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Abstract: An artificial neural network (ANN) based multi-frequency electrical impedance spec-
troscopy (EIS) technique is proposed to estimate the static state of charge (SOC) of lithium-ion (Li-ion)
battery in this paper. The proposed ANN-based multi-frequency EIS technique firstly collects the
data of AC independence and their corresponding static SOC. With battery discharging current and
multi-frequency EIS results, an ANN model is built and trained to estimate SOC. The measurement
data is obtained using the potentiostats/galvanostats device, and the ANN is trained using the neural
network toolbox in MATLAB. According to the experimental results, the performance of the proposed
ANN model is dependent on the number of neurons in the hidden layer. The proposed method is
validated with a set of random discharging processes. The high accuracy of SOC estimation is able
to be achieved with the average error reduced to 1.92% when the number of neurons in the hidden
layer is 35. Therefore, the proposed ANN-based multi-frequency EIS technique can be utilized to
measure the static SOC of random discharge of Li-ion batteries.

Keywords: artificial neural network (ANN); multi-frequency electrical impedance spectroscopy (EIS);
lithium-ion (Li-ion) battery; static state of charge (SOC); potentiostats; galvanostats

1. Introduction

The soaring oil price and environmental issues have significantly affected the global
automotive industry. In recent years, electric vehicles (EVs) have been rapidly developed
and expanded in automotive markets, with policy support from many countries. Among
a variety of technologies related to EV, Li-ion batteries play an important role in the
increase of EVs. Therefore, the estimation of battery SOC with high accuracy is inevitable
in the development of EVs. Similar to the gas gauge, the SOC serves as key information
for drivers, and it must have high reliability. In fact, SOC estimation turns out to be
challenging because of the changing current in the discharging period. Moreover, when
EV stops running, the Li-ion battery voltage will recover to the open-circuit voltage (OCV)
state. The non-linearity of battery characteristics makes SOC estimation more complicated.
To prevent estimation error which causes unreliability of EVs, some approaches, such as
rise cut-off voltage level or increase of battery capacity, are available. However, they not
only waste the usable capacity but also increase the cost of the EVs.

In recent studies, many techniques have been proposed for SOC estimation, such
as open circuit voltage, loaded voltage method [1–3], Coulomb integral method [4,5],
impedance track technique [6–9] and Kalman Filter [10–12], etc. Among them, methods
based on AC impedance analysis have been widely investigated. For example, the elec-
trochemical characteristic of Li-ion battery was presented with the measurement of single
frequency in [13]. A dynamic electrochemical impedance spectroscopy (DEIS) by continu-
ous impedance measurement of a single frequency during on charging and discharging
in [14]. In addition, due to the non-linearity and high dynamics of battery characteristics,
ANN-based techniques have been widely used to estimate the SOC of a battery. In [15],
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open-loop and closed-loop neural network structures were proposed to estimate SOC. With
the feedback mechanism, the accuracy of the network can be significantly improved. On
the other hand, there are also some studies developed by combining the above techniques.
For example, authors in [16], have proposed a fractional order calculus (FOC) method to
model the constant phase element (CPE) in the impedance model and utilized Kalman
filter to estimate the SOC. Authors in [17] have proposed an enhanced recurrent neural
network-based lighting search algorithm (LSA) model to increase the robustness of the
estimation results using less computation time. Authors in [18] have utilized electrochem-
ical impedance spectroscopy (EIS) and analytical polynomial functions to analyze the
nonlinear relation between SOC and the parameters of battery equivalent circuit. With the
leave-one-out cross-validation (LOOCV) method applied for fitting, the proposed method
is able to systematically analyze the impact of polynomial. Experimental results show that
the usage of 7th-order polynomials can accurately reflect the nonlinear effects of battery
internal parameters. A SOC estimation approach using ANN and EKF with battery equiva-
lent circuit has been proposed in [19]. Both experimental and simulation results show the
proposed method has the advantage of high accuracy for SOC estimation. Authors in [20]
have proposed a fast and effective online measurement of battery impedance for EVs. The
frequency of measurement is between 1 Hz and 2 kHz. The observed voltage and current
waveforms are amplified and filtered by the circuit. Compared with the measurement from
EIS, even under an environment with noise, the proposed technique can reduce the error of
RMS measurement between 1.9% to 5.8%. An OCV-SOC-temperature model was built and
Kalman filter is used to adjust the model parameters. This model is able to simply and effi-
ciently improve the accuracy of SOC estimation under different ambient temperatures [21].
Based on the Thevenin equivalent model of Li-ion battery, an adaptive extended Kalman
filter was used to perform online estimation of the parameters in an equivalent battery
model. The maximum error is reduced to 4.1% [22]. Based on the analysis of the impedance
spectrum of the Li-ion battery, a multi-time scale extended Kalman filter was applied
to estimate the SOC in [23]. To improve the accuracy of SOC estimation, the amount of
charge transferring between the two different of SOC of a battery cell was calculated in [24].
A Coulomb integral based method was proposed in [25] to enhance the accuracy of the
SOC initial value. With voltage, current, and battery OCV information, a fast and online
SOC estimation method was proposed in [26]. In [27], an observation method based on
proportional-integral (PI) was applied to analyze the RC battery model and estimate SOC.
The error of estimation can be constrained within 2%. In [28], an Elman neural network
estimation method was proposed to perform SOC estimation. Compared to traditional
back-propagation neural network estimation method, it has higher accuracy. The authors
in [29] have established a table describing the nonlinear relationship of RC equivalent
circuit of a Li-ion battery and OCV-SOC. Using the voltage and current information from
the experiment, the battery parameters can be updated, and used to estimate battery SOC.
Estimation errors of less than 5% can be obtained. To improve the first-order equivalent
circuit model of Li-ion battery, a neural network model incorporated with Thevenin’s
theorem was used in [30]. The experimental results showed that it is able to achieve high
accuracy for SOC estimation with less calculation time.

The Coulomb integral method is commonly used to obtain the SOC for EV applications.
To update the SOC, initial SOC is usually calibrated by measuring OCV during the pauses
of driving. However, it should be noted that OCV is highly dependent on battery internal
resistance. The estimation error is then caused by the inaccurate initial SOC with OCV
method. Therefore, this paper aims to propose a technique using multi-frequency EIS and
ANN algorithm to determine the SOC of the Li-ion battery under the static state. When
EVs are not running, this method is able to update the SOC accurately and provide a
precise initial SOC state for the coulomb integral method. Due to the high complexity of
mapping the AC impedance result to battery SOC, an ANN-based model is developed
to perform the estimation static SOC of Li-ion battery. To prepare training datasets, a
potentiostat/galvanostat device VMP3 from Bio-Logic Corp. is used to inject a multi-
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frequency voltage sine wave into the Li-ion battery, and the static impedance of the Li-
ion battery can be obtained. The information of multi-point static impedance and the
discharging current are inputs of the ANN. With the input data and the corresponding
SOC output data, ANN is trained with MATLAB software. In the experiment, the proposed
model is validated with a set of random discharging process. With the proposed ANN
model, the error of the estimated results can be reduced to 1.92%.

2. Multi-Frequency Electrical Impedance Spectroscopy Analysis

Multi-frequency EIS, also known as AC impedance technique, is a non-invasive mea-
surement method widely applied to observe electrochemical mechanisms of battery prop-
erties. As a series of electrochemical processes occur in a battery cell, battery impedance
serves as a crucial information for investigating battery parameters and states, such as
SOC, aging effect (state-of-health) and thermal behaviors. Multi-frequency EIS analysis
has become a powerful technique to characterize property changes in battery cells under
different circumstances of usage or storage condition.

2.1. Multi-Frequency EIS Measurement

During an EIS measurement, a small perturbing AC sine wave of voltage or current is
applied to the positive and negative electrodes of the battery. Depending on the types of
analysis, EIS can be performed in either potentiostatic (constant voltage) or galvanostatic
(constant current) mode [13]. Given a sinusoidal perturbation voltage in Equation (1) with
the angular frequency w = 2πf.

∆V = Vamp sin(2π f t) (1)

The oscillating current response can be obtained as in Equation (2) with a phase shift
from the applied signal.

∆I = Iamp sin(2π f t− θ) (2)

Thus, the impedance is determined as:

Z =
Vamp

Iamp
eiθ (3)

With Euler’s formula, Equation (3) can be written as Equation (4)

Z(w) =
Vampeiwt

Iampei(wt−θ)

=
Vamp(cos wt+i sin wt)

Iamp [cos(wt−θ)+i sin(wt−θ)]

= Z0(cos θ + i sin θ)

(4)

In this way, the impedance spectroscopy can be easily illustrated in a Nyquist plot.
A single detection of battery impedance at a certain frequency generates a single point in
a Nyquist plot. Hence, multiple points of battery impedance value can be obtained from
multi-frequency EIS scanning.

2.2. Multi-Frequency EIS Measurement

Figure 1a shows the impedance spectroscopy of a Li-ion cell. It is composed of a curve
intersecting with horizontal axis in the high frequency region, a semicircle in the medium
frequency region, and a straight line in the low frequency region. Figure 1b shows the
equivalent circuit model of the Li-ion battery where Ro is solution resistance, Rct is charge
transfer resistance, Cd is double layer capacitance, Zw is Warburg impedances, and Ld is
an electrode inductance, respectively [31]. The link between impedance spectroscopy and
the equivalent circuit model can be summarized as follows: The high frequency region at
several kHz reflects battery’s inductance Ld. The medium frequency region ranges from
Hz to kHz is regarded as kinetic control region where resistance Ro, a charge transfers
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resistance Rct, and a double layer capacitance Cd are involved. In the low frequency
region between Hz to mHz, also called Mass transfer control, Warburg impedances Zw
is presented.

Figure 1. Nyquist plot and equivalent model of a Li-ion battery: (a) Nyquist plot; (b) an equivalent circuit model.

A potentiostat from Bio-Logic VMP3 (Bio-Logic SAS: 4, rue de Vaucanson Seyssinet-
Pariset—France) is employed to perform constant current/constant voltage (CC/CV) charg-
ing, discharging, and multi-frequency EIS detection. One can design a charging/discharging
schedule and place Li-ion battery in battery testing rack for multi-frequency EIS analysis.
After the cycling schedule is completed, the measurement data, such as voltage, current,
impedance, temperature, and capacity, will be recorded in computer via the VMP3 module,
as shown in Figure 2 and analyzed with EC-Lab software.

Figure 2. Battery testing rack.

3. ANN-Based Model Introduction
3.1. ANN-Based Basic Introduction

ANNs are inspired from biological neural systems and are built to simulate the
behaviors of biological neuron in mathematical. Without the prior knowledge of the
system’s internal dynamics, ANN is able to solve nonlinear problems, such as classification,
clustering, and pattern recognition. ANN is often used in complex conditions where
mathematical model is not completed or difficult to derive. This paper has utilized the
ANN model to estimate the SOC based on the information of static AC impedance. The
proposed method is beneficial from high adaptability of the ANN model under the varying
operating condition.
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An individual artificial neuron is a basic unit where computations are performed.
The basic model of an artificial neuron with m inputs. Similar to a biological neuron, an
artificial neuron also has several inputs and outputs. Weightings are associated with the
inputs and they determine the stimulus or affect to the output. If the value of weighting
is large, the connected neurons are easy to be excited, hence cause strong impact on the
output. On the contrary, when the weighting is relatively small, the less influence is on the
neural network. In this way, update the weightings properly means training a network
to achieve the desired output prediction. The relationship between the input and output
signal can be expressed as Equation (5).

Yj = f (∑
i

WjiXi + θj) (5)

where Yj is output variable of the neuron model, f represents an activation function of the
neuron model, Wji represents the weighting, θj represents the bias and Xi is input variable
of the neuron model.

3.2. Back-Propagation Neural Network Design

In general, an ANN network is composed of several layers, including the input layer,
hidden layer and output layer. In each layer, there are nodes, also known as neurons. Every
node between the layers is connected by weightings. These weightings determine which
input signal and how much degree of the input signal affect the final outcome. Through
updating the weightings properly, the ANN is able to consistently reflect the desired output
with the input of observation dataset.

Given a three-layer feed-forward neural network as shown in Figure 3, there are i
neurons in the input layer, j neurons in the hidden layer and k neurons in the output
layer [15]. The output of the network can be calculated using the Equations (6) and (7).

Yj = f1
(
∑
(
Yi × wji

)
+ bj

)
(6)

where Yj represents the output from the jth neuron in the hidden layer. wji is the input
weight between the ith neuron of input layer and the jth neuron of hidden layer, bj repre-
sents the bias to the jth hidden layer neuron and f1 represents the hidden layer activation
function.

Yk = f2

(
∑
(

Yj × wkj

)
+ bk

)
(7)

where Yk represents the kth output, wkj represents the weight between the jth neuron of
hidden layer and the kth neuron of output layer, bk the output layer bias and f 2 represents
the output layer activation function [15].

In this paper, back-propagation is applied as the learning mechanism for the proposed
model. Initially, the weights and bias are initialized randomly in [1, −1]. With the dataset
input to the network, the outputs can be obtained. The outputs are compared with the
actual value and the errors (or predefined cost function) are generated. The errors are then
fed back through the network. These errors serve as the key information to adjust the
weightings and biases to make the output close to the desired value. The new weightings
wji for each layer is calculated by (8). [15] On the other hand, error is calculated in (9),
which is the dot product of output Yk, the complement of Yk and the difference between
output tk and Yk.

wji = w′ji + lr× ek ×Yi (8)

where w
′
ji is the previous weight, lr learning rate, ek the error term calculated during

the iteration.
ek = Yk × (1 −Yk)× (tk −Yk) (9)

where ek is error, tk is the corresponding target and Yk is output.
After repeating the processes for a sufficient number of training cycles, the network

is able to converge to the state with the minimum error. In this way, the proposed ANN
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model is designed and trained for the SOC estimation. The detailed parameters and
demonstration of the ANN model is given in Section 4.2.

Figure 3. Three-layer feed-forward network architecture.

4. Design of ANN-Based Model for Multi-Frequency Impedance

The ANN-based model design for multi-frequency EIS includes three parts: Firstly, a
static SOC database for ANN training is prepared. Secondary, a BPN model is built. Third,
testing the BPN model of the training completed.

4.1. Static SOC Database of ANN-Based Model for Li-ion Battery

This paper used the cylindrical rechargeable Li-ion battery LG18650 to carry out
the research of static SOC estimation. The Li-ion battery has rated capacity 2200 mAh
and nominal voltage 3.6 V. During the charging and discharge process, multi-frequency
EIS are measured by a Bio-Logic VMP3 potentiostats/galvanostats device at 25 ◦C as
shown in Figure 2. However, there is a lack of accurate mathematical model describing the
relationship between SOC and its AC impedance characteristics on a Nyquist plot. As a
result, ANN’s high adaptability makes it a promising technique to realize SOC estimation
via AC impedance observation. To realize nonlinear mapping with ANN, training turns
out to be an important task. The network is expected to learn from sample observations,
namely input-output pairs, and adapt itself to reflect the desired target. For ANN, the
process of learning involves adjusting the weights of the network to minimize the observed
errors. Therefore, ANN must have sufficient samples to ensure the training quality.

Figure 4 shows the flowchart to collect the static SOC training data of Li-ion battery.
Firstly, the Li-ion battery is charged to 100% SOC with CC/CV. After having a rest for
1.5 h, the multi-frequency EIS is measured to obtain a static Nyquist plot of 100% SOC. An
AC signal with amplitude of 10 mV is used to perform the multi-frequency EIS on Li-ion
battery. The impedance spectrums are measured by sweeping frequency between 1 Hz
and 10 kHz with 6 points/decade. Next, the discharging rate ranging from 0.2 C-rate to
1.8 C-rate with the interval of 0.2 C is configured. For each discharging rate, when battery
is discharged for 5% SOC’s reduction, it would rest for 1.5 h and perform EIS measurement.
The discharging process finishes until SOC is 0%. Therefore, the static Nyquist plot of Li-ion
battery with the interval of 5% SOC can be obtained. In this way, there are combinations of
21 states of battery SOC and 9 levels of discharge current. Eventually, 189 datasets in total
can be used as a database for ANN training.
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Figure 4. Flowchart of the static SOC data training (initial i = 1).

The measurement results are illustrated in a Nyquist plot, such as Figure 5. Figure 5a
shows the impedance results of different SOC with the discharging 0.2 C-rate. From
Figure 5a, it can be observed that major difference of SOC locates at medium frequency re-
gion ranging from several Hz to kHz. To extract the features of different SOC from Nyquist
plot and simplify the input parameters for ANN, static AC impedance at frequency 1 kHz,
463 Hz, 100 Hz as shown in Figure 5b are determined for input parameters. Namely, Re
(Zac, f = 1000 Hz), Re (Zac, f = 463 Hz), Re (Zac, f = 100 Hz), Im (Zac, f = 1000 Hz), Im (Zac,
f = 463 Hz), Im (Zac, f = 100 Hz).

4.2. Establishing a BPN Model

In Figure 6, this paper uses the BPN to estimate SOC of a Li-ion battery. This paper
designs a three-layer feed-forward backpropagation architecture with the input layer,
hidden layer, and output layer. The surface temperature data of Li-ion battery is ignored
for the static SOC estimation. Because the Li-ion battery surface temperature keeps the
same as the ambient temperature after 1.5 h rest. The input information for ANN includes
six inputs of static AC impedance and one input of discharge C-rate. The desired output
is the estimated SOC of Li-ion battery. Therefore, the number of the input nodes is 7, the
number of the output node is 1, and the number of hidden layer nodes is 35.
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Figure 5. Nyquist plot when using 0.2 C-rate discharge: (a) Nyquist plot of 0% to 100% SOC; (b) AC impedance under 3
different frequency.

Figure 6. Configuration of the utilized artificial neural network.

For the proposed ANN model, the Tansig function given in Equation (10) is used as
the transfer function in the hidden layer as f 1. Thus, the output of the hidden layer is
scaled between −1 and 1. The transfer function f 2 in output layer is Purlin function. Other
parameters for the three-layer BPN are given in Table 1 This paper used the Graphic User
Interface (GUI) of MATLAB to implementation the ANN-based model.

a =
en − e−n

en + e−n = Tansig(n) (10)
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Table 1. Parameters of back-propagation neural network.

Description Parameter

Network Type Feed forward backpropagation
Number of Layers 2 (include hidden and output layer)

Layer1 number of neurons 35 (hidden layer neurons)
Layer1 transfer function Tansigmoid
Layer 2 transfer function Purelin

Training method Back-propagation neural network
Training function

Adaption Learning Function
Trainlm (Levenberg–Marquardt)

Leardgdm
Performance function Mean square error

4.3. Testing the BPN Model of the Training Completed

In order to validate the proposed BPN network, the datasets for testing are not
included in the training datasets. The testing data are imported to the BNP network using
GUI tool of MATLAB and the estimated SOC is obtained through the ANN. An error is
computed as in Equation (11) by comparing the actual SOC of the Li-ion battery and the
estimated SOC by the ANN.

SOCerror =

√(
SOCreal − SOCtarget

)2

SOCtarget
× 100% (11)

5. Experimental Results

To verify the effectiveness of the proposed method, the experiment with a set of
random discharging current is demonstrated. Figure 7 shows a flowchart of the experiment
to validate the proposed ANN model with 4 arbitrary discharging currents. Firstly, Li-ion
cell is charged using CC/CV until SOC is equal to 100%. Next, the battery cell will rest for
1.5 h to reach to static state. Then, Li-ion battery will discharge to a predefined level of
SOC with 4 different discharging currents of 0.75 C, 1.3 C, 1.75 C, and 0.3 C, respectively.
After each discharge process is completed, the battery cell will take a rest for 1.5 h to ensure
the static state. After that, the multi-frequency EIS technique is used to obtain the AC
impedance parameters of the Li-ion battery.
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The parameters obtained from the experiments are given in Table 2 The information
of discharging C-rates, AC impedance are input to the trained ANN model.

Table 2. Input parameters of the ANN-based model.

Input Value Input 01 Input 02 Input 03 Input 04

Crate 0.75 1.3 1.75 0.3
Re (Z, f = 1001 Hz) 0.061285 0.06165 0.063186 0.063667
Re (Z, f = 100 Hz) 0.063203 0.063599 0.065541 0.066083
Re (Z, f = 463 Hz) 0.068347 0.068957 0.071891 0.07295

Im (Z, f = 1001 Hz) 0.001553 0.001352 0.000725 0.000453
Im (Z, f = 100 Hz) −0.00188 −0.00208 −0.00287 −0.00326
Im (Z, f = 463 Hz) −0.00403 −0.00429 −0.00539 −0.00613

The output of the ANN model is compared with predefined target value to evaluate
its accuracy in Table 3.

Table 3. Output parameters of the ANN-based model.

Input Value Outpu t01 Output 02 Output 03 Output 04

Target SOC 83 70 35 20

Figure 8a,b shows voltage, current, and cell surface temperature waveforms during
the process of CC/CV charging and four periods of discharging. From Figure 8b, the
temperature settled down to approximately 25 ◦C after a 1.5 h rest between the discharging
processes of different current. As a result, temperature is not taken as the inputs for
ANN model.

To look into the effect caused by the number of neurons, 5 difference scenarios are
investigated. They are ANN model with 15, 20, 25, 30, and 35 neurons in the hidden layer,
respectively. Table 3 shows the estimation result for each scenario. The output estimated
SOC is compared with the target SOC, and the error is calculated by Equation (11). The
maximum, minimum and average error are given in the Table 4 as well. It can be observed
that the averaged errors are within 5% except the result from the model of 15 neurons.
Among them, the model with 35 neuron has the best average accuracy error of 1.9%. As a
result, 35 neurons are employed in the proposed method for SOC estimation.

Table 4. Output SOC of ANN-based and target SOC comparison.

Estimation Error (%) Max. Error (%) Min. Error (%) Avg. Error (%)

SOC 83 70 35 20 83 70 35 20
Neur 15 80.6 73.4 36.9 21.9 2.86 4.89 5.43 9.63 9.63 2.86 6.21
Neur 20 80.2 72.2 35.7 21.4 3.33 3.13 1.91 6.99 6.99 1.91 4.28
Neur 25 81.6 72 33.2 19.8 1.69 2.86 5.01 1.01 5.01 1.01 3.05
Neur 30 81.3 67.2 35.0 19.5 2.08 3.97 0.00 2.29 3.97 0.00 2.52
Neur 35 81.2 69.8 35.5 20.5 2.20 0.34 1.54 2.73 2.73 0.34 1.92
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6. Conclusions

This paper has proposed an ANN-based SOC estimation method. The multi-frequency
EIS technique is used to collect the AC impedance of the Li-ion battery in advance, and the
measurement results of EIS are taken as the training data for the BPN-based model. A set of
random discharging currents are used in an experiment to validate the effectiveness of the
proposed method. The estimated results are compared with the target SOC value and the
error is computed to evaluate the estimation performance. Moreover, this paper discusses
the effect of the number of the neurons on the prediction result. Five different scenarios
with different numbers of neurons in the hidden layer are demonstrated. The results show
that except the model of 15 neurons, the model with 20, 25, 30, 35 neurons can achieve
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the accuracy with the error lower than 5%. Additionally, the model with 35 neurons has
the highest accuracy with the average error less than 2%. In conclusion, the proposed
ANN-based multi-frequency EIS technique is able to estimate static SOC under an arbitrary
discharging current with high accuracy.
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