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Abstract: The paper analyses the research problem of conducting diagnostic reasoning for dynamic
objects to eliminate the possibility of formulating false diagnoses resulting from different delays of the
symptoms related to a particular fault while simultaneously striving to obtain high distinguishability.
The research aimed to develop a new diagnostic inference method robust to symptom delays and
characterised by high accuracy of generated diagnosis. Known methods ensuring the correctness of
inference in the case of symptom delays but at the cost of reducing distinguishability of faults have
been characterised. A new inference method was developed, which uses the three-valued residual
evaluation and knowledge regarding elementary symptom sequences. A formal description of the
diagnosing system and the proposed method are given. The method of obtaining the knowledge
about the order of symptoms based on a cause-and-effect graph and was characterised. The method’s
effectiveness was presented in simulation studies on the example of diagnosing a set of serially
connected tanks. The comparison of the fault distinguishability obtained using the proposed method
and other approaches illustrates the new method’s advantages.

Keywords: fault isolation; diagnostic reasoning; industrial processes; symptoms dynamics

1. Introduction

Over the last twenty years, there has been a rapid development of fault diagnosis
methods derived from the theory of modelling and identification and artificial intelligence
techniques. The broadest description of these methods can be found in books [1-7]. A
valuable source of knowledge are the materials of the IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes SAFEPROCESS and Workshop on the
Principles of Diagnosis DX.

In diagnostics of complex dynamic objects covering, e.g., processes in chemical, petro-
chemical, power, and food industries, etc., there are many problems and restrictions [8]
which are of minor importance in the diagnostics of devices, machines, and processes of
small scale. These problems must be addressed and resolved so that the diagnostic system
is adequately robust and able to recognise the emerging faults effectively.

One such problem is delays of the symptoms of faults. The object of diagnosis
is a dynamic system. Therefore, from the moment of fault occurrence to the moment
of observing a measurable symptom, a certain time passes depending on the dynamic
properties of the tested element of the process and on the detection algorithm. The same
fault is detected after different periods by different diagnostic tests using partial models
of the process. When the fault isolation algorithm does not have embedded mechanisms
making reasoning resistant to symptom delays, the false diagnoses may be generated. The
problem has been analysed in the following studies [9-15].

The notation of the relationship between faults and symptoms may take different
forms. However, it does not consider the dynamics of the symptoms. The exception is the
notation of residuals in the internal form. The most commonly used is a Binary Diagnostic
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Matrix (BDM) [5,11], also referred to as the structure of residual sets [3], Boolean decision
table [2], coding set [6,16], Boolean fault signature matrix [14,17,18] and the effect of the
faults on the residuals [1]. The reasoning about faults based on BDM is conducted in
two ways:

e  Column Reasoning is used in the Fault Detection and Isolation (FDI) environment,
where the BDM columns correspond to the fault signatures.

e  Row Reasoning is used in a DX environment (DX comes from the word diagnosis. This
abbreviation is used to describe the group of formal logic and artificial intelligence
specialists dealing with the development of diagnostic methods.) where the rows of
BDM define conflict sets corresponding to the sets of faults detected by particular
tests [19].

IF-THEN rules, logical functions and fault trees [5,20] are also applied for the notation
of the fault-symptom relation. Another solution is the Fault Isolation System (FIS) [5,11,21],
which uses multivalent evaluations of the residuals.

All of these manners of mapping are of a static character, whereas during diagnosing
in real-time, the same fault is detected after a different time by different diagnostic signals.
Thus, if we examine the set of diagnostic signals detecting a particular fault, then in a
particular moment after the occurrence of the fault, only part of these signals takes the
values, which are symptoms of the fault. After a certain time, the values indicating faults
will be established on the outputs of all these signals. Not considering the dynamics of the
formation of symptoms may lead to the generation of false diagnoses [11,14].

For Large Scale Systems (LSS), the problem then arises of how to conduct diagnostic
reasoning in the situation of delay of the emergence of symptoms in such a way that the
diagnoses are correct, and the distinguishability of the faults is possibly high. Known
solutions do not guarantee this. In the case of LSS, there are significant limitations related
to the scale of the system: a very high number of possible faults, a large set of measuring
devices and implemented detection algorithms, etc. Acquisition of knowledge about the
fault-symptom relationship is only possible on the basis of expert knowledge. Modelling
methods that consider the impact of faults, as well as learning methods, are not useful.
Modelling with the influence of the faults is very difficult, costly and, in many cases, even
impossible [22]. This means that the internal form of the residuals is unknown. Learning
methods [4,5,23,24] require knowledge of measurement data characterising all states of the
process that should be recognised, therefore, the normal state of the process and the states
with faults. Collecting measuring data for all emergency states is impossible [8,25]. Particu-
lar emergency states rarely occur, while their first occurrence should already be recognised.

The paper presents a new method of diagnostic reasoning that prevents the formation
of false diagnoses due to different delays of the symptoms of the same fault. It allows for
obtaining a high distinguishability of the faults compared to other methods resistant to the
delay of the symptoms. The awareness of the internal form of the residuals is not necessary.
The uniqueness of this method lies in using heuristic knowledge about the elementary
sequences of symptom formation, together with a multivalent evaluation of the residuals.
This expands the method presented in [15]. The proposed method is intended to diagnose
complex industrial processes. Only the passive approach is considered, as opposed to the
active approach [26,27].

The structure of the paper is as follows: in Section 2, the properties and restrictions
of the known solutions ensuring the correct functioning of the diagnostic process when
symptoms are delayed are discussed. A formal description of the knowledge about the
diagnosed process is given in Section 3. This description includes a model of faults-
symptoms relationship (Section 3.1) and a notation of the knowledge about elementary
symptoms sequences (Section 3.2). Section 4 discusses the methods of acquiring knowledge
about the symptom forming order based on the cause and consequence graph of the process.
A new method of diagnostic reasoning which prevents the formation of false diagnoses as
a consequence of different delays of symptoms of the same fault, and in many cases allows
for increasing the distinguishability of the fault, is included in Section 5. Section 6 serves



Energies 2021, 14, 2476

30f18

as an example of applying the method and comparing the distinguishability of the faults
achieved by the new method with other known solutions. Section 7 summarises the results
of the study.

2. Related Works

The complete knowledge about the diagnosed object is given by its models, e.g.,
state equations acknowledging not only the influence of the inputs but also the faults
on the outputs. The values of residuals are explicitly dependent on the faults. In linear
models, their computational and internal forms are determined [2,3]. Methods within
that group provide the best opportunities to use the knowledge about the dynamics of
symptoms emergence.

In [28] a method of designing the so-called sequential residuals has been given for
linear systems on the basis of the knowledge of internal forms of the residuals. It provides
an opportunity to design distinguishable sequences for faults undistinguishable by primary
residuals. For specific faults, sequences of symptoms may be obtained that provide the
required properties, such as concurrent symptoms, symptoms in any order, and symptoms
displaced towards each other by a desired delay. However, this method cannot be applied
when the internal form of the residuals is unknown, which usually occurs in the diagnostics
of industrial processes (industrial FDI).

The gist of the proposed algorithm of fault isolation is the use of multivalent evaluation
of the residuals and knowledge about the order of fault symptoms. Symptom forming
order has been analysed in numerous papers. Temporal information can be included in
the Signed Directed Graph (SDG), as shown in [29,30]. In these papers, attention is paid to
the fact that the path of fault propagation in SDG must agree with the recorded symptoms
sequences. Another approach is applying Temporal Causal Graph to transcend system
in diagnostics [10,31-34]. Temporal information has also been included in discrete event
systems [13,35,36].

A few ways of protecting the fault isolation algorithm against generating false diag-
noses due to the delays of the emergence of the symptoms are known at the moment. The
basic solution is by only using symptoms during reasoning. Zero values of signals are
ignored, as they may change their value due to possible delays in response to faults [18].
This kind of approach is used in the DX environment. A similar solution is symptom-based
reasoning [12]. However, during the reasoning, ignoring the diagnostic signals with zero
value will reduce the faults distinguishability.

Another solution is diagnosing while taking into account the maximum delay time
of the symptoms defined for particular isolation algorithms [11]. This ensures correct
reasoning as the diagnoses are formulated just after determining the symptoms. The
obtained distinguishability of faults is the same as the one obtained on the basis of the
binary diagnostic matrix, although the time of diagnosing is rather long.

The approach using minimal and maximal delay times of the symptoms in diagnos-
tic algorithms of a given fault [13] allows for increasing the distinguishability of faults
compared to the above two methods. It is, however, very difficult in practice due to the
difficulties in estimating minimal and maximal values of the delay times of the symptoms.
A similar approach, proposed in [14], characterises symptom apparition times (delays)
through the fuzzy time interval in the form of a trapezoid. This work, to improve the
efficiency of the entire fault diagnosis system, utilises the size of the residual value and
residual signs, the sensitivity of a residual expression concerning a certain fault, the time
pattern of fault signal occurrence, and the order of fault signal occurrence. Obtaining data
on the time profile of the symptom emergence and the sensitivity of the residuum to fault
requires either the knowledge of the internal form of the residuum or the possibility of
recording measurement data in states with faults. This is unrealistic in the case of LSS.

In [15], a method of diagnosing is presented where the knowledge on a binary diag-
nostic relation is used and heuristic knowledge (usually incomplete) about the symptoms
forming order. It is called SSFI—symptoms sequence fault isolation. This algorithm pre-
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vents diagnostic errors related to delays in the emergence of the symptoms. It allows for
increasing the distinguishability of faults concerning the algorithm of symptom-based
reasoning. The more complete the knowledge of the relations between delays of symptoms,
the greater the increase in distinguishability.

This paper is a generalisation and extension of the above concept. The extension
includes the use of FIS to describe the relationship between faults and symptoms instead
of BMD and accepting multivalent evaluation of residuals. The multivalent residuals
evaluation allows a significant reduction of incorrect diagnoses resulting from the binary
evaluation of the residuals and the compensation of the fault’s impact on the values of
the residuals. In the new approach, by reducing false diagnoses resulting from symptom
delays, a further increase in the robustness of the fault isolation algorithm is achieved. A
way of defining some symptoms forming order on the basis of a-graph of a process is also
presented in the paper.

3. Formal Notation of Knowledge on a Diagnosed Object
3.1. Relation between Faults and the Values of Diagnostic Signals

Diagnostic signals result from the binary or multivalent evaluation of the residuals
calculated on the basis of the models to detect faults. They can also be the outputs of
heuristic tests. For the diagnosis, it is necessary to know the representation of the space of
diagnostic signals’ values:

S={s;:j=12...,]} 1)

in the space of faults:
F={fr:k=12,...,K}. ()

The FIS was defined in [21] in the form of the following four:
FIS = (F,S,Vs,q). (3)

where:

F—a finite set of faults;
S—a finite set of diagnostic signals;

Vs = UsesVja set of diagnostic signals values; 4)

Vj—a set of the values of j-th diagnostic signal,
g—representation:

g:F xS p(Vs) (5)

assigning a subset of the values of diagnostic signals to each element of the Cartesian
product F x S:

q(fis7) = Vij CVj, 6)

which can receive this signal when f; fault occurs.

Furthermore, let us assume that the value of a diagnostic signal s; = 0 corresponds to
a no-faults state, and the other values are symptoms of the faults.

FIS is then a table defining model values of diagnostic signals for the particular faults.
It is a generalisation of the binary diagnostic matrix. If the set of all values of diagnostic
signals is identical and equal to Vs = {0,1}, and q(f, s;) is a singleton, FIS is simplified to
a binary diagnostic matrix. Significant extensions of FIS concerning the binary diagnostic
matrix are as follows:

e  Each diagnostic signal may have an individual set of its values V;.
e V] setof the j-th value of diagnostic signal includes the value of 0 and the values that
differ from 0, which are the fault symptoms.
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e q(f s;) element of a Cartesian product F x S is in a general case, a subset of the values
Vij C Vj, which may be taken by a j-th diagnostic signal when the k-th fault appears.

FIS provides a greater distinguishability of faults when compared to the binary diag-
nostic matrix, what has been presented in [21,37,38].

Suppose that, for the analogy from BDM we present a graphical representation of
FIS in the form of a table (Example 1, Table 1), the rows of which correspond to s; € S
diagnostic signals, and the columns to f; € F faults. In such a case, the signature of the
fault corresponds to the FIS column and is described by the following dependence:

T
Q(fk) = [Vkerer‘ . 'rVk]] . (7)
Table 1. Example of Q.

S/F fi f f fi fs fe Vi

$1 1 0 1 0 0 1 0,1

s> 0 -1 0 +1 -1 0 0, —1,+1
S3 -1 +1 —1,+1 0 +1 +1 0, —1, +1
Sq 0 1,2 1 0 1,2 1,2 0,1,2

S5 +1 0 +1 +1 0 -1, +1 0, —1, +1

The above notation of the relation between faults and diagnostic signal values is
especially useful for the three-valued evaluation of residual values, as it enables the
residual sign to be considered. However, this form is more general, which allows for the
interpretation of diagnostic signals obtained by other methods, e.g., visual. If the fault
symptoms are related to the colours of the flame, the FIS allows to express this relationship
for, e.g., four distinct colours: yellow, orange, red and purple.

Classical signature-based reasoning is realised on the basis of all diagnostic signals.
Diagnosis is formulated as a result of the comparison of the obtained values of diagnostic
signals with the signature of the state including only zeros and signatures of the particular
faults (7). The diagnosis indicates a subset of faults, the signatures of which are compliant
with the current values of diagnostic signals:

DGN = {fi € F: Ajoj € Vi ). 8)
The signature of k-th fault (7) corresponds to the rule referring to this fault:

if(Sl eEVi)A...A (S] € Vk]'> VAN (S] € Vk]) then fy. 9)
The rule for the no-faults state of the object is as follows:
if(s1=0)A...A(s;=0) A... A (s; = 0) then OK. (10)

However, the signatures of the faults in the form of (7) and a rule (9) are not a
reasonable ground for formulating diagnoses on the faults. This form of notation of the
relationship between faults and symptoms is not resistant to the changes in the structure
of the diagnosed object, including the changes in the set of the available measuring path.
When changing a set of the available measuring signals in (9) type of rules, a set of premises
is changed. What is more, in LSS, the rules corresponding to the columns of a FIS are
inconvenient due to a large number of premises. That is why the rules assigned to particular
diagnostic signals are applied in reasoning on the faults.

On the basis of FIS, we are able to determine F(s;) subsets of faults detected by
particular s; € S diagnostic signals. These are the faults for which v; € V}; diagnostic
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signals are different from 0. We are also able to define a subset of faults that may cause a
symptom with the v, value for each value of a s; = v, # 0; vy € Vj; diagnostic signal:

F(Sf =vp) = {fk 1Up € Vk]'},‘ vp # 0. (11)

On the basis of (11), we may specify the rules for particular non-zero values of the
diagnostic signal:
if (sj = vp)then f € F(sj =vy); vp # 0. (12)

This solution is analogous to the Row Reasoning used in the DX approach. The
difference is that the evaluation of residuals is multivalued, and one diagnostic signal
can generate subsets of symptom values. A different rule (12) corresponds to each of
them. The proposed form of the notation of the faults-symptoms relation has significant
advantages. In the case of changing the structure of the process, or as a consequence of
previous diagnoses, such a rule may be temporarily eliminated from the set of active rules,
but its form is invariable. This rule has a compact form because the number of possible
faults indicated in conclusion is not high. Moreover, such a form of rules is convenient
when extending the rule base after introducing new tests.

Dependences (11) or the rules (12) corresponding to them are the basis of knowledge
of the discussed diagnostic system. The proposed diagnostic algorithm also uses the
available knowledge about the relationship between delays of the symptoms defined for
particular faults.

Example 1. Consider an example of the fault isolation system given in Table 1. Here:
F = {fl,f2,f3,f4,f5,f6}, S = {51,52,83,54,55}, Vl = {0,1}, V2 = {0, —1, +1}, V3 =
{0,-1,+1}, v, = {0,1,2}, Vs = {0, -1, +1}.

Subsets F(s; = vj) are as follows: F(sy =1) = {f1,f3, fé}, F(s2=-1) = {f2,f5},
Flso=+1) = {fu}, F(s3 = —1) = {fi, s}, Flss = +1) = {fo fo, fo. fu}, Flsa = 1) =
{fa. fa, f5, fo}, F(sa = 2) = {fa, fo, fo}, F(s5 = —=1) = {fe}, F(s5s = +1) = {f1, f3, fu fe}-

3.2. Knowledge about Symptom Forming Order

The relationship between faults and the values of diagnostic signals saved in the form
of BMD or FIS does not include information on the symptom forming order for particular
faults. Such knowledge may be used in a similar way as the values of diagnostic signals
for isolating faults.

In practice, in many cases, it is possible to determine the order of the different symp-
toms of the same fault. Let us denote the elementary sequence as es; ,(fx), i.e., a sequence
of two symptoms—j and p for the f; fault. The notation es;, (fr) = (sj,s,) indicates that
after the emergence of f; fault, the s; symptom will appear before the s, symptom.

Elementary sequences can, in many cases, make it possible to distinguish faults that
are indistinguishable based on the values of diagnostic signals. The following definitions
of faults distinguishability, indistinguishability, and conditional distinguishability, based
on elementary sequences, can be formulated:

Definition 1. Faults f, fm € F are unconditionally indistinguishable on the basis of elementary
symptom sequences if the corresponding elementary symptom sequences are the same:

fikRufm < Vs;, sp€Sip(fr) = esjp(fm). (13)

Definition 2. Faults fy, fn € F are unconditionally distinguishable on the basis of elementary
symptom sequences, if, and only if, the corresponding elementary symptom sequences with the same
symptoms are different (differ in the order of symptoms):

fiRifm & [Fesjp(fr) = (sj.5p)] A [Besjp(fn) = (sp.5))]- (14)



Energies 2021, 14, 2476

7 of 18

Definition 3. Faults f, f € F are conditionally distinguishable on the basis of elementary
sequences of symptoms, if, and only if, these faults are not unconditionally indistinguishable and
there is a pair of diagnostic signals for which the fault f; corresponds to the sequence <s]-, sp) and
for the fault f,, both sequences (s, sp) , (sp,sj) are possible. One obtains distinguishability in the
case of the occurrence of a sequence (s, sj>, which unambiguously indicates the fault fy,.

Elementary sequences may not usually be defined for all faults and not for all pairs of
symptoms of a given fault.

4. Determining Symptoms Forming Order on the Basis of a Graph of a Process

A good source of knowledge about the symptom forming order may be a quality
model of the process in the form of a Graph of a Process (GP) [39]. The GP graph defines the
dependencies between the variables in a process acknowledging the influence of possible
faults. It is an extension of the already known SDG. A GP graph is made of vertices
representing physical, measurement and control variables and faults. Arcs reflect the
influence of the variables on each other.

An opportunity of reasoning on the symptom forming order on the basis of a GP
graph was signalled in [15]. This work also defines an elementary sequence in the sense of
the GP graph.

Definition 4. Two fault detection signals s; i sp, respectively associated with the models of
variables x; i xp, xj # x), both sensitive to a fault fy, form an elementary sequence of symptoms
es; p(fr) = (sj,sp) (in the GP sense), when th?re is a path from f to x; that does not include x,
and there is no path from fy to xp, that does not include x;.

This concept of determining elementary sequences based on a GP graph is illustrated
by the following example.

Example 2. Figure 1 presents an exemplary GP graph [37].

Figure 1. Exemplary GP graph. Notation: u—inputs, y—control signals, f—faults, x—process
variables (state variables).

Two residuals utilising models are used for fault detection:
1 =y1—x2(u), r2 = y2 — x4(u).

These residuals are sensitive for both faults fi and f,. The occurrence of fi fault causes the
occurrence of s1 symptom and thens, symptom, f, fault will cause the reverse symptom forming
order -sp will emerge first and thens,. Thus, we can note:

es12(f1) = (s1,52), es12(f2) = (s2,51)-
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The above example shows that when measurements are appropriately selected in
feedback systems, it is possible to design residuals characterised by different symptoms
forming order for the same faults.

Assuming the lack of knowledge of the internal form of residuals and the GP graph,
expert knowledge can be also used to determine the sequence of symptoms formation.
However, it is not usually possible to unequivocally define this sequence for all faults.
Thus, the knowledge gained in this way is not complete. It is not possible in practice to
experimentally obtain knowledge about the sequence of symptoms.

5. Inference about Faults with the Use of Incomplete Knowledge about the Sequence
of Symptoms Forming

5.1. Assumptions

(@) The relationship between the faults and diagnostic signals is known and takes the
form of rule (12).

(b) Some relationships between the times of symptom formation are known and have
the form of elementary sequences es; ,(fi) = (sj,5p). The set of these sequences is
usually not complete.

(c) Asin many other works [40,41], we assume the occurrence of single faults.

(d) We assume that the diagnostic signal is sensitive or not to a given fault. This means
that the subset Vj;, if it contains zero, is a one-element set (it does not contain any
other value of the diagnostic signal being a fault symptom).

5.2. Principle of Formulating the Diagnosis

Inference occurs after each symptom is observed. The first detected symptom initiates
the fault isolation algorithm. Rules of the form (12) and known elementary sequences
collected in the knowledge base are used to formulate a diagnosis. The diagnosis is
formulated in steps after observing subsequent symptoms.

If the symptom s, = v, # 0 is observed, then the inference begins with the rule in
which this premise occurs. The rule conclusion specifies a subset of faults which are the
cause of the detected symptom f € F(s, = vp). The set F(s, = vp) is the first diagnosis:

DGN{ = F(s; = vp). (15)

This set can be reduced even before the next symptom is observed as a result of
the analysis of elementary sequences containing the signal s,. If for fj € DGN; there
is elementary sequence sy, (f;) = (s, Sa), it means that fault f; activates symptom s,
first, and then the symptom s,. As the symptom s, did not occur, the fault f; should be
eliminated from the set of faults indicated in the diagnosis:

DGN; = DGN{\{f; € DGN; : Vesna(f;) = (sn,5a) }- (16)

In each subsequent step of inference, two elements are used to reduce the set of
possible faults:

e asubset of faults activating the observed symptom,
e elementary sequences for the considered faults, in terms of eliminating those faults
for which the elementary sequences are inconsistent with the observed.

As a result of the analysis of subsequent symptoms, the diagnosis formulated in the
previous step is refined. The product of the set of possible faults indicated in the diagnosis
from the previous step DGN,,_1 and the set of faults that could have been the cause of the
analysed symptom F(s, = v;) is determined. Due to the assumption of single faults, the
reduction is as follows:

DGN,; = DGN,_1 N F(s, = v;). (17)

After each analysis of the content of the rule conclusion, the set of possible faults is
reduced based on the analysis of elementary sequences stored in the knowledge base.
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The sequences for fy € DGN,; faults are analysed. For a given fault f; € DGN;; we
check if there is a signal s;, the symptom of which should appear earlier than the observed
symptom s, = v, # 0. The corresponding elementary sequence is: es;.(f;) = (sj,5¢)-
If there is such a sequence in the knowledge base, we infer that f; fault did not occur.
Its symptom s; # 0 would occur earlier than the symptom s, = v, # 0. Such a fault is
eliminated from the set of possible faults. This procedure is repeated for all f, € DGN,;
faults. The new, more accurate diagnosis takes the form of:

DGN, = DGN;\{f; € DGN,, : Vesj.(f;) = (sj,5e)}- (18)

The current diagnosis DGN, is available at any time of inference. It indicates the
subset of possible faults that includes the existing fault. It is the upper limit of the set of
possible faults.

The improvement of the fault isolation algorithm in complex systems is the limitation
of the set of diagnostic signals used in a given inference process. This set can be determined
after the first symptom is observed, according to the formula:

So = {S] €sS: DGI\]iK ﬁF(S]‘) # @}\Sa; Sg C S. (19)

6. An Example, a Comparison with Other Methods
6.1. A Diagnosed Object

The usability of the proposed method will be analysed in an example of diagnostics
of serially connected liquid storage tanks (Figure 2). The systems of connected in series
tanks [10] are typical objects used to present diagnostic methods of dynamic processes due
to the ease of understanding the principles of their operation and a significant degree of
complication resulting from existing feedback in the diagnosed process itself.

Tank 1 Tank 2 Tank 3 Tank 4

° °

() ’, @ @ (F) ,

Figure 2. Diagnosed process—set of serially connected pressure liquid storage tanks.

The flow between two tanks is specified by the following equation:

Fi = a;Si\/2g(Li—1 — L;) (20)

where: a;—flow coefficient, S,—flow section, and g—acceleration of gravity.
The change of the volume in the tank is described by the dependence:
dL;
AcTtI =F—Fip (21)
where A; is the cross-sectional area of the tank.
The cause-and-effect graph of the process is presented in Figure 3.
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Figure 3. GP cause-and-effect graph of a process (p; denotes pressure on the bottom of the i-th tank)
including the mutual influence of process variables.

6.2. Elements of the Diagnostic System

Diagnostics of the object is conducted on the basis of three available pressure measure-
ments: flow F; and levels L1 and L,. Attainable partial models of the following structures
were used: Ly = f1(F;), Ly = fo(F1) and Ly = f3(L1). Application of models created on the
basis of experimental data (neural, fuzzy) was assumed. The corresponding residuals are:

r1 =Ly —®1(F), (22)
1) = Ly — @ (Fp), (23)
r3 = Ly — P3(Lq). (24)

The list of faults (Table 2) covers leaks in the tanks, clogging of the channels connecting
the tanks, and faults of the measuring paths.

Table 2. Set of faults.

Fault Symbol Description

fi leak in tank 1

f2 leak in tank 2

f3 leak in tank 3

fa leak in tank 4

f5 clogging in the pipe between tanks 1 and 2
fe clogging in the pipe between tanks 2 and 3
f7 clogging in the pipe between tanks 3 and 4
fs fault of F; measuring path

fo fault of L measuring path

f10 fault of L4 measuring path

Figure 4 presents a GP graph of a process for a set of liquid storage tanks acknowl-
edging the influence of the faults on the process variables. The sensitivity of the particular
residuals for the faults may be determined on the basis of expert knowledge or read from a
GP graph:

11 =r1(f1, f2, f3, fa, f5, fe, f7. f3, fo), (25)

r2 = 12(f1, f2, 3, far f5. for f7, f3, fr0), (26)
r3 = 13(f2, f3, fa, fo, f7, fo, f10), (27)
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Figure 4. GP graph of the process, including fault influence on process variables.

Note that the measurement of the input signal to the models cuts the sensitivity of
the residual using this model from the faults influencing the measured variable. Therefore,
residuum r3 is not sensitive to a fault f;.

The Fault Isolation System—FIS for the set of serially connected liquid storage tanks
developed assuming trivalent evaluation of the residuals is presented in Table 3.

Table 3. FIS—Fault Isolation System.

A S A A A % f; o ho pawaten
s1 -1 -1 -1 -1 +1 +1 +1 —1,+1 —1,+1 0.0031/—20%
S —1 —1 -1 —1 —1 -1 —1 —1,+1 —1,+1 0.0018/—20%
S3 -1 -1 -1 -1 -1 -1 —1,+1 —1,+1 0.0019/—20%

In Table 3, the subsets of possible values of diagnostic signals are given for the faults
of measuring paths f3, fo and f19. Not all combinations of values may occur. In Table 4, the
physically possible three-valued fault signatures are given.

Table 4. Physically possible three-valued fault signatures.
hoh s s fe f T s S
- + - + - +
S1 -1 -1 -1 -1 +1 +1 +1 +1 -1 -1 +1
S -1 -1 -1 -1 -1 -1 -1 +1 -1 -1 +1
S3 -1 -1 -1 -1 -1 -1 +1 -1 -1 +1

It should be noted that residual r, responds with an impulse to the appearance of
clogging in the pipe connecting the tanks (faults f5, fs, f7). The value in the transient state

after fault

appearance deviates from zero, and after the levels in the tanks rises, it gradually

tends to zero, to a steady-state.

Analysing the symptoms forming order (under the assumption of the same geometric
parameters of tanks and connecting the pipelines) on the basis of a GP graph (Figure 4),
one may define the elementary sequences listed in Table 5.
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Table 5. Elementary sequences for the diagnosed process.

fi Elementary Sequences

fi es12(f1) = (s1,52)

f es12(f2) = (s1,52), es13(f2) = (s1,83),
f3 es12(f3) = (s2,51), es13(f3) = (s3,51),
fa es1p(fa) = (s2,81), es13(fs) = (s3,51)
fs es12(f5) = (s1,52), es13(f5) = (s1,53)
fe lack

f7 es12(f7) = (s2,51), es13(f7) = (s3,51),

The sensor fault effects on the residuals are immediate. Therefore, the sequences for
these faults have not been determined.
Table 6 lists the pairs of elementary sequences that distinguish faults.

Table 6. List of pairs of elementary sequences distinguishing faults.

es12(f1) = (s1,52), es12(f3) = (s2,51) es12(f1) = (s1,52), es12(fa) = (s2,51)
es12(f1) = (s1,52), es12(f7) = (s2,51)

es12(f2) = (s1,52), es12(f3) = (s2,51) es13(f2) = (s1,53), es13(f3) = (s3,51)
es12(f2) = (s1,52), es12(fa) = (s2,51) es13(f2) = (s1,53), es13(fa) = (s3,51)
es12(f2) = (s1,52), es12(f7) = (s2,51) es13(f2) = (s1,83), es13(f7) = (s3,51)
es12(f3) = (s2,51), es12(f5) = (s2,51) es13(f3) = (s3,51), es12(f5) = (s1,83)
es12(fa) = (s2,51), es12(f5) = (s1,52) es13(fa) = (s3,51), es12(f5) = (s1,53)
es12(fs) = (s1,52), es12(f7) = (s2,51) es13(f5) = (s1,83), es13(f7) = (s3,51)

Note that the elementary sequences ensure distinguishability, amongst others, of
pairs of faults: f> and fi, f> and f7, f3 and f5, fs and f7, which are not distinguishable on
the basis of binary signatures, and pairs f, and f3, f3 and f4, f3 and f5 indistinguishable
on the basis of three-valued signatures. For example, Table 7 lists alternative signatures
considering the values and sequence of symptoms for f, and f3 faults. All of them make
it possible to distinguish these faults, which are indistinguishable based on binary and
three-valued signatures.

Table 7. Alternative signatures for f, and f3 faults containing the values of diagnostic signals and
the sequence of symptoms.

f fs
1 s1=—1 s1=—1 sp = —1 s3=—1
2 sp = —1 S3 = — 53:71 sp = —1
3 532—1 52:—1 512—1 512—1

It should be noted that not only elementary sequences creating pairs unconditionally
distinguishing listed in Table 6 are useful to distinguish between faults. The others can also
be useful in cases of conditional distinguishability on the basis of elementary sequences,
according to Definition 3.

6.3. Examples of Inference Based on the Proposed Algorithm

Two examples of the course of diagnosis according to the proposed algorithm are
presented below.

Simulation 1. This simulation illustrates the case where all three residuals deviate from zero
due to the introduction of fault f,. Figure 5 shows the recorded time series of the residuals and
diagnostic signals.

1. The first observed symptom:s; = —1. The first generated diagnosis is as follows:

(s1 = —1) = DGN{ = {f1, f2, f3, fa, fs, fo} . A set of tests useful for the fault diagno-
sis: So = {s1,s3}. The following elementary sequences:es13(f3) = (s2,51),es12(fa) =
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(s2,51),e513(fa) = (s3,s1) eliminate the possibility of faults f3 and fy, because the first symp-
tom wassy = —1. Thus, the reduced diagnosis takes the form of DGN1 = { f1, f2, fs, fo}-
2. The next symptom:sy = —1 indicates faults in a subset: F(so = —1) = {f1, f2, f3, f4, [5, fe.
f7,f8,f10}. Thus:DGNZ* = DGNi N {F(Sz = *1)} = {fl,fz,fg} andDGN, = DGN;
3. Thelast observer symptom:ss = —1,F(s3 = —1) = {f2, f3, fa, f5, fe, f7, fo, f10} enables the
formulation of the final diagnosis:DGN; = DGN, N {F(s4 = —1)} = {fo}. DGN3 =

*
DGN; = {f2}.
0.01;
O e e - o
r1
-0.01; 2
r3
-0.02] f2 simulation signal
-0.03
1160 1180 1200 1220 1240 1260 1280
(a)
4
3k
s1
2} s2
s3
1! f2 simulation signal
0 |
1160 1180 1200 1220 1240 1260 1280

(b)

Figure 5. Examples of diagnosing in case of f, fault: (a) residual values and simulated fault indicator; (b) diagnostic signal
values (scaled to (—0.5, 0.5) and shifted to s; number).

In the case of reasoning on the basis of signatures (without taking into account the in-
formation about the order of symptoms) in the transitional state (s1=—1, sp=—1,53 =0)
a temporary false diagnosis appears, indicating faults f; or fs. In this case, the final diagno-
sis shows three indistinguishable faults f,, f3 and f;.

Simulation 2. In the second experiment also all three residuals deviate from zero due to the

introduction of fault f3. Figure 6 shows the recorded time series of the residuals and diagnostic

signals. The values of diagnostic signals in a steady-state are the same as in Simulation 1, but the
order of the symptoms is different.

In the second scenario fault fs is simulated. The inference is carried out according to analo-
gous steps:

1. The first observed symptom: s3 = —1. The first generated diagnosis: (s3 = —1) =
DGN; = {f2, f3, fa, f5. fe. f7. fo. fio}- A set of tests useful for the fault diagnosis: Sy =
{s1,52}. The following elementary sequences: es13(f2) = (s1,53), es12(f5) = (s1,53)
eliminate faults f, and fs. The reduced diagnosis: DGNy = {f3, fa, fe, f7, fo, f10}-

2. The next symptom: sy = —1indicates faults in a subset: F(sy = —1) = {f1, f2, f3, fa, fs, f10}-
Thus: DGNy = DGNy N {F(sy = —1)} = {f3, fa, fio} and DGN, = DGNJ.

3. The last observer symptom: sy = —1, F(s; = —1) = {f1, f2, f3, fa, f3, fo }enables the
formulation of the final diagnosis: DGN; = DGNy N {F(s1 = —1)} = {f3, fa}. DGN3 =
DGN; = {f3, fa}-
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Figure 6. Examples of diagnosing in case of f3 fault: (a) residual values and simulated fault indicator; (b) diagnostic signal
values (scaled to (—0.5, 0.5) and shifted to s; number).

In the case of reasoning based on the signatures, the final diagnosis shows three
indistinguishable faults f,, f3, fs. In the transition state (s =0, s, = —1,s3 = —1) there

is a temporary false diagnosis indicating a fault fig. It should be noted that the fault f,
is indistinguishable from f; on the basis of three-valued diagnostic signals. Symptom

sequence analysis ensures isolability.

6.4. Results Comparison

To compare the diagnosis results with a new method called Tree-Valued Symptoms
Sequence Fault Isolation (TVSSFI) with other known algorithms, it was assumed that all
symptoms included in the signature of each failure would be observable after the appear-
ance of the fault. Methods robust to symptom delays were considered for comparison:

Row Reasoning—DX,

Symptom Based Reasoning—SBR,

Symptoms Sequence Fault Isolation—SSFI,

Tree Value Row Reasoning—TVRR.

the new method—Tree-Valued Symptoms Sequence Fault Isolation—TVSSFI.

The occurrence of single faults was assumed. Therefore, potential diagnoses con-
cerning multiple faults generated by DX methods were not considered. Methods DX,
SBR and SSH], utilise binary residual evaluation, while methods TVRR and TVSSFI three
values evaluation.

The first comparison concerns the theoretical maximum number of different diagnoses
Lmax obtained by the analysed methods. It depends on the number of possible diagnostic
signal values and the number of possible sequences. The general formula for Lyjax when
the sequences are considered is as follows:

Lvax = MJ1, (28)

where M is the number of diagnostic signal values and ] is the number of diagnostic signals.
The number of possible combinations of diagnostic signal values is M! and the number of
possible sequences is J!.
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When the sequences are not considered, the formula (28) takes the form:
Lyvax = M. (29)

The Table 8 shows the limited capabilities of the methods, but the actual values are
much smaller due to the physical limitations in each diagnosed process. However, the
summary illustrates the importance of using the symptom sequence in the process of
diagnostic inference.

Table 8. Summary of the theoretical value of the maximum number of diagnoses Lj;4x for the
analysed methods.

Method DX SBR SSFI TVRR TVSSFI
Lyax, J=3 8 8 48 27 156

Table 9 summarises the diagnoses obtained by various inference methods based on
the BMD or FIS rows. All these methods prevent the generation of false diagnoses due to
symptom delays.

Table 9. List of diagnoses obtained by inference methods on the basis of BMD or FIS rows under the assumption of
single faults.

fk S DX/SBR SSFI TVRR TVSSFI s
f 1,10 fi,fo fa fa f5 for 7. fs fi fo, f5. for f fi, fa f3 far f3 fi far fs -1,-1,0
f 1,1,1 f2, 3, far f5, fer f7 f2, fs5. f6 f2,f3. fa f -1,-1,-1
3 1LL,11 f2:f3, fa, f5. fer f7 13/ far fo, f7 f2,f3. fa f3. fa -1,-1,-1
fa 1,1,1 f2, f3: far f5. for f7 13, fus for f7 f2, f3, fa f3, fa -1,-1,-1
f5 1,1/0,1 for 3, far f5, for f7 fo. f5. f6 f5, fer f7 f5. fe +1,-1/0,-1
f6 1/1/011 f2/f3/f4rf5/f6/f7 f3’£:;56:;67 or f5/f6rf7 f?éjff;)r +11_1/Or -1
f7 1,1/0,1 f2: 13, far f5, fo, f7 13/ fas fo, f7 f5:fer f7 fer f7 +1,-1/0,-1
fi, fa, fgor
f11f21f5/f6/f8 or fl/fz'f3/f4’f8 -1,-1,0
f8 1,1,0 flerrf3/f4/f5rf6/f7/ f8 f3rf4/f6/f7lf8 f8 fSI;:rfS 1410
fo fo -1,0,+1
f2, f5, fe, fo or 7Y
1,0,1 s 13, 4, 5, f6r f7,
; S Y 9 T S
f2, f5, fo, fo or 1
o L1 Pufsffufufnfo  fafufufsfofnfo RS St gl 0
fio fio 0,+1,+1

On the basis of Table 9, it is possible to compare the distinguishability of faults in the
case of the considered process and the analysed methods of diagnosis.

The accuracy of a single diagnosis is defined as the reciprocal of the number of faults
d; indicated in the diagnosis. Thus, the accuracy of the fault f; isolation is the average
value of the accuracy of diagnoses generated in the event of this fault. This accuracy can
be determined from Table 9. The diagnosing accuracy index D is defined as the average
diagnosis accuracy for all K faults:

1
D=~ (30)

K 1
i=1

2

The diagnostic accuracy index D was used as a measure of fault distinguishability.
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Table 10 presents the calculated values of the diagnostic accuracy index for the
tested methods.

Table 10. List of diagnostic accuracy indicators for the tested methods.

Method DX SBR SSFI TVRR TVSSFI
D 0.154 0.154 0.247 0.400 0.577

Table 10 illustrates the increase in the value of the diagnosis accuracy index using the
three-valued residuals evaluation and the knowledge of elementary symptom sequences.
The new inference method allows the determination of the highest fault distinguishability
in the case of the analysed process among the methods resistant to symptom delays. This
proves the effectiveness of the proposed algorithm.

7. Discussion and Conclusions

We present a new method of diagnostic inference. It is robust against the possibility
of formulating false diagnoses due to different delays of symptoms of the same fault. In
many cases, this method allows increasing the obtained fault distinguishability compared
to other known methods. The results of the comparison for the exemplary case are given
in Section 6.4. The method is based on three-valued residual evaluation, and it uses the
knowledge of elementary sequences of symptoms of particular faults. Such knowledge
can be obtained based on expert knowledge and the analysis of a cause-and-effect graph
considering the impacts of faults. A significant advantage of the proposed approach is
that this knowledge is not required to be complete, i.e., it is not necessary to define the
sequence of all symptoms for all faults. Only those elementary sequences are used that are
known. However, the increase in fault distinguishability is the more remarkable, the more
complete the knowledge of the elementary sequences of symptoms is.

Known approaches to fault isolation robust against the possibility of formulating false
diagnoses due to different delays of symptoms were based on the inference with the binary
evaluation of residuals. In most cases, they did not make use of the knowledge regarding
the sequence of symptoms. This resulted in a low distinguishability of faults.

On the other hand, the diagnostic methods using the internal form of the residuals
are not valuable for the diagnostics of industrial processes due to the difficulties and high
costs of obtaining models considering the influence of faults.

The presented method is advantageous in industrial installations poorly equipped
with instruments for which the fault distinguishability obtained based only on the values
of diagnostic signals is low. In these cases, the use of additional knowledge about the order
of symptoms defined in the form of elementary sequences allows for a significant increase
in distinguishability of faults (even over 40% concerning the BS and DX methods, as shown
in the analysed example).

The method was developed under the assumption of single faults. This assumption
only apparently limits the scope of the method’s application. In the vast majority of
methods, the inference begins with the search for single faults, which emergence in a short
period is much more likely than the emergence of multiple faults. At this stage of diagnosis,
the presented method can be successfully applied. The lack of a solution (diagnosis) in
the single fault class results in a double fault class solution search. At this stage, known
inference methods for multiple faults are used. So far, there are no known methods of
distinguishing multiple faults using the knowledge of the sequences of symptoms. Itis a
topic of future research.
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