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Abstract: Smart WiFi thermostats, when they first reached the market, were touted as a means for
achieving substantial heating and cooling energy cost savings. These savings did not materialize until
additional features, such as geofencing, were added. Today, average savings from these thermostats
of 10–12% in heating and 15% in cooling for a single-family residence have been reported. This
research aims to demonstrate additional potential benefit of these thermostats, namely as a potential
instrument for conducting virtual energy audits on residences. In this study, archived smart WiFi
thermostat measured temperature data in the form of a power spectrum, corresponding historical
weather and energy consumption data, building geometry characteristics, and occupancy data were
integrated in order to train a machine learning model to predict attic and wall R-Values, furnace
efficiency, and air conditioning seasonal energy efficiency ratio (SEER), all of which were known
for all residences in this study. The developed model was validated on residences not used for
model development. Validation R-squared values of 0.9408, 0.9421, 0.9536, and 0.9053 for predicting
attic and wall R-values, furnace efficiency, and AC SEER, respectively, were realized. This research
demonstrates promise for low-cost data-based energy auditing of residences reliant upon smart
WiFi thermostats.

Keywords: smart WiFi thermostats; energy auditing; residential; energy characteristics; energy savings

1. Introduction

In 2018, according to the U.S. Energy Information Administration (EIA), residential
buildings accounted for approximately 21% of total electricity consumption as well as 16%
of total natural gas consumption in the U.S. [1,2]. The residential sector has been deemed to
offer the most cost-effective potential for energy savings among all U.S. buildings [3]. The
most common approach for garnering savings has been through utility rebate programs,
whereby utilities offer financial incentives for residential investment in energy reduction
measures. The rebated measures are generally those with the statistically best savings
relative to investment among the entire residential population. In practice, what this
has meant is that all rate payers have effectively subsidized the investments of wealthier
residents. Researchers have found that upgrading the housing of low-income residences to
the median household efficiency would reduce excess energy by 68%. In other words, while
residential energy reduction offers the most cost-effective potential among all U.S. buildings,
the vast majority of this savings potential comes from low-income residences [4–6].

Many factors impact the energy consumption of individual residential buildings,
including weather conditions; building geometry; building thermal envelope materials;
heating, ventilation, and air conditioning (HVAC) characteristics; and energy-use behavior
of the residents [7,8]. However, identifying the energy efficiency priorities for individ-
ual residences is not automatic and can be both laborious and expensive. For example,
traditional energy audits require a physical visit to a residence, whereby a technician
performs air leakage tests; conducts infrared imaging; documents insulation in the walls,
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basement/crawlspace/sub-flooring, and attic; and assesses the efficiency of the heat-
ing/cooling/water heating systems. These audits can be costly [9]. The U.S. Department
of Energy estimates costs for detailed energy audits ranging from $0.12 up to $0.503 per
square foot, depending on the size and complexity of the residential buildings [10]. In
another study, the average cost to audit single-family residences in the US starts at $400
and increases dramatically with the size of the home [11]. The audit cost can outweigh
the potential energy cost savings, and the recommendations made have been observed
to be dependent on the auditor [9,12]. For example, a study compared recommendations
from three different contractors hired to audit the energy effectiveness of three different
types of buildings: namely a large multi-family residence with a common heating plant, a
primary school, and a terraced or row home. The final recommendations from the three
different contractors were quite dependent on the auditors, with installation cost and sav-
ings estimations respectively differing by as much as 300% and 250% relative to the lowest
estimates [13]. Likewise, another study compared three energy audit reports conducted on
the same building [12]. The three studies reported widely divergent results. First, the three
reports employed different audit data. Second, the list of energy conservation measures
(ECMs), short of three common measures, were different. Third, the initial cost and energy
and cost savings for the shared ECMs varied widely between the analyses. Additionally,
the energy audits cost from three different companies ranged from $252 to $1123. This
trend has certainly contributed to a lack of faith about the value of residential energy
audits [9,14]. Importantly, low- to low–middle-income residents frankly will never opt to
have their residence audited. The expense just cannot be tolerated.

There is a strong need for automatically auditing the energy effectiveness of residences
at a substantially lower cost. Such audit-derived information could help to change the
paradigm for utility rebate programs were every residence within a utility district to be
audited. A ‘worst-to-first’ priority for utility investment in energy reduction could be
established in such a way as to ensure that the investments made yield the biggest energy
and energy cost savings [15,16].

Recently, smart WiFi thermostat adoption in the U.S. market has seen rapid growth.
An ACEEE study estimated that by 2020, over 40% of residences would have this tech-
nology in it [17]. The data from these thermostats is especially valuable in documenting
heating, cooling, and ventilation energy consumption. For example, Hossain et al. [18]
utilized smart thermostat data to develop dynamic thermal models of residences. Addi-
tionally, Huang et al. [19] utilized smart WiFi thermostat data to predict room temperature
and cooling/heating demand, as well as potential savings from changes in thermostat
settings. Another study by Stopps et al. [20] used data from 54 smart thermostats to analyze
programming and occupant interaction behaviors. Likewise, Lou et al. [21] employed a
smart WiFi thermostat to calculate temperature and humidity setpoints that would meet
the minimum thermal comfort at all times. This latter study showed cooling energy savings
in excess of 70% from thermal comfort control.

2. Background

In this section, relevant research pertaining to the standard calculation approaches is
presented for: building energy models with sufficient granularity to permit estimates of
savings from residential energy upgrades, inverse modeling approaches with sufficient
granularity to identify residences in need of upgrades and quantity the resulting savings
based on energy data pre- and post-upgrade, and the state-of-the art associated with virtual
energy audits.

2.1. Building Information Modeling and Simulation for Energy Audits

Energy modeling software (e.g., eQuest, EnergyPlus, IES, and Energy-10) has been
used extensively to simulate and predict building energy consumption. Generally, these
have required extensive detail about the geometric and energy characteristics of a building,
as well as occupancy and control schedules. Examples of their use are extensive and,
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unfortunately, despite the detail required of data inputs, the energy savings recommenda-
tions that result have been very inconsistent [22]. For example, one study evaluated the
accuracy of the United States Department of Energy (DOE)-developed eQuest software
for predicting energy consumption and estimating savings from upgrades in hotels. Good
correspondence was seen between predicted and actual savings based on the building
energy efficiency retrofit (BEER) scheme [23]. However, other studies have demonstrated
just the opposite [24]. These tools are strongly dependent on the user and require significant
engineering time [25]. Much of the time, these tools overpredict energy consumption [16].
For example, the Energy Trust of Oregon performed a study to evaluate building energy
simulation programs. Three programs were compared: SIMPLE, REM/Rate, and Home
Energy Saver (HES). Detailed audits were conducted, and utility bills were collected for
190 homes. The homes were simulated with the three energy modeling tools, including
two levels of detail for HES. The models overpredicted gas use for space heating by an
average of 41% in older homes built before 1960 and by 13% for newer homes built after
1989 [26,27]. Likewise, the validity of the Manufactured Home Energy Audit tool was
assessed in a two-part study by Oak Ridge National Laboratory (ORNL). Obtained audit
and utility data were used to analyze the energy effectiveness of manufactured homes
across five counties in the U.S. North and Midwest. The predicted space heating energy
consumption was compared to the actual space heating energy consumption. Pre- and
post-retrofit comparisons of modeled and actual energy use were made. Results from
the pre-retrofit simulations were observed to overpredict space heating energy use from
163% to 109% [28]. Lastly, a recent study by Pacific Northwest National Laboratory on
seven homes with deep retrofits showed a range of predicted savings obtained by different
auditors from 75% overestimation to 16% underestimation relative to the savings realized
for all the homes evaluated [29].

2.2. Inverse Energy Modeling for Identifying Residences in Need of Upgrade and Estimating
Savings from Upgrades

In 1994, ASHRAE published an Inverse Modeling Toolkit (IMT), which has been
used since to estimate savings from various system upgrades [30]. This toolkit is based
on a four-step process. The first step is to create statistical three-parameter models of
electricity and natural gas consumption as a function of the outdoor air temperature
over the energy consumption period. This regression renders estimates of the sensitivity
of the consumption to temperature (termed heating and cooling slopes), the building
balance-point temperature, and average weather-dependent energy consumption for a
meter period. The second step is to apply these to site-relevant typical meteorological year
(TMY3) weather data to determine the normalized annual consumption (NAC) for each
type of energy. The third step is to derive an NAC for each set of 12 sequential months
of utility data. The fourth step is to compare the NACs of multiple buildings to identify
average, best, and worst energy performers and to evaluate how the consumption of a
building has changed over time. It is this last step that permits measurement of savings
post-retrofit of energy efficiency upgrades [31].

A case study of 14 Midwest hospital results showed that the NAC analysis is more
stable and informative than the regression coefficients determined from the first step.
Additionally, a change in NAC indicates a real change in the energy performance of the
building, provided that the savings are greater than 10% (note that ASHRAE suggests that
this approach is not, in general, able to measure savings less than 10% [16]). In another
study, electric and natural gas historical consumption data were merged with residential
building geometry, and historical weather data to determine the energy consumption
intensity for each home in a Village of Yellow Springs, Ohio by using a five-parameter fit
for the electricity data and a three-parameter fit for the natural gas data. These researchers
normalized the NAC calculations with the residential floor area. Using this normalized
data, they were able to identify the most promising homes for energy reduction [32].
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2.3. State-Of-The-Art in Virtual Energy Audits

Building geometric and energy characteristics (insulation type and amount in en-
velope components, heating/cooling/water heating efficiencies, etc.) have a prominent
influence on energy consumption [33]. Knowledge of these characteristics is essential for
estimating potential energy savings from specific energy upgrades. Ordinarily, such data
is collected from on-site audits. However, there have been some recent strides toward
inferring energy characteristics from data alone. Table 1 summarizes research to predict the
energy characteristics of buildings or to disaggregate the energy consumption into specific
categories, such as lighting and appliances.

The private company Retroficiency (acquired by ENGIE Insight) claimed in the mid-
2010s to have the ability to automatically audit the energy performance of commercial
buildings. Their approach employed interval energy data from smart meters, occupant
schedules, weather, and systems control details. Their virtual energy assessment (VEA)
provided recommendations for retrofits based upon the virtual audit. Included in their
recommendation were estimates of upgrade costs and return on investment [34].

In 2016, Case Western Reserve University and Johnson Controls Inc. worked collabo-
ratively to develop another version of a virtual energy audit for small- to medium-sized
commercial or retail buildings. Their approach employed 15-min-interval utility data,
insulation characteristics, and weather data [35]. Lastly, the approaches by FirstFuel, Ag-
ilis Energy, and C3 Commercial likewise employ interval meter data from smart meters
and real-time weather data to estimate various forms of electric consumption (lighting,
cooling, etc.).

Table 1. Summary of prior research in predicting energy characteristics in buildings.

Ref. Software/Company
Name

Learning Algorithm
(Type) Types of Feature Building Type Target

[34,36] Retroficiency,
Retroficiency, USA

Proprietary algorithm
(Not for public use)

Smart meters,
occupant behavior,

weather, and
systems control

details

commercial

Heating, cooling,
ventilation, lighting, plug

loads, pumps, domestic hot
water systems

[35,37]

Case Western
Reserve University,

Great Lakes
Energy Institute

(GLEI)

Energy Diagnostics
Investigator for

Efficiency Savings
(EDIFES)

(Not for public use)

Smart utility meter,
insulation

information,
operation schedules,

weather data

commercial

Exterior lighting (e.g., 24-h
lighting and

security/monitoring
systems), HVAC (e.g.,

heating, ventilation, and air
conditioning electricity

consumption), and
occupancy-based plug loads

(e.g., computers,
refrigerators, copiers,
televisions, interior

lighting, etc.)

[34,36] FirstFuel, Tendril,
USA

Statistical model
(Not for public use)

Hourly electricity
consumption data,

hourly local weather
data, high level

building data from
geographic

information systems

commercial

Electric lighting, building
envelope, equipment,

HVAC, service hot water,
operating schedule

[34,36] Agilis Energy,
Agilis, USA

Statistical model
(Not for public use)

Smart meter interval
data and climate

data
commercial

Operational energy
performance, interval

energy demand, occupancy,
energy system operations
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Table 1. Cont.

Ref. Software/Company
Name

Learning Algorithm
(Type) Types of Feature Building Type Target

[34,36] C3 Commercial, C3
Energy, USA

Statistical model,
Database for Energy
Efficiency Resources

(DEER)
(Not for public use)

Smart meters data
drives inverse

modeling and uses
national, state, and

regional utility
building stock data
for benchmarks to
compare energy
benchmark with

other buildings that
are functionally

equivalent (same
type and floor area)

commercial

Electric lighting, building
envelope, equipment,

HVAC, service hot water,
and operating schedule

based on data driven
inverse energy modeling,
coupled with statistical

analysis utilizing an existing
energy conservation

measures (ECM) list from
the database for energy

efficiency resources (DEER)

3. Objectives of Research

While smart meters have gained an increasing market share [38], nationally, there
is still no consistent standard relative to the frequency of data collection and input [39].
Their use in this study is not assumed. For many residences, only monthly interval energy
consumption data is available. Moreover, smart meters are only generally capable of
providing information about electricity consumption. The cost for smart gas meters is
prohibitive for wide-scale use without some type of enabling subsidy.

There are three starting points for this research. First, a smart thermostat offers greater
promise for characterizing heating-, cooling-, and ventilation-related energy characteris-
tics than smart meters, which are more prevalent in both the U.S. and Europe because
smart WiFi thermostats provide for measurement of the internal residence temperature
and humidity and account for residence-specific controls on this temperature. Second,
the monthly metered energy consumption reflects the overall heating and cooling energy
effectiveness of a residence. However, this information alone is incapable of resolving
specific contributions to the heating and cooling energy effectiveness. Third, it acknowl-
edges that if the residential energy characteristics for a sub-set of residences are known,
data-based machine learning based models can be tuned to predict the individual energy
characteristics. If these models are derived from data collected from numerous diverse
residences, theoretically, they could then be used to predict the energy characteristics in
residences where these are unknown.

The research question driving this study is the following: “How can the individual
contributions to the heating and cooling energy effectiveness (namely the envelope R-
values and heating/cooling system efficiencies) be resolved from only remotely collected
data? To date, this question has not been answered.

Fundamentally, the goal of this research is to estimate residential energy characteristics
from monthly energy consumption (potentially gas and electric), coupled with other data
that could be collected remotely for residences. This data includes historical weather data,
residential building geometry data, and potentially occupancy data, and uniquely and
most importantly, smart WiFi thermostat data. This latter data, because of the relative high
frequency associated with its measurement, could potentially help to resolve the energy
characteristics, which control the thermal dynamics of a residence to heat gain/loss to
changes in outdoor weather and to internal heating and cooling. If it was possible for
these instruments to make possible remote energy auditing of residences, their prevalence
in the world would guarantee wide-scale impact. In 2017, more than 82 million smart
thermostats were in use in North America according to a study by Berg Insight. The same
study projected that more than half (51%) of North America homes would be smart homes
by 2022 [40].
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To achieve the broad goal of predicting residential envelope R-values and heat-
ing/cooling system efficiencies from the varied data types (static residence geometrical,
occupancy, and energy characteristics; monthly metered energy consumption; higher
frequency weather data; and high-frequency ‘delta’ smart WiFi thermostat data), it is
necessary to extract useable features from the higher frequency signals in order to combine
with the monthly metered consumption. This first requires the creation of derived fea-
tures characterizing the weather variation within the energy consumption meter periods.
Average outdoor temperature during a meter period is not sufficient to characterize the
exterior weather. Secondly, it requires the development of dynamic characteristics based
upon smart WiFi thermostat data unique to a residence in which a smart WiFi thermostat
is present. With static representations of the dynamics of the outdoor weather for each
meter period and a residence’s response to dynamic changes established, the data could
be combined and then used to train machine learning models on a sub-set of residences
for which the energy characteristics are known. Last, the developed model must be tested
on residences not used in the training to demonstrate the potential for this approach to
estimate energy characteristics in residences where the energy characteristics are unknown.

This paper is organized as follows. First, as the approach posed hinges on the data
used, the data employed in this study are described. Next, the methodology and results,
both aligned with the objectives posed, are presented. Lastly, we conclude by discussing
the wide-scale implications of the approach developed to remote regional energy auditing
and the work that is required to realize this potential.

4. Data

There were four main raw data used in this study. A description and more details for
each individual dataset are contained in the following subsections.

4.1. Residence Geometrical, Occupancy, Monthly Energy Consumption, Energy Characteristics,
and Smart WiFi Thermostat Data

This study considered 101 houses owned by a university in the Midwest region of the
U.S. The majority of these houses are detached single-family houses constructed of wooden
materials (with low thermal mass). Geometrical data were accessed for all residences
through the local county property database. Such data is publicly available nationally.

Second, historical monthly energy consumption and occupancy data (electric and gas
meter data) from January 2016 to the present were obtained for each residence from the
university owner of the residences.

Third, energy characteristics for these residences were acquired in 2015 through de-
tailed energy audits made by one of the lead authors. As noted in a prior study, this audited
subset of houses offered significant diversity in size, insulation, and energy effectiveness
as shown in [16], which helps in developing a generalizable model capable of predicting
energy characteristics in any residence.

Table 2 shows the minimum and maximum values for the building geometric data,
energy characteristics, and residential occupancy characteristics for the 101 residences con-
sidered. Some input features included in the table might in general be a challenge to acquire
(e.g., refrigerator-related data) but are retained here in order to evaluate their importance.

Smart WiFi thermostats data were accessible for each of the audited residences. Raw
thermostat data, referred to as “delta data”, were collected for each of the residences.
Delta data are logged only when there is a change in one of the thermostat features. In
practice, this means that if the set point temperature, measured temperature and humidity
at the thermostat, heating/cooling mode, or heating/cooling/fan status changes, data are
recorded. For this research, smart WiFi thermostat data for these houses were continuously
collected and archived from 6/1/2018 to the present. Typically, thousands of points were
collected for each residence each month.
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Table 2. Ranges of residential building geometrical data, energy characteristics, and residence
occupancy collected during a summer 2015 audit of 101 houses.

Category Properties Minimum Value Maximum Value

Geometry

Floor area (m2) 66 257

Basement area (m2) None 131

Attic area (m2) 42 245

Window area (m2) 6 27

Wall area (m2) 54 301

Energy
Characteristic

Attic thermal insulation
(m2 × K ×W−1) 1.14 7.06

Walls thermal insulation
(m2 × K ×W−1) 0.68 2.43

Furnace efficiency (−) 0.60 0.95

AC SEER (Btu/W-hr) 10 16

Water heater efficiency (−) 0.55 0.95

Refrigerator efficiency (EF) 9 24

Refrigerator size (L) 467 747

Occupancy Number of occupants 2 12

Consumption

Monthly Electric usage
(kWh ×month−1) 459 2640

Monthly Gas usage
(MJ ×month−1) 7610 31,746

There is only a single smart WiFi thermostat (one point) in each house. The houses
were intermittently heated/cooled throughout the day based on the thermostat setpoint
temperature. Additionally, all house thermostats were monitored by the university hous-
ing management to ensure they were within the reasonable setpoint temperature range.
Moreover, the residents were strongly advised to keep the windows closed when their
residence was employing air conditioning.

4.2. Weather Data

Corresponding hourly weather data (only the outdoor dry bulb temperature was used
here) were obtained from the U.S. NOAA National Climatic Data Center site [41] but could
have likewise been obtained using the Weather Underground [42] resource.

5. Methodology

The methodology is organized as follows. In the first two sub-sections, the process
for extracting features characterizing respectively the variation of the weather data in each
meter period and the thermal dynamics of each residence to changes in outdoor tempera-
ture and internal heating and cooling as evidenced from the smart WiFi thermostat data is
described. Then, the data-based machine learning and testing approaches are described.

5.1. Development of New Weather Features Characterizing Outdoor Temperature Variation during
Each Meter Period

Inverse energy models have employed mean outdoor average temperature for an
entire meter period as an input (often singular) to predict energy consumption [31]. How-
ever, including increased granularity to better reflect variation that occurs over a large time
period may be beneficial.

The approach used here is to ‘bin’ the outdoor temperature data within a meter
period into discrete temperature bands, determining the probability density of the outdoor
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temperature in each of the discrete bands over one energy consumption meter period. The
idea is that it is not just the mean temperature in a meter period that is important. Rather,
the record of temperature variation in a meter period is even more important, especially if
the thermostat set point temperature is changing within the meter period.

5.2. Development of Dynamic Representations of Smart WiFi Thermostat Data for Each Residence

The measured smart WiFi thermostat temperature provides a record of heat gain/loss
from the residence from/to the outdoor environment and a record of heating and cooling.
When the heating system and cooling system are on, the interior temperature is observed
to warm/cool over a certain amount of time. So, in effect, it accounts for the time con-
stants associated with the heating and cooling systems, which likewise depend upon the
heating and cooling system efficiencies. After heating and cooling is interrupted, heat
loss/gain to/from the outdoor environment is registered as a decrease/increase in internal
temperature. The rate at which the internal temperature cools/warms after interruption
of heating/cools depends upon the envelope heat losses/gain, and thus on the thermal
capacitances (time constants) associated with the envelope components and infiltration.

Since the aim of this research is to develop single models to predict residential energy
characteristics based upon data from numerous diverse residences, we looked to develop a
representation of the measured smart WiFi thermostat that could potentially account for
the different time constants associated with the envelope barriers and the heating/cooling
systems. A power spectrum reduction of this measured temperature seemed a reasonable
approach; as such, a representation characterizes the strength of a signal relative to the
driving frequencies.

In order to develop a power spectrum on a signal, however, the signal frequency must
be constant. This was not the case for the smart WiFi thermostat data measured here [43].
“Delta” thermostat data is non-uniformly spaced in time. So, step 1 in establishing power
spectrum representations of the measured smart WiFi thermostat temperature was to create
a uniformly spaced signal. Linear interpolation was employed to estimate the temperature
at fixed intervals based upon the measured thermostat temperatures, using Equation (1):

xi =
xa − xb
a− b

(i− b) + xb, (1)

where a, b, and i in this case are times associated with the collected data; xa and xb are
collected neighbor data points at xa and xb (xi > xa, xi < xb); and xi is interpolated data.

The characteristic frequency of each residence to changes in outdoor weather con-
ditions is an indicator of the dynamic thermal characteristics of a residence’s envelope
elements (walls, windows, and ceiling). The power spectrum defines the ‘strength’ of the
response (measured thermostat temperature) with frequency. The power spectral density
h(ω) is equal to the correlation value γ(k) (where k is lag and t is time) divided by the
frequency span over which that peak is observed e-iωt (Equations (2) and (3)) [44]:

h(ω) =
1

2π ∑∞
k=−∞ γ(k)e

−iωt − π ≤ ω ≤ π, (2)

γ(k) =
1

2π

∫ π
−π

h(ω)e−iωt dω k = 0,±1,±2 . . . , (3)

A locally high amplitude in the power spectrum at a specific frequency means that
the measured signal (thermostat temperature) owes much of its energy to a dynamic
phenomenon at this frequency. For example, higher efficiency houses have more energy in
the signal at lower frequencies, so if something changes outside or the set point temperature
changes inside, the response to change as measured by the thermostat temperature is slow.
In the power spectrum, the peak is in the low-frequency band. On the other hand, lower
efficiency houses have more energy at higher frequencies.

In this study, a histogram of the power spectra for each house was created for fixed
period bands. A total of 500 uniformly spaced bins were set. The average signal strength in
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each bin was calculated. Thus, the available power spectrum binned data was available for
each residence. Of these, only the first 50 bins were retained, corresponding to 48-h periods.
Table A1 shows the range of values for each bin in the first 50 bins retained. Almost all of
the signal energy for each residence resided in these bands. In effect, this binned power
spectra data is a characteristic of a residence. It should be noted that the thermostat data
period used was in the middle of the summer/winter season. In the summer, most of
these residences were non-occupied (yet still air conditioned) to prevent mold formation.
Thus, windows were almost always closed. In the winter, few if any windows were opened
by residents.

5.3. Development of Data-Based Machine Learning Models for Each Envelope Thermal Resistances
and Heating/Cooling System Efficiency
5.3.1. Data Merging and Preparation

In order to develop machine learning models for predicting the individual energy
characteristics from the data described in Section 4 and developed in Sections 5.1 and 5.2,
the data was merged. The binned outdoor temperature for each meter period and the
binned smart WiFi thermostat temperature power spectra, along with the static residential
geometry, occupancy, and energy characteristics, were synched and merged with the
monthly energy consumption data by common address.

Additionally, in order to mitigate observation bias, very similar houses were removed
by measure distances between the houses. A K-means Euclidean distance [45] was com-
puted from the standardized static residential data only. The analysis found 14 similar
houses (including 3 very similar newer houses). As a result, 9 houses were eliminated
from inclusion in the model training datasets. As a result, the total number of residences
included in the training dataset was reduced to be 86 houses. Then, all observations with
any missing data were eliminated [46].

5.3.2. Model Development and Testing

Choosing the right machine learning algorithm is complicated; it depends on the
data type, number of observations, number of input features, etc. Additionally, the sec-
ond major challenge is to tune the model hyperparameters. Different machine learning
algorithms have different hyperparameters, which need to be optimized in order to yield
the best models. For example, the most critical hyperparameters in artificial neural net-
work (ANN) models are the number of hidden layers, dropout rate, network weight
initialization, activation function, learning rate, momentum, number of epochs, batch size,
etc. [47,48]. In this research, the AutoMLH2O package [49] was used to select and tune the
model and hyperparameters. Functional forms considered in this approach included deep
neural networks, random forests, extremely randomized trees, gradient boosting machines
(GBMs), extreme gradient boosting (XGBoost), and stacked ensembles. Table 3 shows the
input features employed to predict the attic R-value, wall R-value, furnace efficiency, and
AC SEER targets. Note the R-value targets use as input features knowledge of the furnace
efficiency and AC SEER, but the latter two do not leverage the attic and wall R-Values as
features. Thus, the general predictive process would be to first predict the R-values and
then use these predictions as predictors for the furnace efficiency and AC SEER.

A training dataset was used to develop a predictive model, while a validation dataset
provided an evaluation of the model for model hyperparameter tuning. Next, the model
was applied to an independent testing dataset. We used 10-fold cross-validation during
hyperparameter tuning to avoid subset biases. We reported and used the mean cross-
validation performance metrics [50–52].
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Table 3. Input features used to develop each target model (X means selected feature).

Input Features

Targets

Attic R-Value Wall
R-Value

Furnace
Efficiency AC SEER

Floor area (m2) X X X X

Basement area (m2) X X X X

Attic area (m2) X X X X

Window area (m2) X X X X

Wall area (m2) X X X X

Attic thermal insulation
(m2 × K ×W−1) X X X

Walls thermal insulation
(m2 × K ×W−1) X X

Furnace efficiency (−)

A\C SEER (Btu/W-hr)

Water heater efficiency (−) X X X

Refrigerator efficiency (EF) X X X X

Refrigerator size (L) X X X X

Is there a wash and dryer
machine (yer/no) X X X X

Is there a dishwasher
machine (yer/no) X X X X

Number of occupants X X X X

PDD bins for outdoor
temperature (34 bins) X X X X

PSD frequencies X X X X

Monthly electric usage
(kWh month−1) X

Monthly gas usage
(MJ month−1) X X X

The effectiveness of the models for both the validation and testing datasets was
evaluated using the following parameters: R-squared metric, mean square error (MSE),
root mean squared error (RMSE), mean absolute error (MAE), and root mean squared
logarithmic error (RMSLE):

MSE =
1
N ∑N

i=1(yi − ŷi)
2, (4)

RMSE =

√
1
N ∑N

i=1(yi − ŷi)
2 =
√

MSE, (5)

MAE =
1
N ∑N

i=1|yi − ŷi|, (6)

RMSLE =

√
1
N ∑N

i=1(log(yi + 1)− log(ŷi + 1))2, (7)

R2 = 1− MSE(model)
MSE(baseline)

=
1
N ∑N

i=1(yi − ŷi)
2

1
N ∑N

i=1(yi − yi)
2 , (8)
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A model is only as good as its ability to make accurate predictions on data not used in
its training. Here, the true quality of the models developed was assessed through testing.
A testing dataset was developed by extracting the observations from 6 houses from among
the 92 houses included in the study. The six testing houses were randomly selected but
were also checked to ensure that the testing set included high, medium, and low values of
the responses (Table 4).

Table 4. Randomly selected test observations.

House Num.
Targeted Feature

Attic R-Value
(m2 × K ×W−1)

Wall R-Value
(m2 × K ×W−1)

Furnace Efficiency
(−)

AC SEER
(BTU ×W−1 × hr−1)

House 1 3.13 0.69 0.78 14.00

House 2 6.22 2.44 0.95 13.00

House 3 2.23 0.86 0.78 14.00

House 4 3.13 0.86 0.80 10.00

House 5 1.71 0.86 0.90 13.00

House 6 3.13 0.69 0.78 11.30

6. Results
6.1. Development of New Weather Features Characterizing Outdoor Temperature Variation during
Each Meter Period

Figure 1 shows a representative probability density distribution for the outdoor
temperature developed for a single meter period within discrete two degree ◦C bins.
This figure shows how this binning took place for one meter period (1 January 2018 to
9 February 2018).

Energies 2021, 14, x FOR PEER REVIEW 11 of 22 
 

 

A model is only as good as its ability to make accurate predictions on data not used 
in its training. Here, the true quality of the models developed was assessed through test-
ing. A testing dataset was developed by extracting the observations from 6 houses from 
among the 92 houses included in the study. The six testing houses were randomly selected 
but were also checked to ensure that the testing set included high, medium, and low val-
ues of the responses (Table 4). 

Table 4. Randomly selected test observations. 

House Num. 
Targeted Feature 

Attic R-Value 
(m2 × K × W−1) 

Wall R-Value 
(m2 × K × W−1) 

Furnace Efficiency 
(−) 

AC SEER 
(BTU × W−1 × hr−1) 

House 1 3.13 0.69 0.78 14.00 
House 2 6.22 2.44 0.95 13.00 
House 3 2.23 0.86 0.78 14.00 
House 4 3.13 0.86 0.80 10.00 
House 5 1.71 0.86 0.90 13.00 
House 6 3.13 0.69 0.78 11.30 

6. Results 
6.1. Development of New Weather Features Characterizing Outdoor Temperature Variation dur-
ing Each Meter Period 

Figure 1 shows a representative probability density distribution for the outdoor tem-
perature developed for a single meter period within discrete two degree °C bins. This 
figure shows how this binning took place for one meter period (1 January 2018 to 9 Feb-
ruary 2018). 

 
Figure 1. Outdoor air temperature histogram of one electric meter period. 

6.2. Development of Dynamic Representations of Smart WiFi Thermostat Data for Each Resi-
dence 

Figure 2a shows the power spectrum for an energy-effective residence with respec-
tive wall and ceiling R-values of 2.46 and 3.16 (m2 × K × W−1), whereas Figure 2b shows the 
power spectrum for a low-energy-effective residence with respective wall and ceiling R-
values of 0.70 and 2.28 (m2 × K × W−1). Note that in the former case (a), most of the energy 
in the signal is at small periods, the opposite of that for the low-energy-effectiveness case, 

Figure 1. Outdoor air temperature histogram of one electric meter period.

6.2. Development of Dynamic Representations of Smart WiFi Thermostat Data for Each Residence

Figure 2a shows the power spectrum for an energy-effective residence with respective
wall and ceiling R-values of 2.46 and 3.16 (m2 × K × W−1), whereas Figure 2b shows
the power spectrum for a low-energy-effective residence with respective wall and ceiling
R-values of 0.70 and 2.28 (m2 × K ×W−1). Note that in the former case (a), most of the
energy in the signal is at small periods, the opposite of that for the low-energy-effectiveness
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case, owing to the more rapid response of high-efficiency homes to heating and cooling,
relative to a slower, more damped response (due to greater heat loss/gain to the external
ambient) for the low-efficiency residence. Most visible is that at the diurnal period (24 h),
there is little energy in the high-efficiency house case, but, in comparison, the signal energy
peaks at this period for the low-efficiency house case. Thus, the low-efficiency house ‘feels’
the diurnal transients far more than the high-efficiency house, which damps out most of
the energy associated with this cycle.
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Figure 2. Power spectrum for the indoor temperature measured at the thermostat for (a) high- and
(b) low-efficiency houses.

The higher energy at lower periods (higher frequencies) for the high-efficiency res-
idence in comparison to a low-efficiency residence is primarily affected by the response
to thermostat set point changes. The high-efficiency house is able to respond quickly to
indoor temperature set point changes. The low-efficiency house responds more slowly. So,
even the period associated with set point changes increases relative to the high-efficiency
house case.

6.3. Training and Testing of Data-Based Machine Learning Models for Each Envelope Thermal
Resistances and Heating/Cooling System Efficiency
6.3.1. Identifying the Best Machine Learning Algorithm

This subsection aims to document how the best model was developed in predicting
each of the envelope thermal characteristics. It was unknown what model algorithm should
be used and which features should be included in the model development.

First, different machine learning algorithms were applied and validated on the com-
plete training dataset. This complete dataset included all static residential features, monthly
energy consumption, binned outdoor temperature data for each meter period, and all
binned smart WiFi thermostat temperature power spectrum data.

Table 5 documents the validation metrics obtained for this complete dataset for the
various algorithms employed. It is clear from this table that the GBM machine learning
methodology yielded the best validation performance. Hereafter, only this algorithm
was considered. The general formula for gradient boosting machine (GBM) is shown in
Equation (9), which can be applied to all four targets [53]:

f(x) =
(
∑M

m=1 βmbτm(x)
)
∈ lin(β), (9)
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where bτm(x) ∈ β is a weak learner and βm is its corresponding additive coefficient.

Table 5. Validation metrics for model development using the complete feature dataset with different machine learning algorithms.

Target Model Order Model Algorithm RMSE MSE MAE RMSLE

Attic R-Value

1 Gradient Boosting
Machine (GBM) 3.39 × 10−5 1.15 × 10−9 1.47 × 10−5 9.87 × 10−6

2 Distributed Random
Forest (DRF) 0.0021 4.39 × 10−6 0.0002 0.0004

3 Extremely Randomized
Trees (XRT) 0.0026 6.97 × 10−6 0.0006 0.0008

4 Generalized Linear
Model (GLM) 0.6587 0.4338 0.5081 0.1872

Walls R-Value

1 Gradient Boosting
Machine (GBM) 1.10 × 10−6 1.21 × 10−12 6.17 × 10−7 3.49 × 10−7

2 Extremely Randomized
Trees (XRT) 0.0004 2.33 × 10−7 4.56 × 10−5 0.0002

3 Distributed Random
Forest (DRF) 0.0014 2.16 × 10−6 6.16 × 10−5 0.0007

4 Generalized Linear
Model (GLM) 0.3537 0.1251 0.2692 0.1553

Furnace
Efficiency

1 Gradient Boosting
Machine (GBM) 3.94 × 10−7 1.55 × 10−13 3.24 × 10−7 2.13 × 10−7

2 Distributed Random
Forest (DRF) 1.60 × 10−5 2.57 × 10−10 1.37 × 10−6 8.30 × 10−6

3 Extremely Randomized
Trees (XRT) 0.0001 2.49 × 10−8 1.22 × 10−5 8.78 × 10−5

4 Generalized Linear
Model (GLM) 0.0485 0.0023 0.0389 0.0261

AC SEER

1 Gradient Boosting
Machine (GBM) 0.0328 0.0011 0.0046 0.0025

2 Distributed Random
Forest (DRF) 0.1771 0.0313 0.0392 0.0134

3 Extremely Randomized
Trees (XRT) 0.1828 0.0334 0.0393 0.0137

4 Generalized Linear
Model (GLM) 1.0090 1.0182 0.7615 0.0753

6.3.2. Identifying the Best Thermostat-Derived Feature Set for Model Development

Figure 3 shows variable importance plots obtained from the best GBM models pro-
duced in predicting the (a) attic R-value, (b) wall R-value, (c) furnace efficiency, and (d) AC
SEER. In this figure, the features labeled PSD.Freq.X refer to the average power spectrum
powers in frequency bin X. It is clear from this figure that the power spectrum features are
very important for predicting each of the energy characteristics. As a result, one would ex-
pect that the spectral information present in the thermostat signals improves the prediction
of the targeted energy characteristics.
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model, (b) wall R-value model, (c) furnace efficiency model using the natural gas dataset, and (d) AC
SEER model using the electric dataset.

We then investigated developing models using subsets of the PSD.Freq.X data. GBM
models were thus developed to predict the targeted energy characteristics for the following
PSD binned power subsets: (a) for the first 40 frequency bins (approximately needed to
capture the diurnal cycle), (b) for the first 20 frequency bins, (c) for the first 10 frequency
bins, (d) for the top 10 most important frequency bins for each target obtained from a
variable importance analysis using the best GBM model, (e) for the top 2 frequency bins for
each target obtained from a variable importance analysis, (f) for the top frequency bin for
each target for each target obtained from a variable importance analysis, (g) for the top two
frequency bins for each target obtained from an optimization to minimize error, and (h) for
the top frequency bin for each target obtained from an optimization to minimize error.

Table 6 shows the testing statistics for predicting the attic and wall R-values, furnace
efficiency, and AC SEER, respectively, for inclusion of the binned spectral powers using the
same testing dataset considered in Section 5.3.2. There are three main points to make. First,
while some of these cases yield accurate validation metrics for individual targets, the best
overall cases are those using only one or two of the optimally selected frequency bins to
minimize the validation error. It is clear that the use of all of the frequency bins introduces
many features that have little influence on the target. Elimination of these features in
general improves the model. Second, the prediction statistics for the testing dataset are
improved markedly for the last three cases, cases e–h. Case e, where the two top power
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spectrum bins were based upon the GBM variable importance, yielded the best model for
predicting the attic R-value. Case g, which included as predictors the two most important
power spectrum frequency bins for minimizing error, yielded the best model for the AC
SEER. Lastly, case h, reliant upon a single power spectrum frequency bin based upon
minimizing the predictive error, yielded the best model for predicting the wall R-value
and furnace efficiency. The best MAE error in predicting the attic R-value, wall R-value,
furnace efficiency, and AC SEER was reduced from 0.5249 to 0.2752, 0.2768 to 0.1044, 0.0362
to 0.0116, and 0.7450 to 0.4245, respectively. All of these errors could be well-tolerated in
virtual energy audits.

Table 6. Power spectrum density (PSD) frequency cases with model prediction evaluation parameters for the testing dataset.

Case PSD Frequency
Number Target R2 RMSE MSE MAE RMSLE

(a). 1st 40
frequencies From 1 to 40

Attic R-Value 0.6629 0.8316 0.6915 0.6053 0.1674

Walls R-Value 0.7721 0.2952 0.0871 0.2611 0.1374

Furnace Efficiency 0.1097 0.0644 0.0041 0.0533 0.0352

AC SEER −0.2822 1.6458 2.7085 1.1239 0.1278

(b). 1st 20
frequencies From 1 to 20

Attic R-Value 0.4887 1.0241 1.0488 0.8233 0.2259

Walls R-Value 0.7541 0.3066 0.0940 0.2659 0.1339

Furnace Efficiency −0.4019 0.0808 0.0065 0.0702 0.0437

AC SEER −0.6478 1.8658 3.4811 1.5156 0.1422

(c). 1st 10
frequencies From 1 to 10

Attic R-Value 0.8285 0.5931 0.3517 0.4712 0.1554

Walls R-Value 0.5929 0.3945 0.1557 0.2598 0.1775

Furnace Efficiency −0.0214 0.0689 0.0048 0.0594 0.0376

AC SEER −0.3431 1.6844 2.8372 1.4900 0.1285

(d). top 10
frequencies based
on GBM variable

importance

16, 24, 38, 36, 22, 15,
25, 47, 41, and 45 Attic R-Value 0.8028 0.6361 0.4046 0.4569 0.1318

17, 20, 18, 46, 31, 32,
35, 7, 8, and 48 Walls R-Value 0.8400 0.2473 0.0612 0.1627 0.1154

33, 41, 18, 35, 43, 17,
28, 4, 38, and 16 Furnace Efficiency −0.8720 0.0933 0.0087 0.0703 0.0503

35, 42, 38, 7, 20, 14,
16, 10, 32, and 4 AC SEER 0.1087 1.3722 1.8829 0.9489 0.1082

(e). top 2
frequencies based
on GBM variable

importance

16 and 24 Attic R-Value 0.9408 0.3486 0.1215 0.2752 0.0688

17 and 20 Walls R-Value 0.6608 0.3601 0.1297 0.2885 0.1588

33 and 41 Furnace Efficiency −0.7084 0.0892 0.0080 0.0774 0.0482

35 and 42 AC SEER 0.3992 1.1266 1.2692 0.9078 0.0858

(f). top single
frequency based
on GBM variable

importance

16 Attic R-Value 0.8734 0.5095 0.2596 0.3613 0.1186

17 Walls R-Value 0.8166 0.2648 0.0701 0.1949 0.1282

33 Furnace Efficiency 0.0609 0.0661 0.0044 0.0570 0.0357

35 AC SEER 0.3705 1.1531 1.3297 0.8621 0.0857
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Table 6. Cont.

Case PSD Frequency
Number Target R2 RMSE MSE MAE RMSLE

(g). best 2
frequencies based
minimizing error

21 and 5 Attic R-Value 0.6618 0.8329 0.6938 0.5882 0.1753

13 and 20 Walls R-Value 0.7437 0.3130 0.0980 0.2207 0.1440

46 and 31 Furnace Efficiency 0.7117 0.0366 0.0013 0.0336 0.0200

6 and 23 AC SEER 0.9053 0.4472 0.2000 0.4245 0.0332

(h). best single
frequency

minimizing error

21 Attic R-Value 0.9079 0.4348 0.1890 0.3779 0.1093

13 Walls R-Value 0.9421 0.1488 0.0222 0.1044 0.0780

46 Furnace Efficiency 0.9536 0.0147 0.0002 0.0116 0.0079

6 AC SEER 0.7590 0.7135 0.5090 0.6279 0.0520

It is interesting in this table to see how the use of multiple power spectrum frequencies
especially harms the models in predicting the AC SEER and furnace efficiencies (cases
a–d). The fact is that the ac and furnace systems for the set of residences are respectively
two- and single-stage systems, meaning that the cooling and heating powers respectively
have two and one levels. Having multiple power spectrum frequency bins to predict
the cooling/heating system efficiencies is seen to actually hurt the performance of the
regression. Additionally, it is interesting to see the progressive improvement in model
accuracy for predicting all of the features as a result of using a reduced number of power
spectrum frequencies obtained either from the variable importance characterization from
the GBM model or through error minimization. This in effect says that the different features
are associated with specific frequencies. For example, the best model in predicting the
furnace efficiency is associated with a single binned power spectrum efficiency of 46.
Given that only the single-stage furnaces are considered in this study, all with constant
heating power, the time response associated with furnace on-time dictates that a single
frequency should best characterize this system. In comparison, a majority of the AC
systems considered in this study had two stages associated with different cooling powers.
Thus, it is not surprising that two power spectrum bins capture the dynamics of these
systems best. Similarly, the attic and wall R-values control the dynamics associated with
cooling of the internal environment. Again, a single frequency should best characterize the
dynamics of these components.

Table 7 summarizes the best model testing performance for each of the targeted energy
characteristics obtained from Table 6. Table 8 shows the actual values and predicted
values of these characteristics using these best models for all of the testing houses. Model
performance appears strong across evaluation metrics. The errors associated with the
prediction of each energy are quite small for all of the residences. These errors could well
be tolerated in any energy audit.

Table 7. Testing prediction evaluation statistics for the best model case from Table 6.

Target Best ML
Algorithm R2 RMSE MSE MAE RMSLE

Attic R-Value GBM 0.9408 0.3486 0.1215 0.2752 0.0688

Walls R-Value GBM 0.9421 0.1488 0.0222 0.1044 0.0780

Furnace
Efficiency GBM 0.9536 0.0147 0.0002 0.0116 0.0079

AC SEER GBM 0.9053 0.4472 0.2000 0.4245 0.0332
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Table 8. Actual and predicted data for the testing houses with using thermostat-derived information.

House
Num.

Attic R-Value Wall R-Value Furnace Efficiency AC SEER

Actual Predicted Actual Predicted Actual Predicted Actual Predicted

House 1 3.13 3.05 0.69 0.68 0.78 0.80 14.00 13.72

House 2 6.22 5.51 2.44 2.47 0.95 0.95 13.00 12.70

House 3 2.23 2.47 0.86 1.13 0.78 0.79 14.00 14.57

House 4 3.13 2.82 0.86 0.78 0.80 0.81 10.00 10.33

House 5 1.71 1.91 0.86 0.86 0.90 0.93 13.00 13.41

House 6 3.13 3.04 0.69 0.91 0.78 0.78 11.30 11.95

Figure 4 helps to illustrate the most important power spectrum density (PSD) fre-
quency for each target, and how each frequency is different from a high- and low-efficiency
house. First, the following dominant PSD frequencies: 6, 16, 23, and 46, show high power
in high-efficiency houses and low power in low-efficiency houses. Second, the dominant
PSD frequencies, 13 and 24, show low power in high-efficiency houses and high power in
low-efficiency houses.
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6.3.3. Summary of the Best Model Validation Statistics and Hyperparameters

The model validation statistics for the best testing models for each target seen in
Table 7 are shown in Table 9. The validation metrics are exceptional at or very close to
1 for all targeted variables. Table 10 shows the tuned hyperparameters for each of the
best models.
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Table 9. Models’ prediction evaluation parameters for validation using thermostat-derived information.

Target Best ML
Algorithm R2 RMSE MSE MAE RMSLE

Attic R-Value GBM 1 0.0007 5.36 × 10−7 6.38 × 10−5 0.0001

Walls R-Value GBM 1 0.0004 1.60 × 10−7 7.51 × 10−5 0.0002

Furnace Efficiency GBM 1 1.03 × 10−5 1.06 × 10−10 1.72 × 10−6 5.36 × 10−6

AC SEER GBM 0.9978 0.0821 0.0067 0.0210 0.0062

Table 10. Model hyperparameters for all targets using thermostat-derived information.

Target Best ML
Algorithm

Num. of
Trees

Min.
Depth

Max
Depth

Mean
Depth

Min.
Leaves

Max.
Leaves

Mean
Leaves

Attic
R-Value GBM 212 6 6 6 15 57 34.87

Walls
R-Value GBM 231 6 6 6 10 64 43.44

Furnace
Efficiency GBM 225 6 6 6 15 56 34.12

AC SEER GBM 133 6 6 6 16 62 35.86

6.3.4. Identifying the Value of the Thermostat-Derived Features for Predicting
Energy Characteristics

Table 11 summarizes the validation metrics for predicting the targeted attic R-value,
wall R-value, natural gas furnace efficiency, and air conditioner SEER value for the various
models considered using the complete training data features, e.g., considering the case
where thermostat-derived power spectrum binned data is not included. From this table, it
is clear that it yielded strikingly good model results, with respective R-squared values of
1, 1, 1, and 0.99 and RMSE errors of 0.0022, 0.0013, 0.0002, and 0.1513 for predicting the
attic R-value, wall R-value, furnace efficiency, and AC SEER. The tuned hyperparameters
(number of trees, number of internal trees, depth, and minimum number of observations
in the smallest leaf) for the best GBM models are shown in Table 12.

Table 11. Models’ prediction evaluation parameters for validation without using thermostat-derived information.

Target Best ML
Algorithm R2 RMSE MSE MAE RMSLE

Attic R-Value GBM 1 0.0022 4.87 × 10−6 0.0002 0.0003

Walls R-Value GBM 1 0.0013 1.65 × 10−6 0.0004 0.0006

Furnace Efficiency GBM 1 0.0002 3.59 × 10−8 8.11 × 10−5 0.0001

AC SEER GBM 0.9927 0.1513 0.0229 0.0427 0.0119

The hyperparameters of the best model without using thermostat-derived information
shown in Table 12 are compared to the hyperparameters of the best model obtained using
thermostat-derived information shown in Table 10. It should be noted that the number
of trees and the minimum number of observations in the minimum leaf are within the
recommended values, which are 2/3 the number of observations and 12 observations per
leaf, respectively. Furthermore, there is similarity in all of the hyperparameters, providing
an indication of the confidence that the models developed to predict the energy charac-
teristics using thermostat-derived data is not simply overfitted relative to the case where
thermostat data were excluded.
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Table 12. Model hyperparameters for all targets without using thermostat-derived information.

Target Best ML
Algorithm

Num. of
Trees

Min.
Depth

Max
Depth

Mean
Depth

Min.
Leaves

Max.
Leaves

Mean
Leaves

Attic
R-Value GBM 215 6 6 6 13 61 34.94

Walls
R-Value GBM 186 10 10 10 26 88 53.89

Furnace
Efficiency GBM 143 10 10 10 15 88 61.75

AC SEER GBM 120 6 6 6 12 54 35.96

The developed models were then applied to the testing set of houses described pre-
viously. Table 13 shows the actual values and predicted values of the targeted energy
characteristics. The models were generally accurate in predicting the energy characteristics;
however, the AC SEER values in the training data set did not have as much variation as de-
sired, thus the predictions of these had the greatest associated error. The testing results were
as follows (see Table 14). The R-squared and MAE values for predicting the attic R-value,
wall R-value, furnace efficiency, and AC SEER were respectively 0.6778, 0.6474, 0.6280,
and 0.5928 (R-squared), and 0.5249, 0.2768, 0.0362, and 0.7450 (MAE). These results are
significantly poorer than the predictions reliant upon the thermostat-derived information.

Table 13. Actual and predicted data for the testing houses without using thermostat-derived information.

House
Num.

Attic R-Value Wall R-Value Furnace Efficiency AC SEER

Actual Predicted Actual Predicted Actual Predicted Actual Predicted

House 1 3.13 3.09 0.69 0.80 0.78 0.80 14.00 13.58

House 2 6.22 4.38 2.44 2.14 0.95 0.91 13.00 13.48

House 3 2.23 2.83 0.86 1.63 0.78 0.86 14.00 13.19

House 4 3.13 2.95 0.86 0.75 0.80 0.83 10.00 11.89

House 5 1.71 1.61 0.86 0.81 0.90 0.93 13.00 13.70

House 6 3.13 2.75 0.69 1.01 0.78 0.80 11.30 11.46

Table 14. Models’ prediction evaluation parameters for testing without using thermostat-derived
information.

Target Best ML
Algorithm R2 RMSE MSE MAE RMSLE

Attic R-Value GBM 0.6778 0.8130 0.6610 0.5249 0.1468

Walls R-Value GBM 0.6474 0.3672 0.1348 0.2768 0.1668

Furnace
Efficiency GBM 0.6280 0.0416 0.0017 0.0362 0.0227

AC SEER GBM 0.5928 0.9275 0.8602 0.7450 0.0739

7. Conclusions and Discussion

This study has demonstrated the feasibility of utilizing available residential build-
ing data, historical energy consumption, and archived smart WiFi thermostat data to
develop machine learning models to predict with accuracy the primary heating and cooling
characteristics of a residence provided there is a set of residences for which the energy
characteristics have been measured for. Residences with known energy characteristics, if
they reflect the whole pool of residences in a particular area, can be used to effectively
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calibrate a data-based model, which can then be used to predict energy characteristics
in other residences. Uniquely, this research has shown the value of thermostat-derived
data characterizing the dynamic response of residential inside temperature to weather and
thermostat set point changes in improving the accuracy of these predictions.

The potential implication of this research is substantial. The data needed to render this
information is potentially accessible. Generally, smart WiFi thermostat data is accessed via
the cloud by the thermostat manufacturer. This research is premised on the idea that such
companies could directly manage or indirectly participate in a regional electric and/or gas
utility sponsored program to audit residences leveraging smart WiFi thermostats. Through
such an arrangement, the smart WiFi thermostat manager would also have access to
metered energy consumption for all participating residences. If data for all types of possible
residences could be collected, at least within the boundaries of a utility service territory,
a single model could be trained to predict the most important energy characteristics that
would be applicable to every residence in a region. Potential savings from upgrades of
every energy characteristic in each residence could be estimated. A strategic energy (and
carbon) reduction investment protocol could be established to realize the greatest savings
per investment, and in a way that did not exclude low- to low–middle-income residences.

Admittedly, there is more work to do. One, the dataset used for training must be
expanded. All of the houses considered in this study were two-story wood-frame houses.
Data from brick, stone, single-story, duplex, etc. residences must be added to the growing
database of residences to expand the relevance of this research to the whole of the U.S. and
the rest of the developed world, where buildings generally have much higher thermal mass.
It is certain that the approach posed here could be likewise used in such buildings; however,
new predictive features characterizing the construction type (brick, stone, etc.) would be
needed to generalize the model developed. Additionally, other features characterizing the
placement of a residence relative to adjacent residences, such as single-family detached,
condo, apartment, etc., could be added as predictors.

Further, there is an opportunity to combine data derived from smart WiFi thermostats
and smart interval meters to expand the information derived. In the U.S., nearly 70% of
residences are equipped with smart meters [54]. In Europe, the adoption of this technology
is even more pervasive [55]. If both datasets were to be leveraged, the source power for
cooling, heating (if heat pump), and ventilation could be determined. Energy savings
estimations from upgrades of the HVAC energy savings retrofits could as a result be more
accurately calculated.

In addition, this study only used one thermostat-derived piece of information. The
thermostat temperature set point history could and should also be considered. Finally,
solar fenestration has a clear impact on the dynamics of residences, especially those with
large window areas. Future research should include solar irradiation dynamic inputs.
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Appendix A

Table A1. Ranges of the first 50 h of the power spectrum period.

Period Bin
(h)

Minimum
Value

Maximum
Value

Period Bin
(h)

Minimum
Value

Maximum
Value

Period 1 0.0079 535.78 Period 26 0.0096 7.02

Period 2 0.0211 302.25 Period 27 0.0064 10.38

Period 3 0.1754 177.83 Period 28 0.0027 11.26

Period 4 0.1842 163.19 Period 29 0.0323 8.00

Period 5 0.0265 170.60 Period 30 0.0052 11.65

Period 6 0.1263 55.03 Period 31 0.0022 6.85

Period 7 0.0820 62.02 Period 32 0.0043 8.11

Period 8 0.4016 165.33 Period 33 0.0204 7.91

Period 9 0.0590 53.93 Period 34 0.0127 4.65

Period 10 0.1251 56.29 Period 35 0.0026 5.73

Period 11 0.0209 49.24 Period 36 0.0079 5.92

Period 12 0.0161 18.75 Period 37 0.0120 3.57

Period 13 0.0449 23.33 Period 38 0.0015 12.31

Period 14 0.1046 31.88 Period 39 0.0049 9.56

Period 15 0.1137 21.85 Period 40 0.0151 9.28

Period 16 0.0239 24.81 Period 41 0.0030 28.92

Period 17 0.0132 20.87 Period 42 0.0130 53.46

Period 18 0.0263 15.42 Period 43 0.0189 9.27

Period 19 0.0178 14.37 Period 44 0.0077 6.59

Period 20 0.064375 16.02585 Period 45 0.0153 9.19

Period 21 0.004632 8.932784 Period 46 0.0204 13.02

Period 22 0.049441 13.36089 Period 47 0.0117 5.32

Period 23 0.004181 13.83434 Period 48 0.0026 7.72

Period 24 0.048885 17.52227 Period 49 0.0105 7.86

Period 25 0.004923 9.891493 Period 50 0.0079 535.78
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