured as the
average value of all previously computed STF parameters, and n denotes the total number
of STF parameters. Equally, as stated in [16], the general form of the SRF parameter is
presented in Equation (6):

SRF = exp[
NE × TV

TP × 2N ] (6)

where exp stands for Euler’s constant with a default value of e = 2.71828. Furthermore,
the SRF parameter can be computed for each of the predefined STF variables from
Equations (2)–(4), obtaining the global equation system (7) [8]: SRFG = SRFH+SRFS+SRFI

n

SRFG =
exp[ NE×TV

TP×2D ]+exp[ NE×TV
TP×2B ]+exp[ NE×TV

TP×2P ]

n

(7)

where SRFG represents the global solar reliability factor for mixed test scenarios, measured
as the average value of all previously computed SRF parameters, and n denotes the total
number of SRF parameters.

Although the previously described unified metric systems are essential for assessing
the performance of robust and durable solar tracking systems [8,16], in the context of this
paper its applicability is extended to the energy production domain. More precisely, we
aim to improve the global energy production formula by replacing the traditional PR factor
with the above-computed global SRF parameter and increasing the prediction of the solar
tracker’s energy generation.

Regarding the solar energy generation domain, the global formula for estimating the
generated electricity at the output of a PV system can be expressed as in Equation (8):

EP = A× r× H × PR (8)

where EP represents the energy production expressed in Wh, A represents the total solar
panel area in cm2, r represents the solar panel yield in percent, H represents the annual
average solar radiation on static solar panels (shadings not included), and PR represents
the output ratio coefficient for losses (range between 0.5 and 0.9), with a default value of
0.75). Supplementary parameter r is given by the ratio of electrical power (expressed in
Wp) of one solar panel divided by the panel’s functional area. Mathematically, the yield r
can be written as in Equation (9):

r =
P
S

(9)

where P is the outputted power of the solar panel divided by the functional area S. Further-
more, the parameter P can be extended as in relation (10):

P = U × I (10)

where U represents the voltage expressed in V (volts), and I is the current collected from
all PV cells and is expressed in A (amperes).

However, in real-time test scenarios, certain weather conditions impact the solar
panel’s performance, resulting in significant voltage loss, one example here being the
temperature. Similar to other electronic components, in cold temperatures solar panels
operate more effectively, allowing the panel to generate more voltage and, therefore, more
electricity. As the temperature increases, the panel produces less voltage and becomes less
effective, resulting in less produced electricity, as shown in Figure 2.
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Figure 2. Ideal, Standard, and Critical Temperature Variation.

Figure 2 presents the voltage (X-Axis)-current (Y-Axis) dependencies based on the
ideal (green-dotted line), standard (blue line), and critical (red-dotted line) temperature
variations. The collected values from Figure 2 are extracted from various tests conducted
by manufacturers in the PV market, demonstrating that, in general, for each degree above
298 degrees Kelvin (K), known as a Standard Testing Condition (STC), the solar panel will
become one percent less efficient.

However, the voltage produced from the above graphical representation in Figure 2
depends on the solar panel configuration (total voltage output), an aspect which will be
detailed in Section 4 of this paper. The temperature’s impact on the voltage parameter from
Equation (10) can be expressed mathematically as in relation (11):

U(T) = U − (T − 298)%×U T ∈ [298 K; 338 K] (11)

where U is the voltage expressed as a function of the temperature T. By combining
relations (7)–(11), we obtain the equation system (12):

EP = A× r× H × PR
r = P

S
P = U × I
U(T) = U − (T − 298)%×U T ∈ [298 K; 338 K]
PR = SRFG

SRFG = SRFH+SRFS+SRFI
n

(12)

By compressing equation system (12), we obtain the final global energy production
formula (13):

EP = A× [U−(T−298)%×U]×I
S × H × SRFG

T ∈ [298 K; 338 K]
(13)

where the temperature T takes values between 298 K and 338 K. If the parameter T is lower
than 25 ◦C, there will be no PV panel voltage losses. For a more concrete example, let
us consider a real-life scenario where we gradually substitute each variable according to
formula (12).

First, we calculate the global STF by considering three test scenarios for BIST, WBST,
and ICT routines.

Regarding BIST test scenarios, we will start from the following considerations: (a) for
a total number of TV = 7 (test cases), we have successfully identified NE = 10 bit-flip errors.
Concerning property (a), since multiple errors (burst errors) may occur within a single test
vector, the number of errors detected may be greater than the number of test cases [16].
Additionally, we have (b) a number D = 4 flip flops used in the structure of a random
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Multiple Input Signature Register (MISR). The proposed formula is used to measure the
total number of test cases TP, as presented in Equation (14) [16]:

TP = 2D − 1→ TP = 24 − 1 = 15 (14)

By having this hypothetical data, we will be able to substitute the variables from
Equation (2) in relation (15) [16]:

STFH =
10× 7
15× 16

=
70

240
= 0.29 ≈ 0.30 (15)

Regarding WBST routines, we will start from the following considerations: (a) for
a total number TV = 7 (test cases), we have successfully identified NE = 10 calculation
errors. Additionally, we have: (b) a number of TP = 10 test patterns and a number B = 10
breakpoints in our software code, meaning that all calculation errors were successfully
detected using the deployed software functions. Let us proceed with computing the STF
parameter, as presented in Equation (16) [16]:

STFS =
10× 7

10× 10
=

70
100

= 0.70 (16)

Regarding ICT routines, let us consider a real-life scenario where we want to identify
all possible test points’ voltage deviations. For this purpose, we implement a total of TR =
100 test routines, a total of NR = 10 rounds for each test stage, and P = 2 probes to classify
NE = 12 voltage deviations. Based on the previous configuration, the STF parameter will
be computed using relation (17) [16]:

STFI =
NE × TR

NR × 2P =
12× 10
100× 22 =

120
400

= 0.30 (17)

At this point, we can apply equation set (5) to compute the global STF parameter, as
presented in expression (18):{

STFG = STFH+STFS+STFI
n

STFG = 0.30+0.70+0.30
3 = 1.3

3 = 0.43
(18)

Secondly, according to equation system (8), we can calculate the global SRF by follow-
ing a series of steps. Since the SRF expression is the STF equation’s exponential, we can
rewrite the entire relationship as in Equation (19):{

SRFH,I = e−STFH,I = e−0.3 = 1
e0.3 = 1

2.710.3 = 1
1.3486 = 0.74

SRFS = e−STFS = e−0.7 = 1
e0.7 = 1

2.710.7 = 1
2 = 0.50

(19)

At this point, we can compute the global SRF of the automated solar tracking equip-
ment as presented in Equation (20):{

SRFG = e−STFH+e−STFS+e−STFI
3

SRFG = 0.74×2+0.50
3 = 1.98

3 = 0.66
(20)

Conclusively, the global SRF is rated at 66% when the solar tracking system is affected
by hardware, software, and in-circuit errors.

3.2. Global Energy Production Formula Applied to Real-Life Scenarios

The metrics mentioned above can be applied to various real-life scenarios regarding
the calculus of reliability, availability, and global energy production. More specifically,
to establish accurate predictions about the global energy production of the entire solar-
powered smart home automation system, we are interested in formulating problems
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concerning the error rates and power generation of the solar tracker. For instance, let us
consider the precomputed global SRF parameter, which is used to assess the reliability of
the solar tracking equipment, and we want to determine the power output, respectively,
the global energy production for one complete day cycle. We can solve this problem by
just relying on equation set (14) and by following the subsequent considerations: (a) for
simplicity, the total area of the solar panel A is equal to the usable surface of the PV panel
S; (b) during one daylight cycle measurements were performed according to the STC from
Section 3.1, obtaining a solar panel output voltage of 12 V and a current flow of 0.6 A, with
a constant temperature T = 298 K, and under a solar irradiance level of H = 1 kW per square
meter. By substituting all known variables with their determined values, we obtain the
following results, as presented in equation set (21):

EP = A× [U−(T−298)%×U]×I
S × H × SRFG

EP = A× [12−(298−298)%×12]×0.6
A × 1× 0.66

EP = 12× 0.6× 1× 0.66 = 4.752 Wh
T ∈ [298 K; 338 K]

(21)

Let us further consider that the solar tracking device is not harmed by system errors
and works in optimal conditions. Under these circumstances, the global SRF parameter
will be rated at 100%, resulting in the equation system (22):

EP = A× [U−(T−298)%×U]×I
S × H × SRFG

EP = A× [12−(298−298)%×12]×0.6
A × 1× 1

EP = 12× 0.6× 1× 1 = 7.2 Wh
T ∈ [298 K; 338 K]

(22)

Hence, when the global SRF is 1, it does not impact the global energy production of
the entire solar-powered smart home automation system.

3.3. Alternative Formulas for Calculating the Global Energy Production of PV systems

Besides the proposed reliability metrics, which improve the accuracy of computing
the global energy production, there are several state-of-the-art methodologies [17,18] in
the solar energy domain which allow increased prediction in determining the long-term
energy production of modern PV systems.

Similar to our previously described model, several parameters reappear in literature
formulas, such as the PR factor [17], which is considered a critical parameter for evaluating
PV output since it summarizes the deviation from the STC, the various losses due to
device equipment (such as inverters, cables, etc.), and the effect of multiple variables
(radiation incidence angle, temperature, soiling, etc.). The PR factor is computed using the
formula (23) [17]:

PR = kΘ × kQ × kB1 × kΥ × kW × kS × ηinv (23)

where kθ is the optical reflection reduction factor; kQ is the quantum efficiency reduction
factor; kB1 is the low irradiance reduction factor; kΥ is the module temperature reduction
factor; kW is the wiring losses reduction factor; kS is the soiling factor; ηinv is the inverter
conversion efficiency. The losses due to the temperature of cells can be calculated, at every
time step, with Equation (24) [17]:

kΥ =
100−Υ(TC − Tre f )

100
(24)

where Υ is the power temperature factor [%/◦C]; TC is the temperature of the PV cells [◦C];
Tref is the cell’s reference temperature [◦C]. Regarding the previous formula, the reference
temperature for the cell is 25 ◦C, and the temperature factor Υ is referred to the energy
provided by the PV module; the value of which is a variable of the particular type of
module and the semiconductor that composes the cells, usually ranging between 0.2 and
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0.5. The temperature TC of the PV cell is measured as a function of ambient temperature,
irradiance, and NOCT parameter and is computed with Equation (25) [17]:

TC = Ta +
NOCT − 20

0.8
× GT (25)

where Ta is the ambient temperature (in degrees Celsius); NOCT is the nominal operating
cell temperature [◦C]; GT is the global irradiance on the surface of the module [kW/m2].
Most of the above-described factors are affecting the performance of PV systems. For the
correlation of these variables, multiple mathematical equations are used, all of which are
linked to the fundamental formula (26) [17]:

EPV = PR× Pn ×
HT

GSTC
(26)

where EPV is the amount of electricity produced by the PV system during the analysis time
[kWh]; PR is the solar plant’s output ratio; Pn is the plant’s nominal power, calculated in
STC [kW]; GSTC is the solar irradiance in STC [kW/m2]; HT is the total solar irradiation on
the modules plan [kWh/m2]. Formula (26) can be used to estimate PV output over long
periods (day, month, year), but it can also be utilized for instant calculations. The inverter
efficiency function can then be expressed using Equation (27) [17]:

ηinv = (aPLR2 + bPLR + c)× log(PLR× 103 − d) (27)

where ηinv is the inverter efficiency; PLR is the component load ratio; and a,b,c,d are
precomputed nonlinear regression coefficients. Furthermore, the PLR of inverter operation
is calculated using the Equation (28) [17]:

PLR =
Pinv

Pinv,nom
(28)

where Pinv is the inverter’s power output [kW]; Pinv, nom is the inverter’s nominal power
output [kW]. The parameters chosen are the most important for PV output, and therefore it
is possible to define an energy estimation formula, as presented in relation (29) [17]:

EPV,year,est = aHT,hor + bTm + cΥ+ d (29)

where EPV,year,est is an estimate of the electricity produced by a 1 kWp PV system in one
year [kWh]; HT,hor is the average solar irradiation of the modules over a year [kWh/m2];
Tm denotes the annual average air temperature [◦C], and Υ is the power temperature
coefficient [%/◦C]. A reliability ratio formula is finally used to compare the measured
energy production with the estimated energy production, as illustrated in Equation (30):

Ratio =
EPV,year

EPV,year,est
(30)

where EPV,year, is the yearly measured energy PV production [kWh]; EPV,year,est is the yearly
estimated PV production. The reliability ratio calculated for accurate data remains in the
level of accuracy generally attributed to PV simulation tools [17].

A simplified energy production computation model is presented in [18] where the
solar-generated power (Watt Peak) is calculated with the formula (31):

PWatt Peak = Area array× PSI × ηPV (31)

where PWatt Peak is the maximum power generation of the PV panel; Area Array is the usable
surface equipped with PV cells; PSI is the peak sun insolation (solar radiation), and ηPV
represents the solar panel efficiency. For a more concrete example, let us consider that the
Array area is 50 m2, PSI is rated at 1000 W/m2, and the solar panel efficiency is 17%. The
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above-listed assumptions were made for STC where solar cell efficiency ηPV is defined
between 15% and 17%, at a temperature of 25 ◦C, resulting in the equation set (32) [18]:

PWatt Peak = 50 m2 × 1000 W/m2 × 0.17 = 8.750 Wp (32)

Additionally, if multiple solar panels are connected to the same grid, we can compute
the total number of solar panels, with a maximum output power of 130 Wp per panel, by
using the formula (33):

NSP =
Pwatt peak

Pm
=

8.750 W
130 W

= 67.30 ≈ 68 solar panels (33)

where Pm is the maximum outputted power by a solar panel.

4. Experimental Setup and Results

This section of the paper is divided into two subchapters compromising the hard-
ware implementation and Cloud layer of the solar-powered smart home automation
system, as well as a comparison between our proposed global energy production formula
based on reliability-oriented metrics and alternative energy production equations from
related works.

4.1. Hardware Implementation and Cloud Layer of the Solar-Powered Smart Home
Automation System

As previously described in Section 2, the hardware setup of the solar-powered smart
home automation system is divaricated into two major parts: the solar tracking module [19]
and the smart home automation module [20]. The first element shows the dual-axis solar
tracker (a) that powers the smart home automation system; its maximum power output, as
well as other parameters, are outlined in the subsequent subchapter of this section. The
next component is the solar charge controller (b), a powerful all-in-one control device
that provides three input-output ports: one dedicated to solar modules, one dedicated to
charging the PV panel battery with collected electricity from the solar panel’s PV cells, and
one output module for connecting the current charge. The Ultra Cell battery (c) is a 12 V,
9 Ah acid-plumb battery, which is often used in UPS systems to provide energy for desktop
computers in the event of a local power failure. Distinct from the block diagram in Figure 1,
we connected a DC-to-DC inverter (d) between the battery and the dual-axis solar tracker
to power the electrical equipment directly from the accumulator. Since the SRF parameter
can only be obtained from the fault coverage of intrusive system errors, we connected the
solar tracking equipment to a dedicated Hybrid Testing Platform (e) composed of a Flying
Probe In-Circuit Tester (FPICT) and an ST-Link V2 JTAG module adapter [21], as shown in
Figure 3.

Additionally, for monitoring the FPICT process and the JTAG method, we made use
of a Raspberry Pi 3B+ (f) as our primary computing platform as well as a 7-inch display (g)
for visualizing the results of our test cases.

According to the block diagram depicted in Figure 1, the main development board
connecting the hardware layer of the solar-powered smart home automation system with
the Cloud layer is the ESP32 Thing Plus Wi-Fi module (i). We opted for the low-cost
and low-power ESP32 MCU due to the integrated Wi-Fi and Bluetooth capabilities which
operate at long-range distances, one additional benefit being the power-management
modules that reduce the energy consumption considerably. The ESP32 makes use of
its Wi-Fi capabilities to transfer data received from the solar tracker to the specifically
created Google Sheet and is also used to divert the flow of energy obtained from the solar
tracking device to the required equipment based on the outcome of the obtained and stored
results in Google Sheet. The first element in the Cloud layer is Google Drive (j), a cloud
storage environment used to store information and data transferred from the weather
website to Google Sheets via an add-on called Coupler.io. The data from the solar tracking
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device is also transferred to Google Drive with a secondary ESP 32 MCU, as depicted
in Figure 1. All the stored data from the weather and the solar tracker, combined with
personalized mathematical formulas, is used to monitor, predict, and control the flow of
electrical energy for the solar-powered home automation system. The second element
is the Coupler.io add-on (k), a software interface that can be easily integrated into the
Cloud system via Google Sheets and has the role to pull the required data from the weather
website on a fixed schedule (in our case, every day from 4:00 a.m. to 11:00 p.m.). Since
the employed Coupler.io is a free variant, we can only pull 50.000 rows of data per month,
which is more than sufficient because we need less than 744 rows per month for our hourly
monitoring. The third element in the Cloud layer depicts the website from which weather
data is collected in real time, using a dedicated Application Programming Interface (API)
(l), which returns real-time weather conditions data for a specific location. The utilized
API is provided by the weather website Accuweather and is free of charge for up to 50
calls per day, which is more than sufficient since we require less than 24 calls per day
because we collect data only at specific times during 24 h. Finally, the hardware layer’s
last element represents the solar-powered home automation system (m) which will use
the energy generated by the solar tracker to power all of its automated equipment and
sensor components.
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4.2. Energy Production Graphical Representations and Results

Our research investigates the global energy production efficiency variation concerning
the computed SRF parameter that indicates the availability of the dual-axis solar tracking
system. Traditional parameters such as voltage, current, power, solar radiation, and
temperature are, however, not sufficient for plotting the graphical representations of the
global energy production. Two additional coefficients are necessary for determining the
global reliability factor of the solar tracking equipment, namely the STF and SRF parameters.
In a previous work [8], we computed the global STF and SRF by using experimental error
data (hardware, software, and in-circuit errors) gathered over two weeks, as presented in
Table 1.
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Table 1. Experimental results regarding our Hybrid Testing Suite (FPICT + JTAG) [21].

Test Schedule Fault Coverage (%)

No. of Days
No. of Test Cases Per Day Error Types

8:00
a.m.

4:00
p.m.

Syntax
Errors

Structural
Faults

Stuck-at-
Faults

M
os

tl
y

Su
nn

y
W

ee
k

1

1 1

70.20 78.20 60.10
2 69.10 77.10 65.10
3 65.14 65.20 69.15
4 67.20 66.20 56.10
5 66.66 60.20 55.45
6 71.13 79.90 59.10
7 65.20 75.13 52.01

P
ar

tl
y

C
lo

ud
y

W
ee

k

1

1 1

69.65 77.65 62.55
2 67.67 71.70 64.62
3 68.70 72.70 58.10
4 68.43 72.20 57.27
5 70.66 69.20 64.12
6 67.70 71.65 54.10
7 71.16 66.20 57.30

Total 28
Average Fault Coverage

67.80 71.70 59.57

First, regarding the mostly sunny week, according to relation (5) we calculated the
equation set for the global STF parameters as expressed in the equation system (34) [8]:

STFG = STFH+STFS+STFI
3

STFG =

EH
2D×(2D−1)

+
ES

TP×2B +
EI

NR×2P

3

STFG1 =

EH1
2D×(2D−1)

+
ES1

TP×2B +
EI1

NR×2P

3

STFG2 =

EH2
2D×(2D−1)

+
ES2

TP×2B +
EI2

NR×2P

3

STFG3 =

EH3
2D×(2D−1)

+
ES3

TP×2B +
EI3

NR×2P

3

STFG4 =

EH4
2D×(2D−1)

+
ES4

TP×2B +
EI4

NR×2P

3

STFG5 =

EH5
2D×(2D−1)

+
ES5

TP×2B +
EI5

NR×2P

3

STFG6 =

EH6
2D×(2D−1)

+
ES6

TP×2B +
EI6

NR×2P

3

STFG7 =

EH7
2D×(2D−1)

+
ES7

TP×2B +
EI7

NR×2P

3

(34)

where EH stands for the hardware error data from column 7 of Table 1, ES designates
the software error data from column 5 of Table 1, and EI represents the in-circuit error
data from column 6 of Table 1. The above metrics system were calculated for a number
of D = 16 flip-flops (for stuck-at-faults), TP = 840 (for syntax errors), and NR = 1000 (for
structural faults). Accordantly, we obtained the following results, presented in equation
system (35) [8]: 

STFG1 = 0.6010+0.0219+0.391
3 = 1.0139

3 = 0.33796
STFG2 = 0.6510+0.0215+0.3855

3 = 1.058
3 = 0.3526

STFG3 = 0.6915+0.0203+0.326
3 = 1.0378

3 = 0.34593
STFG4 = 0.5610+0.021+0.331

3 = 0.913
3 = 0.3043

STFG5 = 0.5545+0.020+0.301
3 = 0.8755

3 = 0.2918
STFG6 = 0.5910+0.022+0.3756

3 = 0.9886
3 = 0.2918

STFG7 = 0.5201+0.020+0.3755
3 = 0.9156

3 = 0.3052

(35)
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Similarly, concerning the partly cloudy week, we computed the global STF parameters,
as presented in equation set (36) [8]:

STFG = STFH+STFS+STFI
3

STFG =

EH
2D×(2D−1)

+
ES

TP×2B +
EI

NR×2P

3

STFG8 =

EH8
2D×(2D−1)

+
ES8

TP×2B +
EI8

NR×2P

3

STFG9 =

EH9
2D×(2D−1)

+
ES9

TP×2B +
EI9

NR×2P

3

STFG10 =

EH10
2D×(2D−1)

+
ES10

TP×2B +
EI10

NR×2P

3

STFG11 =

EH11
2D×(2D−1)

+
ES11

TP×2B +
EI11

NR×2P

3

STFG12 =

EH12
2D×(2D−1)

+
ES12

TP×2B +
EI12

NR×2P

3

STFG13 =

EH13
2D×(2D−1)

+
ES13

TP×2B +
EI13

NR×2P

3

STFG14 =

EH14
2D×(2D−1)

+
ES14

TP×2B +
EI14

NR×2P

3

(36)

The STF parameters for the partially cloudy week were determined for a number
D = 16 flip-flops, TP = 840 software test vectors, NR = 1000 in-circuit routines, according to
the equation set (37) [8]:

STFG8 = 0.6255+0.0217+0.3882
3 = 0.3451

STFG9 = 0.6462+0.0211+0.3585
3 = 0.3419

STFG10 = 0.5810+0.0214+0.3635
3 = 0.3219

STFG11 = 0.5727+0.0213+0.361
3 = 0.3183

STFG12 = 0.5727+0.0228+0.346
3 = 0.3364

STFG13 = 0.5410+0.0211+0.358
3 = 0.3068

STFG14 = 0.5730+0.022+0.331
3 = 0.3087

(37)

Secondly, according to equation set (7) and the determined global STF values, we
computed the global SRF parameters for the mostly sunny week, as presented in equation
system (38) [8]: 

SRFG = SRFH+SRFS+SRFI
3

SRFG =
exp[ E

2D×(2D−1)
]+exp[ E

TP×2B ]+exp[ E
NR×2P ]

3
SRFG1 = e−STFH1+e−STFS1+e−STFI1

3
SRFG2 = e−STFH2+e−STFS2+e−STFI2

3
SRFG3 = e−STFH3+e−STFS3+e−STFI3

3
SRFG4 = e−STFH4+e−STFS4+e−STFI4

3
SRFG5 = e−STFH5+e−STFS5+e−STFI5

3
SRFG6 = e−STFH6+e−STFS6+e−STFI6

3
SRFG7 = e−STFH7+e−STFS7+e−STFI7

3

(38)
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By replacing the computed STF parameters in the metrics system (39), we obtained
the SRF parameters, as presented in equation set (39) [8]:

SRFG1 = 0.5482+0.9783+0.6763
3 = 0.7342

SRFG2 = 0.5215+0.9787+0.6801
3 = 0.7267

SRFG3 = 0.5008+0.9799+0.7218
3 = 0.7341

SRFG4 = 0.5706+0.9792+0.7182
3 = 0.756

SRFG5 = 0.5743+0.9801+0.7400
3 = 0.7648

SRFG6 = 0.5537+0.9782+0.6868
3 = 0.7395

SRFG7 = 0.5944+0.9801+0.6869
3 = 0.7538

(39)

With regards to the partly cloudy week, the remaining SRF parameters were calculated
with the equation system (40) [8]:

SRFG = SRFH+SRFS+SRFI
3

SRFG =
exp[ E

2D×(2D−1)
]+exp[ E

TP×2B ]+exp[ E
NR×2P ]

3
SRFG8 = e−STFH8+e−STFS8+e−STFI8

3
SRFG9 = e−STFH9+e−STFS9+e−STFI9

3
SRFG10 = e−STFH10+e−STFS10+e−STFI10

3
SRFG11 = e−STFH11+e−STFS11+e−STFI11

3
SRFG12 = e−STFH12+e−STFS12+e−STFI12

3
SRFG13 = e−STFH13+e−STFS13+e−STFI13

3
SRFG14 = e−STFH14+e−STFS14+e−STFI14

3

(40)

After solving the metrics system (41), we obtained the SRF parameters, as presented
in equation set (41) [8]: 

SRFG8 = 0.5349+0.9784+0.6782
3 = 0.7305

SRFG9 = 0.5240+0.9790+0.6987
3 = 0.7339

SRFG10 = 0.5593+0.9787+0.6952
3 = 0.7444

SRFG11 = 0.5639+0.9781+0.7075
3 = 0.7374

SRFG12 = 0.5266+0.9801+0.7400
3 = 0.7648

SRFG13 = 0.5821+0.9790+0.6988
3 = 0.7533

SRFG14 = 0.5638+0.9780+0.7182
3 = 0.7533

(41)

Thirdly, based on equation set (5) and by analyzing the average values from Table 1,
we accurately computed the general STF and SRF parameters according to the metrics
system (42) [8]: {

STFG = 0.5957+0.0211+0.358
3 = 0.3251

SRFG = 0.5511+0.9790+0.6987
3 = 0.7429

(42)

According to the last equation set (43), it is observable that the global SRF of the entire
solar tracking device is rated at 74.29%.

Following this, we computed the global energy production of the solar tracking device
according to the equation systems (12) and (13) in two different test scenarios. The first test
scenario assumed that the mobile PV system operates in optimal conditions, thus implying
that the SRFG = 1 meaning that the solar tracker achieves 100% availability. Additional
parameters such as the temperature coefficient and solar irradiance level were substituted
according to their STC values. The second test scenario assumed that the mobile PV system
was affected by operations errors hindering it from reaching its maximum harvesting
potential. We replaced the PR factor with the computed SRF parameters to establish the
global energy production of the solar tracking system according to its availability status.
To monitor the impact of the SRF, the temperature, as well as the irradiance level, was kept
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at their STC default values. The global energy production for the mostly sunny week was
computed according to equation system (43):

EP = A× [U−(T−298)%×U]×I
S × H × SRFG

EP1 = A× [U1−(T−298)%×U1]×I1
S × H × SRFG

EP2 = A× [U2−(T−298)%×U2]×I2
S × H × SRFG

EP3 = A× [U3−(T−298)%×U3]×I3
S × H × SRFG

EP4 = A× [U4−(T−298)%×U4]×I4
S × H × SRFG

EP5 = A× [U5−(T−298)%×U5]×I5
S × H × SRFG

EP6 = A× [U6−(T−298)%×U6]×I6
S × H × SRFG

EP7 = A× [U7−(T−298)%×U7]×I7
S × H × SRFG

T ∈ [298 K; 338 K]

(43)

Regarding the first test scenario, we considered the following values for the variables
from equation system (14): the total area of the PV panel is equal to the usable PV cell
surface (A = S = 1548 cm2); the temperature T = 298 K; the solar radiation level is H = 1
kW/m2; the global reliability factor is SRFG = 1. The measured voltage and current values
were extracted from columns 4 and 5 of Table 2.

Table 2. Experimental results regarding Solar Panel Energy Generation and Storage, as well as System Energy Consumption
during the Mostly Sunny Week [21].

Time
Solar Panel

Output
Voltage (V)

Solar Panel
Output

Current (A)

Accumulator
Input Voltage

(V)

Accumulator
Charging

Current (A)

Accumulator
Discharging
Current (A)

Solar Panel
Power Gain

(Wh)

System Energy
Consumption

(Wh)
UV Index

Day 1 17.33 1.2 12.5 0.88 0.45 10.97 8.21 7
Day 2 17.38 1.04 12.37 0.85 0.44 10.54 6.47 7
Day 3 17.31 0.94 12.38 0.85 0.46 10.55 6.72 7
Day 4 17.41 1.04 12.45 0.86 0.5 10.77 7.29 5
Day 5 16.79 0.84 12.44 0.8 0.56 9.99 8 5
Day 6 17.46 1.04 12.51 0.9 0.43 11.27 6.42 6
Day 7 17.45 1.05 12.55 0.89 0.46 11.23 6.8 6

Average 17.3042 1.0214 12.4571 0.8614 0.4714 10.76 7.13 6.1428

Hence, by replacing all variables with their default values, we obtained the global
energy production for the mostly sunny week according to equation system (44):

EP = A× [U−(T−298)%×U]×I
S × H × SRFG

EP1 = 1548× [12.5−(298−298)%×12.5]×0.88
1548 × 1× 1 = 11

EP2 = 1548× [12.37−(298−298)%×12.37]×0.85
1548 × 1× 1 = 10.51

EP3 = 1548× [12.38−(298−298)%×12.38]×0.85
1548 × 1× 1 = 10.52

EP4 = 1548× [12.45−(298−298)%×12.45]×0.86
1548 × 1× 1 = 10.70

EP5 = 1548× [12.44−(298−298)%×12.44]×0.8
1548 × 1× 1 = 9.95

EP6 = 1548× [12.51−(298−298)%×12.5]×0.9
1548 × 1× 1 = 11.25

EP7 = 1548× [12.55−(298−298)%×12.55]×0.89
1548 × 1× 1 = 11.16

T ∈ [298 K; 338 K]

(44)

The graphical representation of the energy production and system energy consump-
tion during the mostly sunny week is given in Figure 4.

Figure 4 depicts the global energy production in optimum conditions and measured
system energy consumption, with the X-Axis representing the number of experimental days
and the Y-Axis representing the energy generation (blue line) and energy consumption (Wh)
(red line) during the mostly sunny week. Thus, we observe that, according to the obtained
results, the average energy production of the solar tracking device is rated at 10.72 Wh,
which compensates for the overall system energy consumption of 7.13 Wh. Additionally,
it is visible that the global energy production formula computes the power generation of
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the dual-axis solar tracker with a minor relative error rate err = 0.04. According to the
experimental data from Table 3, which is associated with the partly cloudy week, we can
compute the global energy production by using the same premise as stated in the first
test scenario.
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Table 3. Experimental results regarding Solar Panel Energy Generation and Storage, as well as System Energy Consumption
during the Partly Cloudy Week [21].

Time
Solar Panel

Output
Voltage (V)

Solar Panel
Output

Current (A)

Accumulator
Input Voltage

(V)

Accumulator
Charging

Current (A)

Accumulator
Discharging
Current (A)

Solar Panel
Power Gain

(Wh)

System Energy
Consumption

(Wh)
UV Index

Day 8 17.15 0.49 12.42 0.45 0.45 5.68 6.58 4
Day 9 17.04 0.47 12.41 0.38 0.36 4.8 5.58 4

Day 10 17.29 0.5 12.36 0.47 0.41 5.85 6.05 3
Day 11 16.66 0.43 12.36 0.45 0.39 5 5.84 3
Day 12 16.62 0.44 12.3 0.4 0.37 4.98 5.55 4
Day 13 16.8 0.5 12.39 0.48 0.37 5.98 5.61 4
Day 14 17 0.54 12.37 0.51 0.5 6.34 7.28 4

Average 16.9371 0.4814 12.3728 0.4485 0.4071 5.5185 6.07 3.7142

Therefore, by substituting all known parameters, we obtained the results, as presented
in equation system (45):

EP = A× [U−(T−298)%×U]×I
S × H × SRFG

EP8 = 1548× [12.42−(298−298)%×12.42]×0.45
1548 × 1× 1 = 5.58

EP9 = 1548× [12.41−(298−298)%×12.41]×0.38
1548 × 1× 1 = 4.71

EP10 = 1548× [12.36−(298−298)%×12.36]×0.47
1548 × 1× 1 = 5.80

EP11 = 1548× [12.36−(298−298)%×12.36]×0.45
1548 × 1× 1 = 5.56

EP12 = 1548× [12.30−(298−298)%×12.30]×0.4
1548 × 1× 1 = 4.92

EP13 = 1548× [12.39−(298−298)%×12.39]×0.48
1548 × 1× 1 = 5.94

EP14 = 1548× [12.37−(298−298)%×12.37]×0.51
1548 × 1× 1 = 6.30

T ∈ [298 K; 338 K]

(45)

The graphical representation of the energy production and system energy consump-
tion during the partly cloudy week is provided in Figure 5.
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Figure 5 presents the global energy production in optimum conditions and measured
system energy consumption, with the X-Axis representing the number of experimental
days and the Y-Axis representing the power generation (blue line) and energy consumption
(Wh) (red line) during the partly cloudy week. The equation system solutions (45) show
that the average energy production of the solar tracking device is rated at 5.54 Wh, which
is outperformed by the system’s energy consumption of 6.07 Wh. It is observable that
the relative error rate between the computed EP and the measured power gain is only
err = 0.03.

Regarding the second test scenario, we considered the following values for the vari-
ables from equation system (14): the total area of the PV panel is equal to the usable PV
cell surface (A = S = 1548 cm2); the temperature T = 298 K; the solar radiation level is H = 1
kW/m2; the global reliability factor is SRFG is a variation extracted from equation systems
(39) and (41). The measured voltage and current values were extracted from columns 4
and 5 of Tables 2 and 3. Thus, by substituting all variables with their default values, we
obtained the global energy production for the mostly sunny week according to equation
system (46): 

EP = A× [U−(T−298)%×U]×I
S × H × SRFG

EP1 = 1548× [12.5−(298−298)%×12.5]×0.88
1548 × 1× 0.73 = 8.03

EP2 = 1548× [12.37−(298−298)%×12.37]×0.85
1548 × 1× 0.72 = 7.56

EP3 = 1548× [12.38−(298−298)%×12.38]×0.85
1548 × 1× 0.73 = 7.67

EP4 = 1548× [12.45−(298−298)%×12.45]×0.86
1548 × 1× 0.75 = 8.02

EP5 = 1548× [12.44−(298−298)%×12.44]×0.8
1548 × 1× 0.76 = 7.56

EP6 = 1548× [12.51−(298−298)%×12.5]×0.9
1548 × 1× 0.73 = 8.21

EP7 = 1548× [12.55−(298−298)%×12.55]×0.89
1548 × 1× 0.75 = 8.37

T ∈ [298 K; 338 K]

(46)

The graphical representation of the energy production and system energy consump-
tion during the mostly sunny week is generated in Figure 6.
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Figure 6 illustrates the modified global energy production considering 73% availability,
with the X-Axis representing the number of experimental days and the Y-Axis representing
the power generation (blue line) and energy consumption (Wh) (red line) during the mostly
sunny week. The global energy production term is expressed concerning the SRF parameter.
Thus, we observe that, according to the obtained results, the average energy production of
the solar tracking device is rated at 7.91 Wh, which still compensates for the general system
energy consumption of 7.13 Wh. According to the experimental data from Table 3, which is
associated with the partly cloudy week, we can compute the global energy production by
using the same values as stated in the second test scenario. Therefore, by substituting all
known parameters, we obtain the results, as presented in equation system (47):

EP = A× [U−(T−298)%×U]×I
S × H × SRFG

EP8 = 1548× [12.42−(298−298)%×12.42]×0.45
1548 × 0.73 = 4.07

EP9 = 1548× [12.41−(298−298)%×12.41]×0.38
1548 × 0.73 = 3.43

EP10 = 1548× [12.36−(298−298)%×12.36]×0.47
1548 × 0.74 = 4.29

EP11 = 1548× [12.36−(298−298)%×12.36]×0.45
1548 × 0.73 = 4.05

EP12 = 1548× [12.30−(298−298)%×12.30]×0.4
1548 × 0.76 = 3.73

EP13 = 1548× [12.39−(298−298)%×12.39]×0.48
1548 × 0.75 = 4.45

EP14 = 1548× [12.37−(298−298)%×12.37]×0.51
1548 × 0.75 = 4.72

T ∈ [298 K; 338 K]

(47)

The graphical representation of the energy production during the partly cloudy week
can be observed in Figure 7. The average EP is now rated at 4.10 Wh, which is considerably
lower than the overall energy consumption of the entire system 6.07 Wh, meaning that the
entire setup will require additional energy supplies from the power grid when the solar
tracker operates under 73% availability conditions.

Figure 7 illustrates the modified global energy production considering 73% availability,
with the X-Axis representing the number of experimental days and the Y-Axis representing
the power generation (blue line) and energy consumption (Wh) (red line) during the partly
cloudy week. At this point, we can analyze the impact of the SRF parameter on the global
energy production by generating the solar tracker’s power generation over two weeks, as
can be seen in Figure 8.
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Figure 8 illustrates the global energy production considering two levels of availability,
with the X-Axis representing the number of experimental days and the Y-Axis representing
the energy production (Wh) with 100% availability (blue line) and energy generation with
73% availability (Wh) (red line) over two weeks. By concatenating the mostly sunny week
together with the partly cloudy week, we observe that the average energy production for
both weeks is 8.13 Wh when the dual-axis solar tracker operates without system errors
(SRFG = 1), and 6.01 Wh when the solar tracker is affected by mixed system errors (hardware,
software, and in-circuit errors), resulting in a significant power generation reduction of
26.11%. The proposed global energy production equation presents several advantages over
state-of-the-art formulas [17,18], as follows: (a) it uses only seven parameters for computing
the energy production, holding the average position between work [17] which makes use
of 14 parameters, and work [18] that utilizes five parameter values; (b) it is tailored towards
static and mobile PV systems, in comparison with works [17,18] which can calculate the
energy production only for the static model; (c) it employs novel reliability-oriented metrics
that classify robust and durable solar tracking systems according to their performance ratio,
showing that fault coverage can significantly impact the solar tracker’s energy production.
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Finally, to demonstrate the validity of the reliability-oriented metrics, a comparison
between the proposed SRF parameter and the traditional PR factor is realized on the two-
week experimental dataset, as presented in Figure 9. The global energy production over
two weeks was calculated first, using the SRF parameter from equation systems (39) and
(41), and secondly, by replacing the PR factor with its default value of 0.75. According
to the statistical data, the global energy production computation using the PR factor is
around 1.50% less accurate than the modified energy production formula. Nevertheless,
we estimate that the gap between the values widens depending on the fault coverage data
obtained from the two-week experimental dataset, representing a future research direction.
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5. Conclusions

This paper presents a modified global energy production computation formula based
on a novel SRF parameter that describes the reliability and availability of a dual-axis
solar tracker. Additionally, we proposed a self-sufficient energy management design of a
solar-powered smart home automation system that integrates a hybrid testing platform
for determining the fault coverage of the solar tracker, as well as a Cloud platform for
monitoring and storing data from the PV panel. By applying the SRF in the global energy
production formula of solar tracking systems, we can predict with a minimal error rate
of 0.03–0.04 the energy generation in real time, allowing proper energy management of
the entire smart home automation system. Experimental results show that the energy
production computation constantly fluctuates over several days due to the SRF parameter
variation, showing a 26.11% reduction when the dual-axis solar tracker’s availability is
affected by system errors and maximum power generation when the solar tracking device
is operating in optimal conditions.

To demonstrate the validity of the reliability-oriented metrics, a comparison between
the proposed SRF parameter and the standard PR factor is performed on a two-week
experimental dataset, showing a 1.50% accuracy decrease for the PR factor in favor of the
modified global energy production formula. Therefore, our research indicates that energy
production computation is far more complex in solar tracking systems due to software,
hardware, and in-circuit errors which affect the system’s stability, resulting in significant
energy loss. Therefore, this paper encourages the deployment of low-cost and energy-
efficient testing facilities that aid modern solar trackers in monitoring and detecting system
errors, ultimately impacting the availability of mobile PV systems.
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