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Abstract: Solar irradiance forecasting is an inevitable and most significant process in grid-connected 
photovoltaic systems. Solar power is highly non-linear, and thus to manage the grid operation effi-
ciently, with irradiance forecasting for various timescales, such as an hour ahead, a day ahead, and 
a week ahead, strategies are developed and analysed in this article. However, the single time scale 
model can perform better for that specific time scale but cannot be employed for other time scale 
forecasting. Moreover, the data consideration for single time scale forecasting is limited. In this 
work, a multi-time scale model for solar irradiance forecasting is proposed based on the multi-task 
learning algorithm. An effective resource sharing scheme between each task is presented. The pro-
posed multi-task learning algorithm is implemented with a long short-term memory (LSTM) neural 
network model and the performance is investigated for various time scale forecasting. The hyperpa-
rameter estimation of the proposed LSTM model is made by a hybrid chicken swarm optimizer 
based on combining the best features of both the chicken swarm optimization algorithm (CSO) and 
grey wolf optimization (GWO) algorithm. The proposed model is validated, comparing existing 
methodologies for single timescale forecasting, and the proposed strategy demonstrated highly con-
sistent performance for all time scale forecasting with improved metric results. 

Keywords: solar irradiance forecasting; multi-task learning; multi-time scale prediction; LSTM; hybrid 
CSO-GWO 
 

1. Introduction 
Renewable energy resources have gained significance in the context of power sector 

applications to balance energy demand and generation [1]. The energy crisis is a serious 
problem encountered by all countries in the world. The growth and development of re-
newable energy sources are major areas of research interest. One of the green energies 
that is abundantly available on earth is solar energy [2–4]. The amount of radiation re-
ceived on earth is different over different regions in terms of geographic location, climatic 
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conditions, and seasonal basics. Solar energy is converted into electrical energy by photo-
voltaic circuits [5–7]. The generated power is directly dependent on solar irradiance, with 
the photovoltaic (PV) module array of PV cells interconnected to increase the generated 
power. Solar irradiance forecasting is an inevitable process that facilitates the power sys-
tem engineers to track the maximum power and to maintain stable grid system operations 
[8–10]. For the past few decades, numerous researches have been carried out for effective 
solar irradiance prediction. Usually, a single time scale forecasting has been focused [11–
13] on performing a few hours to a week ahead, forecasting the load scheduling, trans-
mission switching in partially distributed networks, planning and maintenance, smooth-
ing the injection of overall solar power into the grid, optimal energy delivery, and so on 
[14]. The day ahead forecasting supports the electricity utility companies for proper load 
scheduling, planning transactions in the electricity market, dispatching, and regulariza-
tion problems [15]. 

An hour ahead, solar irradiance forecasting was reported based on the history of ex-
tra-terrestrial data collected on the same day of forecasting. To estimate the similarity be-
tween the data, a Euclidean distance strategy was employed [16,17]. The Angstrom–Pres-
cott type of strategy has been reported for better irradiance forecasting results for hour 
ahead prediction that has been implemented with five semi-empirical models [18,19]. The 
new machine-learning algorithm was proposed to predict solar irradiance to improve pre-
diction by using artificial neural networks [20]. A model based on long-term solar radia-
tion forecasting was reported with hourly time intervals using a feedback backpropaga-
tion time-series network to reduce the solar radiance’s various influences [21]. A long 
short-term memory based deep recurrent neural network is employed (DRNN-LSTM) for 
hourly forecasting [22,23]. Various deep neural network methods are combined to observe 
and to estimate short term weather [24]. This improves the accuracy of power generation, 
stability, as well as reliability. The dynamic programming optimization scheme was pre-
sented for the multi-objective performance management of a solar power plant [25]. The 
kernel density estimation was investigated to forecast the renewable energy source-based 
distributed generation, specifically in PV power. It relies on the historical data series of 
the independent variables [26]. The performance of the convolutional neural network-
long short-term memory (CNN-LSTM) model was developed to predict the solar radia-
tion by employing whole year dataset under various conditions [27]. CNN-LSTM pro-
posed method improves the accuracy of solar radiation prediction. The short-term irradi-
ance forecasting method based on recurrent neural network, deep network, and conven-
tional artificial neural network (ANN) was developed [28]. The metrological relationship 
between the PV power and the available power was computed with better accuracy by the 
LSTM model than other conventional algorithms. The ensemble scheme based on combining 
the wavelet decomposition (WD), recurrent neural network (RNN), and the adaptive neuro 
fuzzy inference system (ANFIS) that outperformed individual algorithms [29]. The feature 
identification based on the K-means clustering algorithm was proposed, and the gated recur-
rent unit (GRU) was employed to perform PV forecasting [30]. The LSTM strategy had been 
employed, and an inter-day solar irradiance forecasting was predicted with LSTM recurrent 
architecture to demonstrate the effectiveness of the proposed model [31]. 

A multi-variant time series was investigated based on a recurrent deep learning strategy, 
and the quantitative results were presented in the deep learning LSTM model in Table 1. The 
complexity in the framing of the deep learning model was handled effectively. The PV 
power prediction scheme was based on recurrent net, and the performance was compared 
with the conventional strategies, such as back propagation neural network (BPNN), sup-
port vector machine (SVM), and radial basis function neural network (RBFNN) [32]. A 
deep learning scheme was studied with RNN models for the efficient day ahead irradi-
ance estimation. The deep LSTM was studied which had shown better performance with 
reduced root mean square error (RMSE). The hour ahead solar irradiance forecasted based 
on LSTM-RNN was presented and it was reported that there was a significant reduction 
in RMSE [33]. The designed a non-linear autoregressive model for multi-step forecasting. 
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A short-term irradiance forecasting was discussed based on the RNN model [34], on in-
troducing discrete wavelet transform (DWT), the performance of CNN-LSTM model re-
ported better metric results [35]. The LSTM-ecostate neural network based multi-tasking 
strategy supported a multi-scale irradiance forecasting [36]. A deep learning strategy for 
solar irradiance forecasting for the day-ahead time scale was developed [37]. The CNN 
was employed for feature extraction as the model tends to predict the features by itself 
without any feature extraction techniques, so the LSTM had been employed as predictor. 
The performance was compared with the conventional backpropagation neural network 
for irradiance prediction [38]. The error rate was greatly reduced for LSTM compared to 
that of BPNN. Numerous machine learning models were discussed [39] for solar irradi-
ance forecasting. The deep RBFNN models outperformed the conventional SVM and con-
ventional feed-forward networks [40]. Sky cameras were utilized to generate a dataset, 
and a deep learning-based forecasting methodology was investigated [41]. The developed 
model reported a reduced mean absolute percentage error (MAPE) value compared to 
that of other conventional models. The convolutional graph autoencoder based spatio-
temporal scheme was traduced to model the solar irradiance [42]. The probabilistic neural 
network model demonstrated a more improved response than the state of art models. 
Real-time irradiance data generation was performed based on sky image which was re-
ported in ref [43]. The RGB colour was extracted, for which very short-term forecasting 
were made. A convolutional neural network was employed for solar irradiance forecast-
ing using a residual network (ResNet) architecture. The CNN was employed for feature 
selection, and GRU employed as a predictor. The short-term forecasting results were com-
pared for the forward backward (FoBa), leap forward, spikes lab, cubist, and bag earth 
generalized cross validation (GCV). A detailed review of existing techniques for wind 
speed and solar irradiance forecasting techniques is also presented [44,45]. Ultra-short-
term forecasting was a highly challenging task. Initially, the data were clustered by ap-
plying a self-organizing maps (SOM) strategy, and then forecasting was performed by 
adopting a deep learning strategy [46]. The hybridized schemes, such as SOM, support 
vector regression (SVR), and particle swarm optimization (PSO), where the SOM is 
adopted to select features while SVR and the optimal parameters to perform the forecast-
ing were tuned by PSO [47]. The concept of the drift-based strategy was suggested for 
solar irradiance forecasting as a better one. To improve the prediction accuracy, machine 
learning and physics techniques were hybridized and implemented for day-ahead predic-
tion [48]. The input data were decomposed into various wavelet components by wavelet 
decomposition (WD). In forecasting, the decomposed data were fused for the day ahead, 
and the ANN framework completed prediction [49]. An ensemble model was developed 
to combine the wavelet strategy with a recurrent predictor model. The wavelet technique 
was employed to split the input data into various intrinsic components, and the GRU was 
employed over each component to perform prediction [50]. The K-nearest neighbors 
(KNN) algorithm was adopted to pre-process the input data, and then the forecasting was 
performed by BPNN. On adopting the pre-processing algorithm, the statistical perfor-
mance was significantly improved compared to that of other conventional algorithms [51]. 
A detailed review study on wind speed and solar irradiance forecasting based on ensem-
ble techniques was presented in [52]. The seasonal strategy was reported based on the 
auto regressive integrated moving average (ARIMA) method for irradiance forecasting 
[53]. The applicability and limitations of machine learning models for solar irradiance 
forecasting for the day ahead and a few hours ahead prediction scales were reported [54]. 
Since the generated solar power was directly dependent on solar irradiance, the non-linear 
nature of irradiance affects the generated solar power. The non-linear solar power affects 
the grid operation and imposes huge challenge on the operation and control of the grid 
system. To manage the grid operation effectively, it was necessary to forecast the irradi-
ance prior so that early management and scheduling operations can be made. 
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Table 1. Quantified results from the bibliography. 

Reference Methodology Employed Metric Results (MSE) 
[22] DRNN-LSTM 0.0754 
[27] CNN-LSTM 0.4188 
[31] Deep LSTM 0.6031 
[35] DWT-CNN-LSTM 0.6210 
[36] LSTM 0.7624 
[33] LSTM RNN 0.086 
[50] GRU 0.9835 

The single time scale model can perform better for that specific time scale but cannot 
be employed for other time scale forecasting. Moreover, the data consideration for single 
time scale forecasting is limited. In this work, a multi-time scale model for solar irradiance 
forecasting is proposed based on the multi-task learning algorithm. An effective resource 
sharing scheme between each task is presented. The proposed multi-task learning algo-
rithm is implemented over an LSTM neural network model, and the performance is in-
vestigated for various time scale forecasting. The hyperparameter estimation of the pro-
posed LSTM model is made by a hybrid chicken swarm optimizer based on a combination 
of the chicken swarm optimization algorithm (CSO) and grey wolf optimization (GWO) 
algorithm’s best features. To tune the LSTM model parameters, a hybrid swarm intelli-
gence algorithm is developed based on combining the characteristics of CSO and GWO. 
The organization of the article is presented as follows: The methodology of the proposed 
multi-time scale irradiance forecasting is presented in Section 2. The proposed neural net-
work architecture, the overview of the proposed hybrid optimization algorithms, is pre-
sented in detail. Section 3 illustrates the methodology’s experimental modelling, along with 
the obtained results and discussion, based on which the article is concluded in Section 4. 

2. Materials and Methods 
The main objective of the work is to predict the solar radiation. Thus, The Photovol-

taic Graphical Information System—Surface Solar Radiation Dataset Heliosat (PVGIS-SA-
RAH) provided the solar radiation data set for a specific location [55]. In this article, one 
year data were collected for the Coimbatore (11.0168° N, 76.9558° E) location on an hourly 
basis over the period from January to December 2020 and utilized for the system model-
ling and validation. The input parameters are sun height, air temperature, and wind 
speed. The predicted data concern global irradiance on the inclined plane (the plane of 
the array) (W/m2). The entire dataset is segregated into 75% for training and the remaining 
25% for testing, as shown in Figure 1a–d. During the training process, the hourly dataset 
is approximated for daily and weekly time period by the proposed multi scale strategy 
with resource sharing ability. The solar radiation datasets acquired are trained, validated 
and tested using MATLAB 2020b version (MathWorks, Natick, MA, USA) which is carried 
out on a 24 GB Quadro NVIDIA RTX 6000 workstation computer with an Intel i9 proces-
sor. In MATLAB 2020b, the Neural Network Toolbox, Regression Toolbox, and Statistics 
and Fitting Toolbox are the toolboxes used in this experiment. The short-term error distri-
bution characteristics are studied, and the solar irradiance is predicted by a non-iterative 
method. A hybrid optimization algorithm is presented to alleviate the hyper parameters’ 
imperfectness and reduce the workforce and manual parameter adjustment. 
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(a) (b) 

  
(c) (d) 

Figure 1. Training and testing sample dataset of environmental parameters: (a) Solar radiation; (b) Wind speed; (c) Ambi-
ent temperature of the location; (d) Sun elevation. 

The proposed methodology is about approximating the hourly data for daily and 
weekly forecasting. With the available hourly dataset, the authors tried to perform daily 
and weekly forecasting based on mathematical approximations. The corresponding ap-
proximation expressions are given in Equations (1)–(7) of Section 2.1. Here, the forecasting 
is made by LSTM predictor and the LSTM parameters are optimally tuned by the pro-
posed hybrid CSO-GWO optimization algorithm. The performance of neural network 
models is greatly influenced by the random initialization of learning parameters. So, in 
the proposed paper, the crow search optimization algorithm is hybridized with the grey 
wolf optimization algorithm. The hybrid CSO-GWO optimization algorithm is employed 
to tune the weight and bias coefficients of the LSTM model. The architecture of the pro-
posed methodology is presented in Figure 2. During the training process, 5-fold cross-
validation is performed, and all the three reservoirs of the hourly, daily, and weekly da-
taset are segregated into 5-fold data and trained in parallel. While four folds are employed 
for training, the remaining 1-fold is utilized for testing. So, at the end of the training pro-
cess, the entire training dataset will be at least trained and tested once. This improves the 
training accuracy and learning ability of the model. During the training process, each unit 
is trained to handle missing data situations with the common resource sharing ability of 
parallel processing. The input data are then normalized by min-max normalization and 
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fed into the proposed deep learning LSTM predictor model. The performance is simulated 
in MATLAB R2020b environment. 

 
Figure 2. The proposed methodology of the study. 

2.1. Proposed Multi-Time Scale Forecasting 
The single-stage forecasting will perform effectively for that specific period. It cannot 

be employed. Moreover, an effective forecasting resource sharing of various time scale 
data is helpful. For these reasons, a novel strategy to perform multi time scale anticipating 
is proposed to take focal points of relationships on various timescales. In the proposed 
solar irradiance forecasting model, the principal thought is to foresee the irradiance for 
various time scale with the available data. The timescale of each errand relies upon the 
availability of the irradiance data. For instance, the data employed for short term forecast-
ing cannot be employed for long term forecasting. Whereas the developed model in this 
chapter with the irradiance data gathered in the hourly span can satisfy different under-
takings of hour-ahead, day-ahead, and week ahead forecasting, the same cannot be made 
possible in a single-stage forecasting model because of insufficient data. In this investiga-
tion, two assignments with hourly and daily scale forecasting are made using the hourly 
irradiance information as in Figure 3. 

The basic idea behind the proposed multi time scale solar irradiance forecasting is 
approximating hourly data corresponding to daily and weekly datasets by parallel pro-
cessing resource sharing ability. The fundamental task here is to fill the missing data fields 
while the data are approximated to perform day ahead and week ahead forecasting. In-
stead of common data imputation strategy, the proposed model employed an autoregres-
sive exogenous technique (ARX). Here, based on the linear combination of available past 
input and output samples, the specific system output is represented. 
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Figure 3. Multi-tasking architecture. 

Based on the linear multi-input and multi-output autoregressive exogenous tech-
nique of Wu et al. [20], the proposed model is generalised as below: 

𝜦𝜦 = 𝑶𝑶𝑶𝑶 + 𝑬𝑬 (1) 

𝑶𝑶 =

⎣
⎢
⎢
⎡𝒂𝒂𝟏𝟏𝟏𝟏. . .𝒂𝒂𝟏𝟏𝒏𝒏𝒉𝒉
𝒂𝒂𝟐𝟐𝟐𝟐. . .𝒂𝒂𝟐𝟐𝒏𝒏𝒉𝒉�������

𝒉𝒉𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

𝒃𝒃𝟏𝟏𝟏𝟏. . .𝒃𝒃𝟏𝟏𝒏𝒏𝒅𝒅
𝒃𝒃𝟐𝟐𝟐𝟐. . .𝒃𝒃𝟐𝟐𝒏𝒏𝒅𝒅�������

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

𝒄𝒄𝟏𝟏𝟏𝟏. . . 𝒄𝒄𝟏𝟏𝒏𝒏𝒘𝒘
𝒄𝒄𝟐𝟐𝟐𝟐. . . 𝒄𝒄𝟐𝟐𝒏𝒏𝒘𝒘�������

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 ⎦
⎥
⎥
⎤
 (2) 

𝑴𝑴 = [𝑯𝑯𝒊𝒊−𝟏𝟏, … ,𝑯𝑯𝒊𝒊−𝒏𝒏𝒉𝒉 ,𝑫𝑫𝒊𝒊−𝟏𝟏, … ,𝑫𝑫𝒊𝒊−𝒏𝒏𝒅𝒅 ,𝑾𝑾𝒊𝒊−𝟏𝟏, …𝑾𝑾𝒊𝒊−𝒏𝒏𝒘𝒘]𝑻𝑻 (3) 

𝑯𝑯�𝒊𝒊 = 𝒂𝒂𝟏𝟏𝟏𝟏𝑯𝑯𝒊𝒊−𝟏𝟏 + ⋯+ 𝒂𝒂𝟏𝟏𝒏𝒏𝒉𝒉𝑯𝑯𝒊𝒊−𝒏𝒏𝒉𝒉 + 𝒃𝒃𝟏𝟏𝟏𝟏𝑫𝑫𝒊𝒊−𝟏𝟏 + ⋯+ 𝒃𝒃𝟏𝟏𝒏𝒏𝒅𝒅𝑫𝑫𝒊𝒊−𝒏𝒏𝒅𝒅 + 𝒄𝒄𝟏𝟏𝟏𝟏𝑾𝑾𝒊𝒊−𝟏𝟏 + ⋯
+ 𝒄𝒄𝟏𝟏𝒏𝒏𝒘𝒘𝑾𝑾𝒊𝒊−𝒏𝒏𝒘𝒘 + 𝒆𝒆𝒉𝒉 

(4) 

𝑫𝑫�𝒊𝒊 = 𝒂𝒂𝟐𝟐𝟐𝟐𝑯𝑯𝒊𝒊−𝟏𝟏 + ⋯+ 𝒂𝒂𝟐𝟐𝒏𝒏𝒉𝒉𝑯𝑯𝒊𝒊−𝒏𝒏𝒉𝒉 + 𝒃𝒃𝟐𝟐𝟐𝟐𝑫𝑫𝒊𝒊−𝟏𝟏 + ⋯+ 𝒃𝒃𝟐𝟐𝒏𝒏𝒅𝒅𝑫𝑫𝒊𝒊−𝒏𝒏𝒅𝒅 + 𝒄𝒄𝟐𝟐𝟐𝟐𝑾𝑾𝒊𝒊−𝟏𝟏 + ⋯
+ 𝒄𝒄𝟐𝟐𝒏𝒏𝒘𝒘𝑾𝑾𝒊𝒊−𝒏𝒏𝒘𝒘 + 𝒆𝒆𝒅𝒅 

(5) 

where 𝑛𝑛ℎ,𝑛𝑛𝑑𝑑 ,𝑛𝑛𝑤𝑤 denote the number of a data sample of relative solar irradiance on dif-
ferent timescales, based on the history of data, while the relationship between the antici-
pated and the actual data is computed as coefficients 𝑂𝑂, and 𝐸𝐸 is the error coefficient. 
𝐻𝐻𝑖𝑖 ,𝐷𝐷𝑖𝑖 ,𝑊𝑊𝑖𝑖 are hourly, daily, and weekly solar irradiance that can be obtained as: 

𝑫𝑫𝒊𝒊−𝒏𝒏 = � 𝑯𝑯𝒋𝒋

𝒊𝒊−𝟐𝟐𝟐𝟐𝟐𝟐+𝟐𝟐𝟐𝟐

𝒋𝒋=𝒊𝒊−𝟐𝟐𝟐𝟐𝟐𝟐

 (6) 
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𝑾𝑾𝒊𝒊−𝒏𝒏 = � 𝑯𝑯𝒋𝒋

𝒊𝒊−𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+𝟏𝟏𝟏𝟏𝟏𝟏

𝒋𝒋=𝒊𝒊−𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

 (7) 

To improve the non-linear fitting ability, a deep LSTM based multi time scale fore-
casting model is established as: 

𝜦𝜦 = 𝑭𝑭�(𝑯𝑯𝒊𝒊−𝟏𝟏, … ,𝑯𝑯𝒊𝒊−𝒏𝒏𝒉𝒉 ,𝑫𝑫𝒊𝒊−𝟏𝟏, … ,𝑫𝑫𝒊𝒊−𝒏𝒏𝒅𝒅 ,𝑾𝑾𝒊𝒊−𝟏𝟏, … ,𝑾𝑾𝒊𝒊−𝒏𝒏𝒘𝒘) (8) 

𝜦𝜦 = (𝑯𝑯�𝒊𝒊,𝑫𝑫�𝒊𝒊)𝑻𝑻 (9) 

2.2. Recurrent Neural Network 
The learning mechanism employed to compute the new states recursively by apply-

ing activation functions over the inputs and the previous states of the network is termed 
recurrent neural networks (RNNs). It differs from conventional feed forward network by 
its feedback connectivity given to hidden units. The previous history of hidden states is 
stored in special storage units called context units, the stored data in the previous iteration 
will be utilized by the current iteration during training process. The special ability of RNN 
is to approximate the non-linear dynamics of system by dynamic mapping of input output 
sequences. The common learning methodology employed is gradient descent-based learning 
algorithm. The algorithm’s cost function is to reduce the error between the actual and pre-
dicted data, where the objective is to reduce the MSE between actual and predicted output. 

A simple RNN architecture is depicted in Figure 4, where 𝑊𝑊ℎ
𝑖𝑖, 𝑊𝑊ℎ

ℎ, 𝑊𝑊ℎ
𝑜𝑜 represents 

the input, hidden, and output weights, respectively, and 𝑍𝑍−1 represents the delay unit. It 
is noted from the architecture that the feedback is not provided by the output connection 
from the output unit. Instead, the hidden unit undertakes it through a time shift operator. 
When the time shift operator is negative, then the node receives the input of content from 
the previous time interval. In contrast, in the case of a positive time shift, then it represents 
the input from future time interval. There exist various types of RNN networks, including 
Hopfield network, Elman network, Jordan network, long short-term neural network, echo 
state neural network, and so on. The common limitation of the RNN network is its gradi-
ent vanishing issue, so to address this issue, the LSTM neural network has been intro-
duced which is employed to forecast the solar irradiance in this research contribution. 

 
Figure 4. Recurrent neural network architecture.  
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2.3. LSTM Deep Learning Model 
The long short-term memory network is a kind of recurrent neural network, and the 

LSTM architecture handles the vanishing gradient problem of classic RNN. During the 
training process, the data flow is maintained by switching special gates that decide when 
to read, write, and what data to be stored in the gates coordinately. The deep LSTM archi-
tecture is presented in Figure 5, with the input gate 𝒊𝒊𝒕𝒕, output gate 𝑂𝑂𝑂𝑂𝑡𝑡𝑡𝑡, the forget gate 
𝑓𝑓𝑡𝑡 , and the context unit 𝐶𝐶𝑡𝑡. The signal flow between the layers with long term learning 
dependencies is presented below: 

𝒊𝒊𝒕𝒕 = 𝝈𝝈(𝑽𝑽𝒊𝒊𝒛𝒛𝒕𝒕−𝟏𝟏 + 𝑾𝑾𝒊𝒊𝒙𝒙𝒕𝒕 + 𝒃𝒃𝒊𝒊) (10) 

𝑪𝑪�𝒕𝒕 = 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑽𝑽𝒄𝒄𝒛𝒛𝒕𝒕−𝟏𝟏 + 𝑾𝑾𝒄𝒄𝒙𝒙𝒕𝒕 + 𝒃𝒃𝒄𝒄) (11) 

𝑪𝑪𝒕𝒕 = 𝒇𝒇𝒕𝒕 ⊗ 𝒄𝒄𝒕𝒕−𝟏𝟏 + 𝒊𝒊𝒕𝒕 ⊗ 𝑪𝑪�𝒕𝒕 (12) 

𝑶𝑶𝑶𝑶𝒕𝒕𝒕𝒕 = 𝝈𝝈(𝑽𝑽𝒐𝒐𝒛𝒛𝒕𝒕−𝟏𝟏 + 𝑾𝑾𝒐𝒐𝒙𝒙𝒕𝒕 + 𝒃𝒃𝒐𝒐) (13) 

where 𝑉𝑉, 𝑊𝑊, and 𝑏𝑏 are the weight and bias coefficients, while the operator ⊗ is the ele-
ment wise multiplication. The signal flow from one gate to another for a specific time 
instant 𝑡𝑡 is dependent on previous iteration 𝑡𝑡 − 1 state. For instance, the value to be 
stored in input gate is the output of the sigmoidal function employed over net input com-
puted between the input and previous instances of hidden units. If the forget gate value 
is 1, the information in the memory cell is retained. Otherwise, it will be removed. The 
proposed LSTM model employs several stacked LSTM layers. The output of each layer is 
added linearly by employing the softmax activation function. 

𝒛𝒛𝒕𝒕 = 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒎𝒎𝒎𝒎𝒎𝒎(𝑾𝑾𝒉𝒉𝒉𝒉𝒉𝒉𝒕𝒕 + 𝒃𝒃𝒛𝒛) (14) 

where ℎ𝑡𝑡 is the output of a single LSTM shell. 

 
Figure 5. LSTM deep learning model network layers. 

The performance of neural networks models is greatly influenced by its random ini-
tialization of learning parameters. In this study, a hybrid optimization algorithm is devel-
oped to tune the model parameters to the optimal value. In swarm intelligence, not all the 
algorithms can perform similarly for all problem statements. Conventionally, they suffer 
from certain limitations, such as local stagnation issues, global stagnation issues, delayed 
convergence, and so on. To address these limitations, the algorithm should possess a bet-
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ter trade-off between its exploration and exploitation stability. Thus, in the proposed pa-
per, a hybrid combination of crow search optimization algorithm (CSO) with grey wolf 
optimization algorithm (GWO) is made. 

2.4. Chicken Swarm Optimization Algorithm—An Overview 
Chick swarms’ hierarchical behaviour is inspired to propose an optimization scheme 

called the chicken swarm optimization algorithm. In this algorithm, the entire population 
is segregated into various groups. Among all groups, there will be a rooster and numerous 
hens and chicks. The fitness value decides the hierarchy of the swarms. The chicken learns 
from their experience instead of learning through experiment. The roosters guide the 
movement of hens and chicks. They produce distinct sounds for their communications 
among the population, and there will be dominant and submissive hens among the pop-
ulation. The dominant will be near to the rooster, while others will stand further away. 
They demand battle if any other group members enter their boundary, sometimes stealing 
food from other boundaries. The position of chicks will be based on the position of their 
moms: 

𝒙𝒙(𝒕𝒕 + 𝟏𝟏) = 𝒙𝒙(𝒕𝒕) × (𝟏𝟏 + 𝑹𝑹(𝟎𝟎,𝝈𝝈𝟐𝟐)) (15) 

𝝈𝝈𝟐𝟐 = �
𝟏𝟏 𝒌𝒌 ∈ [𝟏𝟏,𝑵𝑵],𝒌𝒌 ≠ 𝒊𝒊

𝒆𝒆𝒆𝒆𝒆𝒆(
(𝒇𝒇𝒍𝒍 − 𝒇𝒇𝒍𝒍)
|𝒇𝒇𝒊𝒊| + 𝒆𝒆

) 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐  (16) 

where 𝑅𝑅(0,𝜎𝜎2) is the Gaussian distribution with the mean value of 0 and 𝜎𝜎2 represents 
the standard deviation; the zero deviation error is reduced by 𝑒𝑒, and is employed to avoid 
the zero division error; the rooster index is represented by k, and f is the fitness function 
value for the corresponding particle in the population. The position updating equation of 
hen is presented as follows: 

𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 + 𝑺𝑺𝟏𝟏 × 𝑹𝑹 × (𝒙𝒙𝒓𝒓𝒓𝒓,𝒋𝒋
𝒕𝒕 − 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 ) + 𝑺𝑺𝟐𝟐 × 𝑹𝑹 × (𝒙𝒙𝒓𝒓𝟐𝟐,𝒋𝒋

𝒕𝒕 − 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 ) (17) 

𝑺𝑺𝑺𝑺 = 𝒆𝒆𝒆𝒆𝒆𝒆(𝒇𝒇𝒊𝒊 − 𝒇𝒇𝒓𝒓𝒓𝒓)/(𝒂𝒂𝒂𝒂𝒂𝒂(𝒇𝒇𝒊𝒊) + 𝒆𝒆) (18) 

𝑺𝑺𝑺𝑺 = 𝒆𝒆𝒆𝒆𝒆𝒆(𝒇𝒇𝒓𝒓𝒓𝒓 − 𝒇𝒇𝒊𝒊) (19) 

where R is the uniform random number, the index of the rooster is shown by r1, and r2 is 
the index of chicken that is randomly selected from the population, such that r1 is not the 
same as that of r2. The chicks will follow the hen for food based on the following equation: 

𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 + 𝑭𝑭𝑭𝑭 × (𝒙𝒙𝒎𝒎,𝒋𝒋
𝒕𝒕 − 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 ) (20) 

where FL is a parameter randomly chosen between 0 and 2. 𝑥𝑥𝑚𝑚,𝑗𝑗
𝑡𝑡  stands for the position 

of the mother hen in the population. 

2.5. Grey Wolf Optimizer Algorithm—An Overview 
The grey wolf optimizer is developed based on wolves’ hunting behaviour, the hier-

archical behaviour of wolves and their social hunting mechanism is adopted to frame the 
algorithm. There exist four degrees of authority among wolves. The pioneer wolves that 
occupy the highest position of the hierarchy are the alpha wolves. They are the main de-
cision-makers of the population and they drive the whole gathering. This wolf is the most 
dominant in the population. The population that follows the next hierarchy of dominant 
wolves is the beta wolf, and they will help the alpha in decision making and organizing 
the gathering. The third position involved is the omega wolves. These wolves are gener-
ally most fragile among the gathering and are in every case less allowed to eat and over-
whelmed by all other predominant individuals from the gathering. The wolves that are 
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not categorized according to these three classifications are the delta wolves. They are dom-
inated by the first two hierarchical groups and tend to dominate the omega wolves. The 
entire population is highly organized for social hunting, and their prey encircling mecha-
nism is mathematically expressed as follows: 

𝜸𝜸 = �𝝎𝝎 × 𝒙𝒙𝒑𝒑 − 𝒙𝒙(𝒕𝒕)� (21) 

𝒙𝒙(𝒕𝒕 + 𝟏𝟏) = 𝒙𝒙𝒑𝒑(𝒕𝒕) − 𝒂𝒂 × 𝜸𝜸 

𝒂𝒂 = 𝟐𝟐𝟐𝟐 × 𝒓𝒓𝟏𝟏, 𝝎𝝎 = 𝟐𝟐 × 𝒓𝒓𝟐𝟐 
(22) 

The hunting process is mathematically written as 

𝜸𝜸
→
𝜶𝜶 = �𝝎𝝎𝟏𝟏

→
× 𝒙𝒙

→
𝜶𝜶 − 𝒙𝒙

→
� (23) 

𝜸𝜸
→
𝜷𝜷 = �𝝎𝝎𝟏𝟏

→
× 𝒙𝒙

→
𝜷𝜷 − 𝒙𝒙

→
� (24) 

𝜸𝜸
→
𝜹𝜹 = �𝝎𝝎𝟏𝟏

→
× 𝒙𝒙

→
𝜹𝜹 − 𝒙𝒙

→
� (25) 

𝒙𝒙𝟏𝟏
→

= 𝒙𝒙
→
𝜶𝜶 − 𝒂𝒂

→
𝟏𝟏 × (𝜸𝜸

→
𝜶𝜶) (26) 

𝒙𝒙𝟐𝟐
→

= 𝒙𝒙
→
𝜷𝜷 − 𝒂𝒂

→
𝟐𝟐 × (𝜸𝜸��⃗ 𝜷𝜷) (27) 

𝒙𝒙
→
𝟑𝟑 = 𝒙𝒙

→
𝜹𝜹 − 𝒂𝒂

→
𝟑𝟑 × (𝜸𝜸

→
𝜹𝜹) (28) 

𝒙𝒙(𝒕𝒕 + 𝟏𝟏) =
𝒙𝒙
→
𝟏𝟏 + 𝒙𝒙

→
𝟐𝟐 + 𝒙𝒙

→
𝟑𝟑

𝟑𝟑
 (29) 

𝒂𝒂
→

(.) = 𝟐𝟐𝒍𝒍
→

× 𝒓𝒓
→
− 𝒍𝒍

→
 (30) 

𝝎𝝎
→

(.) = 𝟐𝟐 × 𝒓𝒓
→
𝟐𝟐 (31) 

where 𝑎𝑎 is a coefficient vector that is a randomly generated value in the range of 2 to 0. 
For |𝑎𝑎| < 1 the wolves will attack the prey, and for |𝑎𝑎| > 1 the members are forced to 
move away from the prey. 

2.6. Proposed Hybrid CSO-GWO Optimization Algorithm 
The major issue faced by the swarm intelligence algorithms is the lack of a better 

trade-off between exploration and exploitation ability of the algorithm. The exploration 
ability defines the global search ability of the population. The prey identification process 
of an individual in the population is the exploration ability. Once the prey is identified, 
the entire population is coordinated to enjoy the food through exploitation. The popula-
tion-based algorithms suffer from premature convergence, delayed convergence, local 
stagnation issue, local optimal and global optimal trapping issues, etc. In the proposed 
model, two algorithms are hybridized. The CSO optimizer is good at its exploration abil-
ity, and the GWO is good at its local hunting mechanism. Moreover, both the algorithms 
have the similarity of a three-layer hierarchy in terms of their social behaviour. 

The Pseudocode of the proposed algorithm is presented in Algorithm 1, and the flow 
diagram is presented in Figure 6. The steps involved are presented as follows: 

The mathematical expressions depicting the movement of a rooster guided by alpha 
wolves are presented as follows: 

𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 × (𝟏𝟏 + 𝑹𝑹(𝟎𝟎,𝝈𝝈𝟐𝟐)) + 𝒙𝒙𝜶𝜶𝒕𝒕  (32) 
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Algorithm 1 Proposed hybrid CSO-GWO optimizer 
1:  Initialize the population of rooster, hen and chicks of CSO 
2:  Initialize the population of alpha, beta, delta wolves of GWO 
3:  Initialize r1, r2, FL, R(.), a 
4:  while (MSE = 10–5 || Max_iter = 700) 
5:  { 
6:  for all individual in population 
7:  { 
8:  do 
9:  Evaluate the fitness value of all swarm in the population 

10:  Update the position of 𝜶𝜶, 𝜷𝜷 and 𝜹𝜹 wolves in the population is updated as 
11:  𝒙𝒙𝟏𝟏

→
= 𝒙𝒙

→
𝜶𝜶 − 𝒂𝒂

→
𝟏𝟏 × �𝜸𝜸

→
𝜶𝜶� 

12:  𝑥𝑥2
→

= 𝑥𝑥
→
𝛽𝛽 − 𝑎𝑎

→
2 × �𝛾⃗𝛾𝛽𝛽� 

13:  𝑥𝑥
→
3 = 𝑥𝑥

→
𝛿𝛿 − 𝑎𝑎

→
3 × (𝛾𝛾

→
𝛿𝛿) 

14:  Update position of rooster, hen and chick as, 
15:  𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 × (𝟏𝟏 + 𝑹𝑹(𝟎𝟎,𝝈𝝈𝟐𝟐)) + 𝒙𝒙𝜶𝜶𝒕𝒕  
16:  𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 + 𝜻𝜻𝟏𝟏 × 𝑹𝑹 × (𝒙𝒙𝒓𝒓𝟏𝟏,𝒋𝒋

𝒕𝒕 − 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 ) + 𝜻𝜻𝟐𝟐 × 𝑹𝑹 × (𝒙𝒙𝒓𝒓𝟐𝟐,𝒋𝒋
𝒕𝒕 − 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 ) + 𝒙𝒙𝜷𝜷𝒕𝒕  

17:  𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 + 𝑭𝑭𝑭𝑭 × (𝒙𝒙𝒎𝒎,𝒋𝒋
𝒕𝒕 − 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 ) + 𝒙𝒙𝜹𝜹𝒕𝒕  

18:  } 
19:  end for 
20:  } 
21:  end while 
22:  return the evaluated fitness value 
23:  return the iter_no 
24:  return MSE 

The position updating equation of hen guided by beta wolves is presented as follows: 

𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 + 𝜻𝜻𝟏𝟏 × 𝑹𝑹 × (𝒙𝒙𝒓𝒓𝒓𝒓,𝒋𝒋
𝒕𝒕 − 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 ) + 𝜻𝜻𝟐𝟐 × 𝑹𝑹 × (𝒙𝒙𝒓𝒓𝒓𝒓,𝒋𝒋

𝒕𝒕 − 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 ) + 𝒙𝒙𝜷𝜷𝒕𝒕  (33) 

Delta wolves guide the position of chick based on the following equation, 

𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 + 𝑭𝑭𝑭𝑭 × (𝒙𝒙𝒎𝒎,𝒋𝒋
𝒕𝒕 − 𝒙𝒙𝒊𝒊,𝒋𝒋𝒕𝒕 ) + 𝒙𝒙𝜹𝜹𝒕𝒕  (34) 

• Step 1: The population of rooster, hen, and the chicks of CSO algorithm are initialized. 
• Step 2: The population of alpha, beta and delta wolves of the grey wolf optimization 

algorithm is initialized. 
• Step 3: Until stopping criteria is attained, the fitness function is evaluated for the entire 

population. Based on the fitness value obtained, the position of chicks and hens are 
updated. 

• Step 4: Steps 2 to 4 is repeated until the stopping criteria of the maximum number of 
iterations or minimum MSE order of 10−5 are attained. 

• Step 5: The fitness value and the corresponding MSE is returned. 
The model is made to run until error convergence of 10−5, the mean square error be-

tween actual and predicted data is made as to the fitness function. The entire dataset is 
approximated into three records: hourly, daily, and weekly. Three LSTM models are de-
veloped. Three reservoirs of datasets train each, the forecasted data of each LSTM unit is 
linearly combined at the output layer by a SoftMax activation function. The number of 
hidden layers is fixed after 25 trial runs, and the number of hidden units at each layer is 
fixed by the trial-and-error method based on the thumb rule, with the number of hidden 
layers of 4, 3, and 5 for each LSTM layer, respectively. For each trial run, the model is 
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evaluated for training and testing accuracy. The number of hidden layers and hidden neu-
rons are fixed such that the model is free from over and under fitting issues. 

 
Figure 6. Flow diagram of the proposed hybrid CSO-GWO algorithm. 

During the training process, 5-fold cross-validation is performed. All the three reser-
voirs of hourly, daily and weekly dataset are segregated into 5-fold data and trained in 
parallel. While four folds are employed for training, the remaining 1-fold is utilized for 
testing. So, at the end of training process the entire training dataset will be at least trained 
and tested for once. This improves the training accuracy and learning ability of the model. 
During the training process, each unit is trained to handle missing data situations with 
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the common resource sharing ability of parallel processing. The final output of the model 
is the linear combination of each LSTM unit. The proposed model’s performance is vali-
dated by investigating the model response for hourly, daily, and weekly prediction based 
on training the model with the hourly dataset. The forecasted result of three-time scale 
forecasting is mapped with the actual dataset and presented in Figures 7–9 for hourly, 
daily, and weekly irradiance forecasting, respectively. 

 
Figure 7. Hourly prediction of solar irradiance using CSO, GWO, and hybrid CSO-GWO with 
LSTM predictor for 8 October 2020. 

 
Figure 8. Daily prediction of solar irradiance using CSO, GWO, and hybrid CSO-GWO with LSTM 
predictor for seven days of 1st week of November 2020. 
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Figure 9. Weekly prediction of solar irradiance using CSO, GWO, and hybrid CSO-GWO with 
LSTM predictor for the weeks of December 2020. 

The proposed multi scale solar radiation forecasting performs three-time scale fore-
casting such as hourly, daily and weekly forecasting on the basis of hourly data set with 
better resource sharing ability. The proposed deep learning LSTM model parameters are 
optimally tuned by the proposed hybrid CSO-GWO optimization algorithm, which also 
optimally tunes the network parameters such as weight and bias coefficients. The input 
data are normalized by min-max normalization and fed into the proposed deep learning 
LSTM predictor model. The performance is simulated in MATLAB R2014a environment 
and executed in Intel Duo Core2 processor with 2 GB RAM of speed, 2.27 GHz. 

The performance metrics employed to evaluate the performance of the model are 
presented as follows: 

Mean square error (MSE): The mean value of deviation between the actual and pre-
dicted MSE depicts data. Here, the large error values are highlighted. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑆𝑆𝑆𝑆𝑆𝑆_𝐸𝐸𝐸𝐸𝐸𝐸 =
1
𝑛𝑛
�(𝑌𝑌� − 𝑌𝑌)2
𝑛𝑛

𝑗𝑗=1

 (35) 

Mean absolute percentage error (MAPE): A common methodology employed in sta-
tistics to the measure the level of error that occurs in prediction. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐸𝐸𝐸𝐸𝐸𝐸 =
100
𝑛𝑛

��(𝑌𝑌� − 𝑌𝑌)/𝑌𝑌��
𝑛𝑛

𝑗𝑗=1

 (36) 

Direct accuracy (DA): The direct prediction accuracy of the forecasted series is 
demonstrated by DA and expressed as follows: 

𝐷𝐷𝐷𝐷 =
1
𝑛𝑛
�𝑤𝑤𝑖𝑖 ,𝑤𝑤𝑖𝑖 = �

0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
1, 𝑖𝑖𝑖𝑖(𝑌𝑌𝑡𝑡+1 − 𝑌̄𝑌𝑡𝑡+1)(𝑌̄𝑌𝑡𝑡+1 − 𝑌̄𝑌𝑡𝑡) > 0

𝑛𝑛

𝑖𝑖=1

 (37) 

where n is the number of data samples, 𝑌𝑌 is actual data, 𝑌𝑌�  is the predicted output. 
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Since the proposed model has stochastic parameters, statistical analysis shows that 
the obtained results are not affected by randomness. Pearson’s test and coefficient of de-
termination were obtained to signify the statistical analysis of the proposed regression 
model, and the Pearson correlation is presented as follows: 

𝑟𝑟 =
∑ (𝑌𝑌𝑡𝑡′ − 𝑌𝑌𝑚𝑚′ )𝑇𝑇
𝑡𝑡=1 (𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑚𝑚)

�(∑ (𝑌𝑌𝑡𝑡′ − 𝑌𝑌𝑚𝑚′ )2 × ∑ (𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑚𝑚)2𝑇𝑇
𝑡𝑡=1

𝑇𝑇
𝑡𝑡=1 )

 (38) 

where 𝑌𝑌𝑚𝑚′  and 𝑌𝑌𝑚𝑚 are the means of actual and predicted data, respectively. 
When the coefficient of determination (R2) and the correlation value (r) approaches 

near 1, then the proposed model can be validated as statistically fit to perform solar irra-
diance forecasting. 

3. Results 
The model is evaluated for individual time scale forecasting and compared with the 

proposed multi-time scale forecasting performance, as presented in Table 2. To investigate 
the extent to which the multi scale approximation results deviated from individual time 
scale results, here, for individual time scale forecasting, the model is trained with hourly 
data for hourly forecasting, daily irradiance data for daily forecasting, and weekly data 
for weekly forecasting. The proposed model is compared with the multi time scale fore-
casting model of Wu et al. [34] for both single-stage and multi time scale forecasting, to 
demonstrate the significance of the proposed strategy based on the performance metric 
results, such as MSE (mean square error), MAPE (mean absolute percentage error), and 
DA (direct accuracy). The performance of the multi time scale model for hourly, daily, 
and weekly forecasting is shown in Figures 7–9. The figures are plotted for the testing 
dataset. In this study, January–September monthly data are employed as the training da-
taset and October–December monthly data are forecasted as the testing response. Figure 
7 depicts the prediction response for 8 October 2020, it shows the hourly forecasting per-
formance. Figure 8 shows the performance of daily time scale forecasting, and it is illus-
trated for seven days of the first week of November. Figure 9 depicts the performance of 
weekly time scale forecasting. This plot is made for the weeks of December. 

Investigating the performance of the proposed multistage solar irradiance forecast-
ing, the following inferences are made: 

The LSTM is employed for single scale and multi scale solar irradiance forecasting. 
For individual time scale forecasting for hourly time scale, the obtained MSE is 0.3670 
W/m2, the MAPE is 0.1249 and the DA is 0.1398 as in Table 2. In contrast, employing LSTM 
for multi time scale forecasting, the reported MSE is 0.2392 W/m2, the MAPE is 0.3562 and 
DA is 0.3189. For day ahead forecasting, the MSE, MAPE, and DA of multi time scale 
forecasting is 0.4326, 0.4652, and 0.4206, respectively. The same for individual time scale 
forecasting is 0.3468, 0.3135, and 0.3428, respectively. For week ahead forecasting, the per-
formance metric values for multi time scale forecasting is 0.3456, 0.5521, and 0.5735, re-
spectively, for MSE, MAPE, and DA. Similarly, for individual time scale forecasting, the 
reported metric results are 0.4021, 0.4350, and 0.2353, respectively. Here, it is observed 
that the performance of LSTM for multi time scale forecasting does not greatly deviate 
from individual time scale forecasting, whereas the impact of multi scale approximation 
is reflected in metric results as well. In Figure 8, daily solar radiation is predicted, showing 
that day 5 is cloudy, which shows that the error is less in the daily prediction curves in 
the proposed algorithm CSO, GWO, and hybrid CSO-GWO algorithm. 

3.1. Performance of CSO Algorithm 
The model parameters of the proposed LSTM are optimally tuned by CSO algorithm 

in Figures 7–9. In comparison with the classic LSTM model, the CSO-LSTM performance 
metric results are improved. The multi time scale forecasting results of CSO-LSTM 
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demonstrate 3% better MSE value than that of conventional LSTM for hourly time scale. 
The MAPE and DA is improved to the percentage of 12.5% and 5.17% better than that of 
conventional LSTM. Similarly, for individual time scale forecasting, the performance of 
CSO-LSTM is 11.09% and MAPE is improved to 18.08% and the DA is improved to 22.93% 
for hourly time scale forecasting. For day ahead forecasting, the proposed CSO-LSTM has 
shown improved performance of 8% MSE, 7.2% MAPE, and 10.5% DA. For individual 
time scale forecasting, the performance is improved to the value of 10.17% MSE, 19.1% 
MAPE value, and 22.9% DA value. For weekly solar radiation forecasting, the MSE value 
is 2% higher than that of conventional LSTM, while the MAPE and DA is improved to 
14.99% and 25% respectively for multi time scale forecasting. The individual reported better 
performance of 30% better MSE, 20% better MAPE, and the DA has better result of 10%. 

3.2. Performance of GWO Optimization Algorithm 
The LSTM model is optimally tuned by GWO optimization algorithm in Figures 7–

9, with reported 23.41% of improved MSE, 35.2% of MAPE, and 16.87% of DA than the 
conventional LSTM model for multi-scale hourly forecasting. Similarly, for individual 
prediction, 30%, 8.6%, and 4.6% of MSE, MAPE, and DA were reported respectively. For 
daily time scale, the multi time scale forecasting attained an improved MSE of 37.1%, 
21.31% MAPE, and 25.13% better DA, respectively. For the individual time scale, it is 
found to be 28.27% of MSE, 20.6% of MAPE, and 20.8% of DA, respectively. For weekly 
time scale forecasting, the MSE value is 14.37% better than that of conventional model, 
30.79% of MAPE and 29.89% of DA for multi time scale forecasting. For the individual 
time scale, the improved performance is 31% of MSE, 33.2% of MAPE, and 13% of DA, 
respectively. 

3.3. Performance of Hybrid CSO-GWO Optimization Algorithm 
On hybridizing the CSO and GWO LSTM model in Figures 7–9, there has been re-

ported a significant improvement in performance metric results. For hourly time scale 
forecasting, the multi scale model reported 23.88% better MSE, 32.52% of MAPE, and 
31.62% of DA, respectively. Similarly for individual forecasting, the obtained results are 
36.66% better MSE, 7.6% improved MAPE, and 12% of DA, respectively. For daily fore-
casting the multi scale model reported 38.05% better MSE, 30.7% of MAPE and 37.36% of 
DA respectively than the conventional LSTM. For individual forecasting the weekly fore-
casting has improved metric results of 34.47% better MSE, 24.21% better MAPE, and 
27.94% better DA, respectively. The result is analysed for weekly time scale forecasting, 
the MSE is 24.38% improved than that of conventional LSTM and the MAPE and DA is 
15% and 45.65% respectively. The same for individual time scale forecasting is 39.71% 
better MSE, the MAPE is 24.99% improved, and DA is 21.34% better than that of the con-
ventional LSTM model. 
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Table 2. The performance metric results of the proposed models. 

Time Scale 
Multi Time Scale Forecasting Individual Time Scale Forecasting 

MSE (W/m2) MAPE (W/m2) DA MSE (W/m2) MAPE (W/m2) DA 
 LSTM Model 

Hourly 0.2392 0.3562 0.3189 0.3670 0.1249 0.1398 
Daily 0.4326 0.4652 0.4206 0.3468 0.3135 0.3428 

Weekly 0.3456 0.5521 0.5735 0.4021 0.4350 0.2352 
 CSO-LSTM Model 

Hourly 0.2029 0.2312 0.2672 0.2561 0.1327 0.1245 
Daily 0.3526 0.3032 0.3156 0.2451 0.1225 0.1135 

Weekly 0.3256 0.4022 0.3235 0.1021 0.2350 0.2352 
 GWO-LSTM Model 

Hourly 0.0051 0.1042 0.1502 0.0572 0.1163 0.0932 
Daily 0.0616 0.2521 0.1693 0.0641 0.1075 0.1348 

Weekly 0.2019 0.2442 0.2746 0.0921 0.1030 0.1052 
 Hybrid CSO-GWO LSTM Model 

Hourly 3.412E-4 0.0310 2.71E-3 3.33E-4 0.0487 0.0198 
Daily 5.208E-2 0.1582 0.0470 2.094E-3 0.0714 0.0634 

Weekly 0.1018 0.1951 0.117 4.292E-3 0.1851 0.0218 
 Ecostate Neural Network (ESO) [34] 

Hourly 6.0931E-3 0.2503 5.32E-2 4.021E-2 0.0992 0.0829 
Daily 0.2920 0.3219 0.1960 0.0931 0.1101 0.1092 

Weekly 0.3319 0.4093 0.5092 0.1311 0.5121 0.1739 
Particle Swarm Optimization—Support Vector Regression (PSO-SVR) [47] 

Hourly 0.1690 0.4109 0.2392 0.2024 0.3832 0.3854 
Daily 0.2041 0.5375 0.3023 0.2453 0.4098 0.4903 

Weekly 0.320 0.5809 0.4782 0.3239 0.5122 0.3219 
Gated Recurrent Unit (GRU) [50] 

Hourly 0.1292 0.2053 0.2590 0.3241 0.2893 0.1787 
Daily 0.1345 0.2369 0.3190 0.4051 0.3278 0.2391 

Weekly 0.2341 0.3251 0.4211 0.3921 0.4823 0.2676 

In the above results, it is observed that for both individual and multi time scale fore-
casting the performance of classic LSTM model is improved by introducing CSO and 
GWO optimization algorithm. On introducing hybrid CSO-GWO optimization, the per-
formance for both time scale models is considerably improved. Though the performance 
of the conventional LSTM for multi timescale forecasting is not up to the level of individ-
ual forecasting, the hybrid CSO-GWO based LSTM model results for multi time scale fore-
casting are significantly improved compared with the conventional LSTM model for sin-
gle time scale forecasting. Thus, the lacuna encountered in first point of this discussion is 
encountered here, whereby on introducing hybrid CSO-GWO, the impact of multi time 
scale approximation is well-adjusted and the performance is greatly improved. 
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3.4. Comparative Analysis with Existing Works of Literature 
The performance of the proposed multi scale solar irradiance forecasting is compared 

with the existing works of literature such as ESO [34], PSO-SVR [47], and GRU [50]. For 
hourly time scale forecasting, the performance of the proposed hybrid CSO-GWO LSTM 
model has reported 3.99% improved MSE, 5.05% of MAPE and 6.31% of better DA value 
than the ESO neural network strategy. On comparing with PSO-SVR, the proposed strat-
egy outperformed with 20.2% better MSE, 38.32% of MAPE and 38.54% better DA value, 
respectively. On comparing with the GRU, the proposed strategy outperformed with 
32.4% of MSE, 24.1% better MAPE, and 15.9% better DA. For daily time scale forecasting, 
the performance of the proposed models reported 9.10% better MSE than ESO neural net-
work, 3.87% of better MAPE, and 4.58% better DA results, respectively. On comparing 
with PSO-SVR, the proposed strategy reported 24.3% better MSE, 33.8% better MAPE, and 
42.7% better DA value respectively. Similarly, on comparing with GRU the proposed 
strategy reported 9.31% better MSE, 11.01% better MAPE and 10.92% improved DA re-
spectively. For weekly time scale forecasting, the performance of the proposed scheme 
has reported improved performance of 12.6% better MSE, 32.7% better MAPE and 15.21% 
better DA results than the ESO technique. On comparing with PSO-SVR strategy, the per-
formance of the proposed model has 31.96% better MSE, 32.71% better MAPE, and 30.01% 
better DA, respectively. Similarly, on comparing with GRU, the proposed model reported 
38.78% better MSE, 29.72% better MAPE, and 24.58% better DA, respectively. 

For multi-time scale forecasting, the proposed strategy has shown enhanced perfor-
mance of 5.75% better MSE, 21.9% better MAPE, and 5.05% better DA than the ESO for 
hourly time scale forecasting, in comparison with PSO-SVR the proposed technique out-
performed with 16.9% better MSE, 38% improved MAPE, 23.6% better DA, respectively. 
Similarly, the proposed model outperformed GRU model with improved metric results of 
12.9% better MSE, 17.4% better MAPE, and 25.6% better DA, respectively. For daily time 
scale forecasting, the proposed model outperformed the ESO with 24.0% better MSE, 
16.4% better MAPE and 54.9% better 14.9% better DA respectively. On comparing with 
PSO-SVR the performance of the proposed strategy has 15.2% better MSE, 37.9% better 
MAPE, and 25.5% better DA, respectively. On comparing with GRU the performance of 
the proposed technique is 25.2% better MSE, 37.9% better MAPE, 25.5% better DA, respec-
tively. For weekly forecasting, the performance of the proposed model is 23.01% better 
MSE than ESO strategy, 21.42% of MAPE, and 39.22% better DA, respectively. On com-
paring with PSO-SVR the performance of the proposed model has 21.82% better MSE, 
38.58% better MAPE and 47.82% better DA, respectively. In comparison with the GRU 
model, the proposed strategy has shown performance of 13.23% better MSE, 13% better 
MAPE, and 30.41% better DA, respectively. 

The convergence of the proposed optimization algorithm towards stopping condi-
tion is depicted in Figure 10. Over the iterations, the models trains deeply so the error 
starts to decrease and converges towards the attainment of optimal solution. The graph 
shows good convergence of a measure, as the curve becomes asymptotic and plots values 
for the final. On comparing with CSO and GWO, the proposed hybrid CSO-GWO con-
verges fast demonstrating the less computational time. The proposed multi time scale 
model demonstrated that it could outperform individual time scale forecasting with the 
particular time scale training dataset. Moreover, it illustrated significant improvement in 
forecasting accuracy on multi time scale forecasting with a training dataset on an hourly 
basis. The proposed hybrid CSO-GWO based LSTM model’s performance outperformed 
the other models, including the LSTM strategy, the LSTM model tuned by the CSO, and 
GWO individually. 

Based on the statistical score obtained from the proposed model, it is clearly demon-
strated that the proposed hybrid CSO-GWO-LSTM model is not affected by the algo-
rithm’s stochastic factors, and it is found to be statistically fit, as shown in Table 3. 
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Figure 10. Error convergence of the proposed algorithms. 

Table 3. Statistical Analysis of the Proposed Model. 

Model Under Study 
Statistical Score 

r R2 
GWO-LSTM 0.8768 0.7687 
CSO-LSTM 0.9274 0.8601 

Hybrid CSO-GWO LSTM 0.9865 0.9731 

The proposed model addressed the scenario of various timescale forecasting with the 
available dataset. The long-term forecasting cannot be made with the short-term dataset 
by the conventional models in the existing literature. In this model, seasonal wise fore-
casting has not been performed. Future work is recommended for multi-seasonal forecast-
ing based on the proposed study for solar radiation forecasting. 

4. Conclusions 
In this chapter, a multi-time scale solar irradiance forecasting strategy is presented. 

An LSTM-based deep recurrent neural network architecture is developed, and the pro-
posed CSO-GWO optimizer algorithm optimally tunes the model parameters. The model 
is trained with an hourly solar irradiance dataset, and the forecasting is made with hourly, 
daily, and weekly-based forecasting with resource sharing ability. The model is evaluated 
with performance metrics such as MSE (mean square error), MAPE (mean absolute per-
centage error), DA (direct accuracy), and to signify the obtained performance is not af-
fected by the algorithm’s stochastic parameters, a statistical analysis is undertaken. The 
proposed model outperformed others with better metric results for single time scale fore-
casting and multi time scale forecasting with better metric results. In comparison with the 
hourly results of the CSO, GWO, and CSO-GWO LSTM based models, the proposed 
model gives the minimal error in the performance metrics MSE (3.412 × 10−4), MAPE 
(0.0310), and DA (2.71 × 10−3). Similarly, for daily and weekly MSE (5.208 × 10−2), MAPE 
(0.1582), and DA (0.0470), and to signify the obtained performance is not affected by the 
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algorithm’s stochastic parameters, a statistical analysis is undertaken. The proposed 
model outperformed with better metric results for single time scale forecasting and multi 
time scale forecasting with better metric results. 
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