
energies

Article

Design and Experimental Validation of a Single-Stage PV String
Inverter with Optimal Number of Interleaved Buck-Boost Cells

Artem Fesenko 1, Oleksandr Matiushkin 1,2 , Oleksandr Husev 1,2, Dmitri Vinnikov 2,* , Ryszard Strzelecki 3

and Piotr Kołodziejek 3

����������
�������

Citation: Fesenko, A.; Matiushkin,

O.; Husev, O.; Vinnikov, D.; Strzelecki,

R.; Kołodziejek, P. Design and

Experimental Validation of a

Single-Stage PV String Inverter with

Optimal Number of Interleaved

Buck-Boost Cells. Energies 2021, 14,

2448. https://doi.org/10.3390/

en14092448

Academic Editor: Adolfo Dannier

Received: 25 March 2021

Accepted: 22 April 2021

Published: 25 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Radiotechnics and Embedded Systems, Chernihiv Polytechnic National University,
14039 Chernihiv, Ukraine; gudrunas.ch@gmail.com (A.F.); oleksandr.matiushkin@gmail.com (O.M.);
oleksandr.husev@gmail.com (O.H.)

2 Power Electronics Research Group, Tallinn University of Technology, 19086 Tallinn, Estonia
3 Faculty of Electrical and Control Engineering, Gdansk University of Technology, 80233 Gdansk, Poland;

ryszard.strzelecki@pg.edu.pl (R.S.); piotr.kolodziejek@pg.edu.pl (P.K.)
* Correspondence: dmitri.vinnikov@taltech.ee

Abstract: Increasing converter power density is a problem of topical interest. This paper discusses an
interleaved approach of the efficiency increase in the buck-boost stage of an inverter with unfolding
circuit in terms of losses in semiconductors, output voltage ripples and power density. Main
trends in the power converter development are reviewed. A losses model was designed and used
for the proposed solution to find an optimal number of interleaved cells. It describes static and
dynamic losses in semiconductor switches for buck and boost mode. The presented calculation
results demonstrate the efficiency of the interleaved approach for photovoltaic system. 1 kW power
converter prototype was designed with two parallel dc-dc cells for experimental verification of
obtained theoretical results. The experimental results confirm theoretical statements.

Keywords: buck-boost cell; unfolding circuit; interleaved approach

1. Introduction

The Google Little Box Challenge (GLBC) has shown a close relation with the topic of
high-power density inverters for Photovoltaic (PV) applications that have demonstrated
extremely high-power density of power electronics converters achievable [1–3]. One of the
GLBC project outcomes is the concept of a very high-power density converter. The finalists
demonstrated a similar approach. It includes the basic full-bridge interleaved inverter, an
active decoupling circuit and use of Wide Band-Gap (WBG) semiconductors.

WBGs market has an upward trend in today’s power electronics due to their high
electron mobility and high voltage breakdown field [4–6]. As a result, fast switching high
voltage semiconductor devices are already available on the power electronics market. The
challenge is still the cost of those devices, which, however, is decreasing year by year.

At the same time, several configurations may be used in the PV systems [7,8]. Single
PV panels are available for low power applications. They suffer from the voltage drop
when the temperature is increasing. In the serial or string connection, one of the major
drawbacks is a significant voltage drop at partial shadowing. Both connections lead to
a wide range of input voltage variation during the energy utilization time. The GLBC
solution is intended for narrow input voltage regulation, and it cannot provide a high and
efficient PV energy conversion in heating or shadowing conditions. Neither can dual-back
inverters [9,10] or boost inverters reported in [11,12] be considered as a solution at a wide
range of regulation. Intermediate voltage boost dc-dc converters are used to overcome this
drawback. At the same time, this solution is more complex and more expensive.

An alternative is to use single-stage buck-boost for a single input dc source. In this
solution, inverters with an active boost cell are used [13–16]. They can provide very
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high boost of the input voltage but suffer from high current spikes in semiconductors
and passive elements. The buck-boost solutions based on an active boost cell are rare in
industrial applications.

New solutions are required to design an inverter with wide input voltage regula-
tion along with high-power density and acceptable efficiency. For almost a decade, the
impedance-source converters have attracted attention of the researchers [17–22]. But only
a few attempts of industrial design can be found [23,24].

Several interesting single-stage buck-boost inverters are proposed in [25–29]. The
solution based on the input boost and buck converter along with a line frequency unfolding
circuit seems to be interesting for practical applications [29–31].

Another perspective method to decrease the size of passive components is using an
interleaved approach [32–38]. In a general case, this method assumes use of two parallel
circuits with the phase shift of control signals. The main advantage of such approach
is reducing current through each single component, which allows reducing energy in
the passive component and switch conduction losses that are proportional to the current
and sizes.

Interleaved approach has been applied to different topologies, such as boost inter-
leaved inverters with coupled inductors [33], two-phase interleaved inverters [35], three-
phase grid-connected interleaved inverters [36], buck-boost interleaved inverters [37], and
the three-level interleaved topology [38]. The advantages of the interleaved approach in
terms of power density, cost and total converter efficiency have resulted in the improvement
of the boost and buck stage in the power factor corrected rectifier system [39–41].

The main disadvantages of this topology are greater number of passive and active com-
ponents, higher voltage drop on active components, and more complicated control technique.

This paper focuses on further modifications of the buck-boost inverter with unfolding
circuit using the interleaving approach. Figure 1 shows the inverter structure with the
N-cell dc-dc stage. This approach allows for the reduction of losses in semiconductor
components, in inductor energy and output voltage ripples. The main goal of this work is
to find an optimal number of the interleaved cells.
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Figure 1. The inverter structure with the buck-boost N-cells. 
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Figure 1. The inverter structure with the buck-boost N-cells.

2. Description of the Case Study System

First, the selected system is intended for PV application. Thus, the PV panel (PV
string) is the input source for this topology. As a rule, a PV station has several solar panels,
which can be reconfigured as parallel or serial connections to obtain the higher current or
voltage, respectively. This section explains the characteristics of the real PV string applied
along with brief topology features.

The set of HNS-SD140 solar panels was used as the PV string. Figure 2a shows the
real PV string on the roof of the Chernihiv Polytechnic National University. The string
consists of seven panels connected in series. The single panel generates around 140 W with
a full panel lighting. The open circuit voltage equals 75 V with the single panel and 525 V
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with the PV string, while the short circuit current is 2.5 A. The total output power reaches
up to 1 kW. The PV string parameters from the datasheet are listed in Table 1. Figure 2b
demonstrates the real power characteristic of the PV string in the middle of the day.
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Figure 2. (a) PV string on the roof, (b) real power performance of the 7 serial-connected panels in one PV string.

Table 1. PV string parameters from the datasheet.

№ Parameter Value

1 Input power, W up to 1000
2 Open circuit voltage, V 525
3 Short circuit current, A 2.5
4 Maximum Power Voltage, V 413
5 Maximum Power Current, A 2.17

Topology Description

The aim of the inverter is to convert the PV string power into the ac power and to
deliver it into the grid. The buck-boost inverter has two parts of circuits. The buck-boost
part is the high-switching circuit that generates the unipolar sine shape at the output side
using PWM. The unfolding circuit changes the sign of the output signal. The unfolding
part is a low-switching part. Besides, the unfolding circuit commutes under zero voltage
and zero current; thus, the dynamic losses equal zero. One of the advantages of the inverter
is a wide range of the input voltage regulation. The input voltage can vary from 100 V to
500 V, while the peak of the output voltage is 320 V. Thus, the converter might be operating
in a buck or in a boost mode. If the value of the grid voltage is less than the input voltage,
the system operates in the buck mode, otherwise the boost mode is chosen. Figure 3 shows
the principle of mode selection based on the grid voltage value.
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Figure 4 shows the commutation principle of both modes for a single buck-boost cell.
Only two switches are operating during the PWM period. The principle of the buck mode
is to connect or disconnect the PV side from the inverter. The boost mode is operating with
energy storage by the input inductor and is giving the storage energy instant to the grid.
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Figure 4. Switching principle of the inverter based on unfolding circuit with a single buck-boost cell: (a,b) for the buck
mode, (c,d) for the boost mode.

If the buck-boost cell is not a single cell, the PWM channels are shifted between each
other. The shifted phase is calculated as follows:

ϕi =
360◦

N
· i (1)

where N is the number of buck-boost cells, i is the current cell number.

3. Losses Model for the Buck-Boost Cell and Unfolding Circuit

It is known that the results of the calculations and those of the experiment cannot be
absolutely the same because experimental parameters depend on different factors, such
as the environment conditions, quality design, and other factors. Thus, the following
calculation regards the power loss under ideal external conditions.

The designed model includes both types of the power losses: dynamic and static. The
power signals were analyzed in detail during the model design. Figure 5 explains the high-
frequency ripples of the semiconductor currents during the operation of the buck-boost
case. Moreover, the buck and the boost modes require separate calculation of the power
losses. Therefore, it is required to have correspondence of transistors with the modes:

S1 ≡ SBUCK, S2 ≡ SNBUCK, S3 ≡ SBOOST , S4 ≡ SNBOOST , S6 ≡ S7 ≡ SUNFOLD,S5 ≡ S8 ≡ SNUNFOLD. (2)
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Figure 5. The high-switching current ripples of the semiconductor: (a) the input buck switch SBUCK,
(b) the complementary buck switch SNBUCK, (c) the boost transistor SBOOST, (d) the complementary
boost transistor SNBOOST, (e) the forward polarity unfolder switch SUNFOLD, (f) the reverse polarity
unfolder transistor SNUNFOLD, (g) and the inductor current.

So, it is necessary to take into account dependences of the duty cycle for each mode.
The expressions of the duty cycle are the same as in the case of a simple buck and boost
dc-dc converter, but the output voltage is considered as a sine shape signal:

DBUCK =
|vGRID|

vPV
, DBOOST =

|vGRID| − vPV

|vGRID|
, vGRID = VM · sin(ϕ), (3)

where vGRID is the grid voltage, vPV is the PV voltage, VM is an amplitude of the grid
voltage, ϕ is the current phase of the grid voltage, vC output capacitor voltage.

In the context of the steady state analysis, the currents depend on the input power and
on the duty cycle. It is worth nothing that the inductor current is inversely proportional to
the number of the buck-boost cells. The expressions are as follows:

iPV =
2 · P
vPV
· sin2(ϕ), iL_BUCK =

iPV
N · DBUCK

, iL_BOOST =
iPV
N

, (4)

where P is an average value of the input power, N is the number of buck-boost cells.
The steady state analysis allows obtaining the expression of the ripples in the passive

elements. The pulsations of rising and falling states are considered the same. Figure 5g
shows the high frequency ripple of the inductance current. The expressions of the inductor
current ripples for the different modes are given below:

∆iL_BUCK =
vPV − |vGRID|
2 · fSW · L1 · N

· DBUCK, ∆iL_BOOST =
vPV

2 · fSW · L1 · N
· DBOOST , (5)
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where f SW is the switching frequency, L1 is the value of the inductance.
Further calculations take into account each high-switching period. The dependences

of the rising and falling of the inductor current are obtained using a canonical equation of
the line. The inductor current depends on the time and on the current switching period.
The expressions of the buck mode are as follows:

iL_BUCK_RISE = iL_BUCK − ∆iL_BUCK + 2 · ∆iL_BUCK ·
t− i · TSW

DBUCK · TSW
, (6)

iL_BUCK_FALL = iL_BUCK + ∆iL_BUCK − 2 · ∆iL_BUCK ·
t− (i + DBUCK) · TSW
(1− DBUCK) · TSW

, (7)

where TSW is the switching period, “i” is the current number of the high-switching period.
The same equations are used for the boost mode. Moreover, any power signal or other

variables are presented as the function of the current switching period:

ϕ→ ϕ(i) = ω0 · i · TSW , iL_BUCK_RISE → iL_BUCK_RISE(i), iL_BUCK_FALL → iL_BUCK_FALL(i), (8)

DBUCK → DBUCK(i) , DBOOST → DBOOST(i). (9)

However, the currents of the transistors are not continuous, so it is required to consider
a different time span for each semiconductor.

3.1. Static Losses Model

The static model corresponds to the law of Joule-Lenz. Thus, the overall static losses
are equal to the sum of each semiconductor power loss. The general static losses are derived
with the next expression:

PCLOSS =
M

∑
i=1

(
I2
i_RMS · RDSON

)
, (10)

where M is the number of transistors, Ii_RMS is the RMS value of the transistor current,
RDSON equals the ON-state resistor declared in the document of the element.

On the other hand, the current ripples through the semiconductor element were
taken into account during the RMS calculation. Certainly, each high-switching period is
considered. So, the square RMS values of the semiconductor currents are expressed as:

I2
T_BUCK_RMS =

1
TSINE

·
Q

∑
i=0

 (i+DBUCK(i))·TSW∫
i·TSW

(
i2L_BUCK_RISE(i) · dt

), (11)

I2
T_NBUCK_RMS =

1
TSINE

·
Q

∑
i=0

 (i+1)·TSW∫
(i+DBUCK(i))·TSW

(
i2L_BUCK_FALL(i) · dt

), (12)

I2
T_BOOST_RMS =

1
TSINE

·
Q

∑
i=0

 (i+DBOOST(i))·TSW∫
i·TSW

(
i2L_BOOST_RISE(i) · dt

), (13)

I2
T_NBOOST_RMS =

1
TSINE

·
Q

∑
i=0

 (i+1)·TSW∫
(i+DBOOST(i))·TSW

(
i2L_BOOST_FALL(i) · dt

), (14)
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I2
T_UNFOLD_BUCK_RMS =

1
TSINE

·
Q

∑
i=0


(i+DBUCK(i))·TSW∫

i·TSW

(
i2L_BUCK_RISE(i) · dt

)
+

+
(i+1)·TSW∫

(i+DBUCK(i))·TSW

(
i2L_BUCK_FALL(i) · dt

)
, (15)

I2
T_UNFOLD_BOOST_RMS =

1
TSINE

·
Q

∑
i=0

 (i+1)·TSW∫
(i+DBOOST(i))·TSW

(
i2L_BOOST_FALL(i) · dt

), (16)

where TSINE is the sine period, Q is the amount of the high-switching periods per one
sine period.

3.2. Dynamic Losses Model

The dynamic losses can be obtained using the same principle: consider each high-
switching period. The next expression allows the calculation of the switching loss during
the sine period:

PDLOSS =
1

TSW
·
( tdON + tr + tdOFF + t f

2
· IP_AVG ·VP_AVG +

5
4
·Qrr ·VP_AVG

)
, (17)

where tdON is the turn on the delay time, tr is the rise time of the transistor, tdOFF is the
turn-off delay time, tf is the fall time, IP_AVG equals an average value of transistor current
spikes during the grid period, VP_AVG is the average value of the transistor drain source
stress during the sine period, Qrr is the reverse recovery charge of the reverse diode.

The average current spikes during the grid period can be obtained from previous
Equations (3)–(15) for each switch. As is known, they correspond to the maximum ripple of
the inductor current at each moment of the transistor conduction (one high-switching period):

IT_BUCK(i) = iL_BUCK(i), IT_NBUCK(i) = iL_BUCK(i), (18)

IT_BOOST(i) = iL_BOOST(i), IT_NBOOST(i) = iL_BOOST(i), (19)

The average voltage spikes can be derived from a simple differential equation of
equivalent circuits. The values of the peak of one high-switching period are as follows:

vDS_BUCK(i) = vPV(i), vDS_NBUCK(i) = vPV(i), (20)

vDS_BOOST(i) = vPV(i), vDS_NBOOST(i) = vPV(i). (21)

4. Study of the Optimal Number of the Buck-Boost Cells

An interleaved approach for the buck-boost stage of the inverter has some advantages
and disadvantages. Parallel connection of dc-dc cells increases the number of semicon-
ductor switches, and as a result, it increases the number of high-frequency commutations,
and even may increase the total converter volume and the size. On the other hand, an
interleaved feature allows the distribution of the input current between the cells, which
leads to the reduction of conduction losses in the semiconductors. At the same time, the
input inductances can be redesigned for lower current. This section is devoted to finding
an optimal number of cells.

4.1. Conclusions from the Calculations

Section 3 described the calculation based on the real semiconductor parameters. The
transistor UJC0650K was chosen for the buck-boost part, while IPP60R060P7 is embedded
in the unfolding part. The parameters of the switches are listed in Table 2.
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Table 2. Parameters of the semiconductors.

Parameter UJC0650K IPP60R060P7

VDS, V 650 650
RDS_on, Ω 34 60
ID_max, A 36.5 38
td_on, ns 29 23

tr, ns 10 12
td_off,ns 70 79

tf, ns 15 4
Qrr, µC 0.95 2.9

Note that the semiconductor parameters from the datasheet are given under some
conditions: constant drain current, environment temperature, case temperature and other
conditions. Thus, it is impossible to acquire the same efficiency obtained in the exper-
iment tests. Besides, the parasitic parameters of the board also influence the dynamic
characteristics of the switches. Therefore, the calculation has some errors and expresses an
approximate shape of efficiency as compared with that of a real case.

First, the static loss will be considered. Logically, to increase the number of cells, the
static losses should be decreased because the current is evenly split between the cells. The
last statement is an advantage. Figure 6 presents dependences for the static loss. The
boost case causes significant differences in the static losses with different amounts of cells.
However, a big difference can be seen with the higher input power, for example, from 1 kW,
as shown in Figure 6a. On the other hand, the lower input power does not affect static
losses considerably, even with a great boost ratio (Figure 6b).
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Despite the static losses decreasing under greater number of cells, the dynamic losses
are increasing. The reason is the number of commutations, because four semiconductors
are added with each additional cell. However, the current distribution in the case of several
buck-boost cells provides fewer dynamic losses for a single component, but the number of
components is increasing. Figure 7 shows dependences of dynamic losses based on the PV
voltage and the input power. The dynamic losses are rising linearly with a higher input
power, while the PV voltage is constant, as shown in Figure 7a. The dynamic losses with
three buck-boost cells are greater than with one or two cells during a wide range of the
input power and voltages. Thus, when an engineer designs an interleaved approach, the
weight of static advantages versus the weight of dynamic drawbacks must be estimated.
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has bigger static losses then dynamic. And in buck mode dynamic losses prevail on static 
losses. Figure 9 demonstrate insignificant influence of component type on efficiency in 
buck-boost and buck mode for a different number of parallel cells. For these reasons, di-
ode was chosen for experimental study. 

Figure 7. (a) Dependence of dynamic losses on the input power at constant PV voltage, (b) dependence of dynamic losses
on the PV voltage at constant input power.

Finally, the dependences of the efficiency based on the input voltage and the input
power were built. Figure 8 shows that the interleaved approach is more effective with
higher input power. The inverter with two or three cells has better efficiency at the input
power over 800 W in the case of boost (Figure 8a). The buck mode is more effective at the
input power over 2 kW, as shown in Figure 8b. However, the results of the efficiency depend
on the switches that were chosen, i.e., this efficiency dependence is in correspondence only
for an inverter with selected transistors (Table 2).
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Figure 8. The results of the switch efficiency calculation for different number of buck-boost cells: (a) in the case of buck-boost,
(b) in the case of only buck.

Switch S2 can be changed by diode. In Section 3 equations for transistor were pre-
sented. Comparative study of system with transistor and diode reviled small influence of
this factor on efficiency in general. Transistor instead of diode allows for a more flexible
control strategy. On the other hand, it should be mention that transistor in boost mode
has bigger static losses then dynamic. And in buck mode dynamic losses prevail on static
losses. Figure 9 demonstrate insignificant influence of component type on efficiency in
buck-boost and buck mode for a different number of parallel cells. For these reasons, diode
was chosen for experimental study.
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4.2. Qualitative Assessment of the Interleaved Approach

Based on the results obtained, theoretical assumption about the efficiency of the inter-
leaved approach for the buck-boost cell in terms of active component losses was verified.
On the other hand, there are other parameters that should be taken into account during
designing, such as size of the power converter because it requires a greater number of
switches and more driver circuits; the cost of element base; the passive elements. This sec-
tion presents the qualitative comparison between the single-, two- and tree cells by a square
of the power board, overall energy of inductances, efficiency and cost of semiconductors.

The influence of the interleaved approach on the linear size of the converter was ana-
lyzed. This parameter establishes relationship between the number of active components,
their control circuits and PCB size. The area for the one buck-boost cell SBB_cell consists
of the area of inductors SL, the area of the active switch SSW, which is multiplied on the
number of active components and the area of the driver SDriver for each semiconductor.
The area for unfolding circuit was calculated by the same method for different types of
switches and is presented as a constant parameter SUNF. The overall area of the inverter
can be obtained by the next expression:

S = N · (SL + 4 · (SSW + SDriver)) + 4 · (SUNF + SDriver). (22)

The second parameter compared is an overall inductance energy of the inverter. This
parameter contains the sum of the energy of all inductances. The energy of the inductor
allows indirect estimation of the size of the inductor because it depends on the inductor
value and the maximum current. The overall energy of inductances is as follows:

EL = N ·
I2
L · L1

2
+

I2
GRID · LGRID

2
. (23)

The third parameter is the cost. With regard to the interleaved approach, it is necessary
to consider the cost of all semiconductors CBB_SW, CUNFOLD_SW and their drivers CDriver.
Besides, the cost of the inverter depends on the board size CPCB. The cost of the inverter
based on the number of cells is obtained by the next expression:

C = 4 · N · (CBB_SW + CDriver) + 4 · (CUNFOLD_SW + CDriver) + CPCB. (24)

The last parameter mentioned in Section 4.1 is the efficiency. All the parameters
were normalized on the single cell, except for the efficiency. However, some aspects were
missing. For example, with the number of parallel cells increasing, the control system
complexity also increases. This trend leads to extremely expensive MCU or even FPGA for
three and more parallel cells. But many chips contain a sufficient number of PWM channels
that cover single-, two-, or three cells.
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Figure 10 shows the diagrams that compare the buck-boost cells in relative units. The
condition of the comparison was that the efficiency of several buck-boost cells is higher or
the same with a single cell. The overall inductance energy is 2 times lower in the case of
two buck-boost cells and 3 times lower in the case of three cells, respectively. However, the
cost and the area are increasing linearly with the higher cells, as shown in Figure 10a. The
efficiency of the inverter is the same for all sets of cells in the case of the buck mode. The
boost mode is more effective for higher sets of cells (Figure 10b).
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case, (b) for the boost case.

Finally, the optimal number of buck-boost cells can be obtained from the previous
calculation and estimation. In the case of the current case study system, the optimal number
is single-, or two- buck-boost cells because with the second cell, the efficiency is growing
up in the boost mode, while it is the same during the buck mode. Further cell number
increase will lead to a significant cost increase without a significant efficiency increase.

5. Control System Description

For the efficiency measurement, the open-loop system was chosen. Figure 11 shows
the strategy of the modulator with Pulse Width Modulation (PWM). The principle is as
follows: the sine signal is generated by the control unit; the reference signal is compared
with the input voltage and with zero; the result of the comparison with the input voltage
leads to choosing a suitable mode, while the comparison with zero changes unfolding
circuit signals; all the results are going to PWM, as shown in Figure 11a. The principle of
PWM is demonstrated in Figure 11b.
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The closed-loop system provides stable operation with a grid connection. The control
system consists of the next blocks: Phase-Locked-Loop block (PLL), Maximum Power Point
Tracking (MPPT), Model Predictive control (MPC) and Modulator, as shown in Figure 12 [42].
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There are three current and voltage sensors in the system. These sensors provide
measurement of the input and the output voltages and currents. Measurements of the
current in the inductances and the voltage of the capacitor are necessary to achieve the
required accuracy.

The system is synchronized with the network voltage by using a PLL block. The MPPT
calculates the amplitude of the PV output current to produce the reference signal. The
system selects the operation mode and calculates the optimal value of the duty cycles for
the converter based on the weather conditions, solar irradiation, and other parameters. The
MPC block predicts the next values of the currents and voltages and selects the necessary
duty cycle for the next high-switching period. MPC also defines the state of the unfolding
circuit. Finally, the new duty cycle and the unfolding states are sent to PWM.

6. Experimental Verification

Results of experimental verification were obtained from the designed converter pro-
totype (Figure 13). The prototype consists of the power PCB with all active and passive
components, filters, driver circuits, control and measurement PCB based on the microcon-
troller unit (MCU) TMS320F28379 of the Texas Instruments, which provides the MPPT
and MPC control algorithm. Selected MCU contains four independent cores that provide
sufficient computing resources to implement a complex control system. In addition, MCU
includes a fast 16-bit differential Analog to Digital Converter (ADC) block.
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The control and measurement PCB contains five voltage sensor channels. Two of
them provide AC voltage measurement in the range from 0 V up to 500 V. The other
three sensors were designed for DC voltage measurement. The whole control circuit is
galvanically isolated from the power part. The control system has the hardware and
software protection items, such as a fuse, varistors, relays galvanic isolated buffers, and
some software predefined limits for the measured parameters.

The inverter power PCB was designed for two parallel DC/DC cells with individual
inductors, one unfolding circuit, input and output filters, and switch driver circuits. All the
inductors were designed manually. Two inductances for the DC/DC stage have current
limit of 10 A and the grid inductor current limit is up to 15 A. The input filter consists of
three electrolytic capacitances, which are equal to 100 µF. The output filter includes an
inductance of 0.3 mH.

Two different models of transistors were used for the high frequency DC stage and
low frequency unfolding circuit. The main parameters of all the used active components
are presented in Section 4, Table 2. DC/DC stage contains six switches UJC0650K in
two parallel cells. Unfolding stage includes four transistors IPP60R060P7 (Figure 13c).
The transistor S2 of the buck-boost cell is replaced by a SiC diode CREE C3D10065. All
buck-boost semiconductors are placed on a common heatsink (Figure 13b). The unfolding
switches have only static losses, they were placed on the power board without any heatsink.

Figure 14 demonstrates a particular case of the experimental results for the open-loop
system of the buck-boost inverter based on unfolding circuit with two cells. Diagrams for
the boost case are presented in Figure 14a–d and for the buck case in Figure 14e,f. The
input voltage equals 190 V or 250 V for boost cases and 320 V for the buck case. The
output voltage satisfies the main requirements for the grid voltage. Figure 14b,d,f shows
the high-frequency ripples of the input inductor current.
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The efficiency diagram is presented in Figure 15. The results for the efficiency are
approximately similar to those calculated, as it was explained in Section 4. In the deter-
mination of the differences between the mathematical expressions and the experimental
results, as established in the losses model, thermal changing of the parameters of the
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switches, such as revers recovery charge Qrr and measurements error, were not taken into
account. Consequently, theoretical assumptions were confirmed by experimental results.
The efficiency was measured with the analyzer YOKOGAVA WT1800. Figure 15a shows
the real efficiency along with theoretical in the boost mode. The buck case lines are shown
in Figure 15b.
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The results of the closed-loop system based on MPC are shown in Figure 16. The
integral MPPT algorithm is used. The PV string contains five serial panels. The open-circuit
voltage was around 410 V. The MPP voltage equaled 350 V, while the MPP current reached
2 A, as seen in Figure 16b. The system is stabilized with the THD of the grid current less
than 5% (Figure 16c). The sine shape of the grid current is so good that it allowed us to tune
the MPPT with no problems. As a result, the experimental results confirmed the control
strategy within the efficiency theory.
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7. Conclusions

The design and experimental validation of a single-stage PV string inverter with an
optimal number of interleaved buck-boost cells are presented. The inverter can provide
stable operation under the range of the input voltage from 100 V up to 500 V. Moreover,
different PV strings can be applied for this solution. Thus, the selected topology of the
inverter is suitable for PV application.

The theoretical calculation allows the estimation of real efficiency and finding the
optimal number of the buck-boost cells. The theoretical dependences of the efficiency
were obtained based on the parameters of the transistors UJC0650K and IPP60R060P7.
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The optimal number of cells depends on the cost of the inverter, on the area of the power
board, on the overall energy of the inductances, and on the efficiency. The results showed
that the cost and the area of the power board are increasing linearly when the additional
buck-boost cell is added. The energy of inductances is also decreasing linear, so it is possible
to reduce the size of the inductances with the larger number of cells. Besides, the efficiency
is increasing with the higher input power. Thus, two cells were obtained as the optimal
number for this research.

The real PV string characteristics with the real PV string were used in theoretical
and experimental parts. The set of the 7 serial HNS-SD140 panels provided 1 kW of the
input power. The real prototype was designed for the theoretical verification. The simple
open-loop system was used for the efficiency measurements. The closed-loop system based
on MPC provides reliable operation of the inverter in the grid-connected system.
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