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Abstract: Here, we propose a new deep learning scheme to solve the energy time series prediction
problem. The model implementation is based on the use of Long Short-Term Memory networks
and Convolutional Neural Networks. These techniques are combined in such a fashion that inter-
dependencies among several different time series can be exploited and used for forecasting purposes
by filtering and joining their samples. The resulting learning scheme can be summarized as a
superposition of network layers, resulting in a stacked deep neural architecture. We proved the
accuracy and robustness of the proposed approach by testing it on real-world energy problems.

Keywords: multivariate prediction; deep learning; energy time series; convolutional neural network;
long short-term memory network

1. Introduction

The application of novel machine learning techniques to the prediction problem is
a cornerstone for improving the penetration of Distributed Energy Resources (DERs) in
modern flexible smart energy systems and grids [1,2]. Forecasting is becoming a funda-
mental building block of any energy management approach [3,4], including generation
scheduling, planning and management [5], utility side management [6] and demand side
management [7]. Goals such as resource conservation, cost minimization, widespread ac-
cess to energy, market and production planning, and demand management can be achieved
only by endowing expert systems with advanced and improved forecasting capabilities.
The development of future cooperative Virtual Power Plants (VPPs) [8] and the integration
of Local Energy Markets (LEMs) in energy communities [9] will rely on good and reliable
forecasts, particularly concerning the output of Renewable Energy Sources (RESs). Due
to their intermittent and fluctuating nature, RESs’ power output forecasting can be con-
sidered as one of the most challenging and up-to-date prediction problems in the energy
framework [10,11].

For practical reasons, forecasting in the energy context is usually carried out using
univariate approaches, especially regarding time series retrieved from single independent
physical quantities [12–15]. While this is a valuable approach, it does not consider how
other data can be incorporated in the prediction scheme, with the drawback of specif-
ically tailoring the method to the specific time series being predicted. The most used
models for this purpose are statistical regression [14,16] or computational intelligence
techniques [12,17,18], based on different mathematical backgrounds. Fuzzy predictors are
used in [19] to predict RESs generation and load data in a microgrid framework, with the
advantage of being able to incorporate the uncertainty of the future predictions, but, at
the same time, they are stuck with those predicted errors for actual energy management.
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Evolutionary-genetic algorithms are used in [20] for short-term wind speed forecasting,
with the strict vertical application of refining the model parameters, and do not provide a
comprehensive view of the role of those techniques in the prediction realm. Artificial neural
networks are used in [21] for short-term load forecasting in a microgrids environment,
employing a very simple multilayer perceptron structure and basic clustering algorithms.
Support Vector Machines (SVM) are used in [2] for solar radiation forecasting, in which a
good review of other prediction methods can be found.

In some contexts, several different observations can be drawn from two or more quanti-
ties of a time series. These multivariate data can pertain to a particular business sector [22],
e.g., price, revenue, shares [23]. Such a multivariate approach calls for more complex
models to describe the relationships inherent in the time series, and, consequently, more
complex predictors for the forecasting problem. In the broad energy context, multivariate
prediction approaches using machine learning have been applied to load time series [24],
solar irradiation [25,26], wind speed [27], and RESs [28,29]. All of these techniques have the
drawback of being specifically tailored to a single optimization due to the specific nature of
the time series being forecasted; in the present work, we want to contribute to the provision
of a general framework for multivariate prediction optimization.

In this article, the intuition lies in how the information contained in the time series
is exploited. The time series samples are combined into a data structure that resembles
a sequence of video frames. This sequence, due to its structure, can be sent as input to a
Convolutional Neural Network (CNN) [30]. Thus, the idea is to explore time correlations
among different time series related to solar power plant production, giving an analysis of
how the sequences can be combined, using observations from different physical phenomena
related to the same RES quantity (in our case, the Output Power of the plant). The
main contribution of this article is the description of a deep learning scheme to solve the
multivariate energy time series prediction problem. In this context, the main obstacles
to a satisfactory prediction result are not to be searched for in the dimensionality or the
structure of the convolutional operator, but rather in the overall construction of the layers’
architecture in relation with the time series’ properties. The actual prediction is carried out
by the Long Short-Term Memory (LSTM) network, which is a special kind of Recurrent
Neural Network (RNN) able to efficiently manage long-term dependencies through the
‘gates’ located in each cell.

Considering the broader context of data analysis in general, and without limiting the
literature to multivariate prediction problems, there are indeed several approaches relying
on the combination of CNN and LSTM. These methods do not follow the multivariate
paradigm but are worth mentioning because of the similarity in their network structure
compared to the present work. In [31], the authors combine CNN, LSTM and Deep
Neural Networks (DNNs) into one unified architecture, validating the performance on
a variety of vocabulary tasks. CNNs mainly stem from image and video analysis; in
fact, authors in [32,33] combine them with LSTM networks to recognize human activity
in video sequences. The CNN-LSTM approach is also used in biometric applications
for both recognition [34] and anti-spoofing methods [35]. Instead, regarding univariate
forecasting problems, CNN and LSTM are recently combined for stock-market analysis [36]
and environmental time series prediction [37]. Relative to the relation between the number
of time series and the CNN’s ability to process low-dimension frames, there is evidence that
the convolutional approach in time series analysis performs well regardless of the absolute
value of the size of the filter [38,39]. Almost counter-intuitively, it has been suggested [40]
that, in certain situations, the smaller the single-layer filter size, the better the overall CNN
accuracy. In fact, the main obstacles to a satisfactory prediction result are not to be looked
for in the dimensionality or the structure of the convolutional operator, but in the overall
construction of the layers’ architecture in relation with the time series, which is, indeed, the
point of this work.

To the best of our knowledge, the pure multivariate prediction approach is scarcely
studied in the literature. Only recently, some approaches using a combination of CNN and
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LSTM layers have been proposed, such as the one in [41]. In fact, the authors firstly use a
convolutional network to extract the interrelationship of different variables at the same
time step (as well as by regularizing the dimension of the input structure). Then, a dual-
attentioning mechanism combined with LSTM is used. While there are some similarities in
the combination of the CNN and LSTM in the deep structure, the main difference compared
to our approach is that those authors apply the CNN to the input frame, constructed as
a combination of different samples taken from different sequences, at the same instant in
time. Instead, we not only use the CNN to extract the spatial correlations among different
sequences, but also to take into account the correlation in time among those sequences,
similarly to a multivariate intrinsic embedding mechanism. Indeed, we construct the input
frame in a different fashion, by feeding the network with different samples taken from
different sequences at several times, as described more clearly in Section 2.

In a similar fashion, there are some works which use a multivariate scheme based
on LSTM regarding vertical applications in specific sectors: cybersecurity [42], time se-
ries classification [43], industrial anomaly detection [44], point process analysis [45]. By
following the approach proposed in this work, it is possible to view the novel adopted
scheme as a superposition of neural layers, forming a stacked deep network. Each layer
feeds the output to the input of the sequent layer. This increase in the dimension of the
NN towards a deeper architecture has been linked to a positive correlation with prediction
accuracy [46].

The paper is organized as follows: in Section 2, the novel 2-D convolutional embedding
process is explained, in Section 3, the architecture of the forecasting system is described,
experiments are reported in Section 4, and conclusions are drawn in Section 5.

2. 2-D Convolutional Embedding

It is widely known that LSTM networks are a staple technique for prediction purposes.
In this work, our aim is to enhance the LSTM structure to achieve a deep NN model in
which feature extraction (i.e., data representation) can be obtained in a robust and automatic
fashion, considering a higher abstraction level [47].

In most use cases, known, past samples of the time series subject to forecasting are
input into the LSTM model, achieving an univariate prediction method. In the present
article, the aim is to extend this approach to a multivariate framework: the predictor’s
input will be built using several time series. We will do this by employing a bidimensional
CNN layer which has the role of filtering all the known samples of the available time series
to acquire the expanded set of generalized features. These features are then flattened and
used as a multivariate (multivalued) time series to be processed by the actual LSTM.

Let S1[n], with n > 0, be the scalar time series to be predicted. Let Sm[n], m = 2 . . . M,
be further M− 1 scalar time series correlated with S1[n], i.e., the time series Sm[n] contain
additional information that can be used for forecasting S1[n]. Our aim is to predict the
sample S1[n + k], where k represents the prediction distance, considering that all samples
prior to time step n (including the latter) are known. The input frames x[n] are sent into
the CNN layer as if they were a sequence of images, where the single frame is given by

x[n] =


S1[n] S1[n− 1] . . . S1[n− D + 1]
S2[n] S2[n− 1] . . . S2[n− D + 1]

. . . . . . . . . . . .
SM[n] SM[n− 1] . . . SM[n− D + 1]

 , (1)

which is a one-channel M× D frame, where M represents the number of correlated time
series and D the number of past samples (for each time series), both used to forecast
S1[n + k]. This operation represents the main novelty of the proposed approach. In fact, the
input frame structure allows the network to efficiently recognize the temporal correlation
among the considered sequences. Furthermore, in the training phase, the back-propagation
learning algorithm is able to infer different temporal correlation structures through the
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use of several convolutional filters of size H. The result is stored in data structures called
feature maps, as illustrated in Figure 1.

Figure 1. Application of 2-D convolutional filters to extract feature maps.

Usually, in the context of time series, forecasting is carried out using an embedding
procedure as a preprocessing step in order to select the meaningful past samples of the
time series through statistical or heuristic techniques [48]. In an univariate context, the
estimated output is obtained as follows

S̃1[n + k] = fu
(
S1[n] S1[n− T] . . . S1[n− (D− 1)T]

)
, (2)

where T is called ‘time lag’ and D ‘embedding dimension’ [49].
The aforementioned inference process of the data structures in the input matrix x can

be considered as an ‘extended version’ of the classic embedding. This is because, in the
proposed approach, we use different time series and autonomously select the past samples.
The sample S̃1[n + k] is estimated by the deep neural network through a general non-linear,
dynamical (recurrent) model fm(·) as

S̃1[n + k] = fm
(
x[n]

)
, (3)

where the two embedding approaches are the same when M = 1 and T = 1.

3. Proposed Deep Neural Architecture

In this work, the backbone of an LSTM network [50] is used to predict time series
data. The latter can have long term dependencies that make it difficult to locate relevant
information in the data with respect to the current time step. LSTM networks solve the
problem by managing the amount of information that passes in a single cell; for this reason,
LSTM networks are used as an integral part of the predictive scheme. This scheme is
represented in Figure 2 and its input is represented by the frame x[n]. The layers in the
architecture are:

• Sequence Input Layer: this inputs sequence data to the network by setting their
dimension and building the related structures, as in (1) for x[n];

• 2-D Convolutional Layer: this applies F convolutional filters of dimension H × H to
each input frame and outputs F feature maps with the dimension 1× (D−M + 1)
(with no padding);

• Batch Normalization Layer: this normalizes the data (resulting from convolution) to
reduce the sensitivity to network initialization;
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• Flatten Layer: this collapses the spatial dimensions of the input to a vector time series
(each sample is represented by an array of F(D−M + 1) elements) to appropriately
feed the LSTM layer;

• LSTM Layer: this represents the actual LSTM layer consisting of N hidden units;
• Fully Connected Layer: this is a standard feed-forward layer that connects the N

LSTM hidden units to the scalar output which represents the sample to predict;
• Regression output layer: this computes the root–mean–squared-error loss for the

regression problem under consideration.

Figure 2. Architecture of the proposed deep neural network for multivariate prediction.

4. Experimental Results

We evaluate the performance of the proposed forecasting approach considering a
real photovoltaic power production plant, identified geographically by the following
coordinates: 39◦54′38.2′′ N, 105◦14′04.9′′ W, elevation 1855 m. The photovoltaic plant
is named ‘NWTC’ and is located in Denver, CO, USA. Irradiance data, together with
those relating to other meteorological factors, are retrieved through the Measurement and
Instrumentation Data Center (MIDC) database. The output power to be predicted, which
is denoted as S1 in kW, is calculated from irradiance using a system balance of 0.9 and by
applying an inverter curve with MPPT.

In addition to the sequence to be predicted, we also consider time series relative to
temperatures, wind speed and wind direction, turbulence, humidity and pressure levels.
Some of them are taken both at ground level (2 m above ground level) and at a higher
altitude (80 m above ground level). The used sequences and their attributes are summarized
in Table 1. The used sequences and their attributes are summarized in Table 1. All time
series are collected in the same plant and sampled every hour (i.e., 24 samples a day).
Each time series refers to the years 2017 and 2018 and is normalized between −1 and 1,
for the sake of regularization, before applying the learning procedures. The extremes of
normalization are given by the physical functioning of the plants (also reported in Table 1).

Table 1. Attributes of time series data.

Data Time Series Extremes Unit

S1 Output Power {0, 100} kW
S2 Temperature @ 2 m {−40, 40} ◦C
S3 Temperature @ 80 m {−40, 40} ◦C
S4 Wind Speed @ 2 m {0, 25} m/s
S5 Wind Speed @ 80 m {0, 25} m/s
S6 Wind Direction @ 2 m {0, 360} deg
S7 Wind Direction @ 80 m {0, 360} deg
S8 Turbulence @ 2 m {0, 1} J/kg
S9 Turbulence @ 80 m {0, 1} J/kg
S10 Relative Humidity {0, 100} %
S11 Pressure {0, 1000} mBar

To assess the validity of the proposed approach, we have carried out some experiments
with classic and widely used benchmark architectures. In particular, we used the standard
LSTM as the baseline model. Given that the goal of this work is to provide a reliable and
sound solution to the multivariate prediction problem, and knowing the vast superiority
of the LSTM approach in time series forecasting with respect to other algorithms (e.g.,
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shallow predictors), it is sufficient to prove that our algorithm outperforms a multivariate
implementation of the LSTM. Here, we will briefly indicate the methods considered for
the tests:

• V-LSTM: this is the elementary multivariate implementation of the classic LSTM
model, in which the multivariate sequences are fed directly to the LSTM layer, with
a vector input of dimension equal to the number of considered sequences. When
the number of adopted sequences is reduced to 1 (first row of the numerical results
reported in the tables), this case coincides with the elementary univariate LSTM;

• 2D-CNN: this is the proposed method, where the convolutional layer is stacked before
the LSTM predictor, as previously described. Similarly, for the 2D-CNN, the univariate
case is considered as a benchmarking level to evaluate the multivariate performance.

A training set of 3 months (i.e., 90 consecutive days) is used for the experiments and it
is associated with test sets whose lengths are 3 days (i.e., k = 72) and 7 days (i.e., k = 168)
after the last available sample of the training set, respectively (the training set contains the
known samples that are used to forecast the future ones). In all of the experiments, we set
the embedding dimension to D = 24, the number of filters in the CNN layer to F = 5 and
the number of hidden units in the LSTM layer to N = 50. These numbers were determined
by using a grid search procedure on the training data in order to avoid overfitting. We
used the ADAM algorithm [51] to train the deep neural network; the initial learning rate
was set to 0.01 with 50% reduction every 30 iterations, the gradient decay factor was set to
0.9 and the maximum number of iterations to 300. All of the experiments were performed
using Matlab® R2019a on a machine provided with an Intel® Core™ i7-3770K 64-bit CPU
at 3.50 GHZ and with 32 GB of RAM.

For the sake of illustration, we considered several different situations to incorporate
all seasonal effects in the analysis, relative to eight months of the year 2018: each test is
composed of a single day, either the 15th day of the month (for March, June, September
and December) or the 30th (for January, April, July and October), and by the successive 2
or 6 days after it, resulting in the 3-day and 7-day test sets introduced earlier. Ordinarily, in
real-world applications, it is true that NN algorithms that are seasonally dependent must be
retrained when the environmental changes affect the performance. For our solution, since
training times are much smaller than the sampling intervals of the time series, the training
of the network can be done at every iteration. For this reason, we care about the difference
in seasonal performance and we test various times of the year, retraining the network each
time, to ensure the stability and consistency of the results. In order to evaluate the possible
improvements brought about by the proposed multivariate forecasting approach, we
considered several options by testing different combinations of data to give an exhaustive
study on how the relationship between data influences the forecasting procedure. Every
network is trained on the same dataset considering 10 different runs. For each run, a
different (random) initialization of the network parameters is performed. The performance
is then evaluated considering the average RMSE in the 10 training sessions. The general
optimization procedure is summarized in Algorithm 1.

The numerical results are reported in the Tables 2–9, which are one per considered
month of 2018. This was done to explicitly evaluate the seasonality effect in different
periods with different irradiation/meteorological conditions, along with the comparison
between the 3-day and 7-day test sets. Additionally, as stated previously, by looking at
the first rows of each table, it is possible to gain an insight into how well the univariate
approach is performing; this makes the benchmarking more valuable and puts all the
numerical results in the right perspective. As the reader may notice, we used quite a lot
of combinations to analyze the composition of the input data, to better understand the
information carried by each sequence in relation with the others. In particular, we tested
the output power by itself and by coupling it with each and every other sequence. Then, we
also tested the performance when constructing the input data frame using the sequences
grouped in relation with their physical meaning (all the time series relative to temperature,
all relative to wind, all relative to the same altitude). Specifically, we reported the RMSE
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for these combinations of more than two sequences incorporated in the input data frame.
A benchmarking test has also been carried out using all the considered sequences.

In the January results reported in Table 2, the RMSE is quite stable and there are no
large variations in terms of performance. The univariate benchmark is satisfactory and
accurate, while the multivariate approach and the proposed 2D-CNN model are better or
on par. These considerations can be linked to the stability of the January set in terms of
irradiation, given that the irradiation itself is quite low in winter.

Table 2. Average RMSE for January 2018 tests, carried out by using V-LSTM and 2D-CNN models
and different combinations of time series.

Input Data 3-Day Test 7-Day Test
V-LSTM 2D-CNN V-LSTM 2D-CNN

S1 (univariate) 7.145 8.765 6.916 6.072
S1, S2 6.414 6.143 7.043 6.090
S1, S3 7.884 6.376 7.293 6.200
S1, S4 5.975 6.739 6.679 6.410
S1, S5 5.966 7.398 6.891 7.003
S1, S6 8.243 6.554 7.145 6.605
S1, S7 4.926 7.678 7.760 6.109
S1, S8 4.439 5.578 6.881 6.288
S1, S9 7.637 6.115 7.004 6.911
S1, S10 5.977 9.011 7.582 6.910
S1, S11 7.793 6.439 6.667 6.047
S1, S2, S3 8.067 6.215 7.440 7.338
S1, S5, S7, S9 5.931 8.941 7.503 7.439
S1, S4, S6, S8 5.744 8.799 7.802 6.875
S1, S4, S5, S6, S7 6.144 8.964 7.994 6.430
S1, S3, S5, S7, S9 5.723 8.555 7.778 7.002
S1, S2, S4, S6, S8 6.234 6.944 7.001 6.975
All data 6.193 7.873 8.004 5.949

For the results of mid-March, which can be seen in Table 3, similar considerations can
be drawn relative to the differences between V-LSTM and 2D-CNN approaches. Addition-
ally, the accuracy of the multivariate solution is considerably better than the univariate one.

Table 3. Average RMSE for March 2018 tests, carried out by using V-LSTM and 2D-CNN models and
different combinations of time series.

Input Data 3-Day Test 7-Day Test
V-LSTM 2D-CNN V-LSTM 2D-CNN

S1 (univariate) 8.647 7.805 9.373 8.603
S1, S2 7.275 6.958 9.909 9.030
S1, S3 6.889 7.520 9.808 8.653
S1, S4 7.341 6.913 9.303 8.554
S1, S5 8.140 6.514 9.219 8.508
S1, S6 8.846 8.331 10.360 8.702
S1, S7 6.653 6.592 10.033 9.001
S1, S8 7.078 6.867 9.701 8.547
S1, S9 6.509 6.360 10.237 8.932
S1, S10 7.242 6.988 9.109 8.344
S1, S11 8.458 7.547 9.568 8.451
S1, S2, S3 8.136 7.702 10.020 9.067
S1, S5, S7, S9 6.111 6.465 10.064 8.044
S1, S4, S6, S8 6.453 8.328 10.107 8.933
S1, S4, S5, S6, S7 8.729 6.590 10.304 8.777
S1, S3, S5, S7, S9 6.239 7.198 10.504 8.502
S1, S2, S4, S6, S8 7.556 6.359 10.277 8.943
All data 7.935 6.527 10.963 8.033
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Algorithm 1: Pseudocode of the validation scheme used for all the considered
DNN architectures

Input: observed time series {S1, S2, . . . , S11} of 2017 and 2018; a generic model N
to be trained and optimized, liked with the architectures (i.e., either V-LSTM or
2D-CNN). For brevity, we refer solely to the multivariate case. The algorithm is
the same for the univariate case, holding the same steps but only considering S1.

1: data preparation: normalize time series, fill data, general cleaning, etc.
2: experiment setup: define a number of sets of hyperparameters of the training

algorithms (i.e., regularization, learning rate, number of epochs, etc.) and the
architecture (number of states, dimension of filters, etc.). Then, characterize a
grid search space G, where each point p ∈ G is a set combination taken from the
parameters just described. Perform experiments with variation in input data and
conditions of the tests. If we denote one of the multivariate approaches with the
superscript ‘s’, we can use superscript ‘m’ to denote the test month (January 2018,
March 2018, etc.), and superscript ‘d’ to identify the chosen test set length (3 or
7 days).

3: loop {for each s, m, d}
4: training/test setup: for each sequence, organize the training and test sets,

respectively identified withR(s,m,d) and T (s,m,d);
5: training/validation setup: extract a particular validation set V (s,m,d) from

R(s,m,d) to be able to evaluate the performance during the training phase.
The rest of the dataR(s,m,d)

red for actual model training. We obtain the validation
set by extracting some samples from it. In detail, we use the sequence of the
latest 3 or 7 days as the target and the preceding samples as inputs. In both test
cases, the training will end one day before.

6: end loop
7: loop {for each point p ∈ G}
8: loop {for each s, m, d}
9: network training: actual training of the chosen model, carried out by em-

ployingR(s,m,d)
red with the set of hyperparameters chosen in p. The resulting

trained network is denoted as N(s,m,d)
p ;

10: network validation: validate the network training by assessing the perfor-
mance of N(s,m,d)

p using V (s,m,d), let e(s,m,d)
p be the accuracy (RMSE) of the

DNN.
11: end loop
12: model performance: evaluate the model performance, averaging the errors

over all trained networks on the different dataset {s, m, d}, let be the mean
performance indicator ēp.

13: end loop
14: network optimization: let p̂ = arg minp∈G{ēp} be the resulting optimal set of

hyperparameters to be chosen when doing the actual training in the next final
stage.

15: loop {for each s, m, d}
16: final training: let N(s,m,d)

opt be the resulting optimal network model obtained via

training with the setup p̂ and the complete training setR(s,m,d);
17: final inference: compute the final network error ẽ(s,m,d)

p̂ for the specific test set

T (s,m,d) resulted using N(s,m,d)
opt .

18: end loop
Output: model performance ẽ p̂ for the complete set of tests (see Tables 2–9).
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In the April tests shown in Table 4, since the irradiation starts to grow for the increasing
number of sun hours in spring in the Boreal Hemisphere, the accuracy starts to degrade
a bit, still retaining the balance in terms of RMSE that was highlighted in the previous
comments. This consistency is expected and proves that our solution is robust.

Table 4. Average RMSE for April 2018 tests, carried out by using V-LSTM and 2D-CNN models and
different combinations of time series.

Input Data 3-Day Test 7-Day Test
V-LSTM 2D-CNN V-LSTM 2D-CNN

S1 (univariate) 12.102 7.805 12.660 10.217
S1, S2 11.624 6.958 12.459 10.834
S1, S3 12.057 7.520 13.201 10.713
S1, S4 11.240 6.913 12.078 10.144
S1, S5 11.359 6.514 12.191 10.359
S1, S6 10.426 8.331 11.473 10.755
S1, S7 10.710 6.592 12.492 11.371
S1, S8 11.481 6.867 11.908 9.881
S1, S9 11.194 6.360 12.814 10.119
S1, S10 11.010 6.988 11.604 10.519
S1, S11 12.311 7.547 11.221 9.741
S1, S2, S3 11.623 7.702 13.160 10.590
S1, S5, S7, S9 9.179 6.465 13.223 11.423
S1, S4, S6, S8 11.068 8.328 12.791 10.681
S1, S4, S5, S6, S7 11.054 6.590 13.432 11.121
S1, S3, S5, S7, S9 9.753 7.198 13.097 12.159
S1, S2, S4, S6, S8 10.860 6.359 13.221 11.120
All data 13.505 6.527 13.044 9.980

The June results illustrated in Table 5 are very interesting, since they prove the vast
superiority of the proposed approach with respect to both the univariate and multivariate
LSTM adoption. In fact, when every time series is considered in a fully multivariate
solution, the RMSE of 2D-CNN is far below almost all the results of the V-LSTM.

Table 5. Average RMSE for June 2018 tests, carried out by using V-LSTM and 2D-CNN models and
different combinations of time series.

Input Data 3-Day Test 7-Day Test
V-LSTM 2D-CNN V-LSTM 2D-CNN

S1 (univariate) 18.390 10.942 16.707 16.911
S1, S2 11.310 10.231 19.412 9.202
S1, S3 10.811 10.765 19.530 10.930
S1, S4 10.784 9.772 17.243 12.410
S1, S5 11.503 9.170 17.500 16.353
S1, S6 18.082 10.277 16.161 14.162
S1, S7 21.279 10.564 15.775 20.470
S1, S8 15.264 9.570 18.128 19.118
S1, S9 15.744 10.983 17.092 17.399
S1, S10 10.030 10.978 18.110 16.710
S1, S11 21.222 11.213 20.244 14.311
S1, S2, S3 12.947 10.946 19.487 16.321
S1, S5, S7, S9 17.858 11.038 15.668 19.782
S1, S4, S6, S8 11.890 10.941 16.668 13.160
S1, S4, S5, S6, S7 16.806 10.404 16.777 20.174
S1, S3, S5, S7, S9 12.157 9.321 16.059 19.882
S1, S2, S4, S6, S8 10.369 9.678 18.140 14.106
All data 12.730 9.286 19.102 10.259
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The representative behavior of 2D-CNN in June is confirmed by the figures shown for
both the 3-day and 7-day tests: for 3-day tests, the univariate case is reported in Figure 3,
the best case in Figure 4, and the multivariate case using all data in Figure 5; accordingly,
for 7-day tests, the univariate case is shown in Figure 6, the best one in Figure 7, and
the fully multivariate case in Figure 8. Once again, we remark that some predictions
can be influenced by the meteorological variations in the training set, which can cause a
worsening of the prediction for some hours continuously (e.g., the hours of the first day in
Figure 5). Furthermore, it has to be noted that the 7-day test’s accuracy is worse than the
3-day one, while remaining quite acceptable and stable, given the different meteorological
implications of predicting longer sequences.

Figure 3. Predicted (red) and real (blue) value of output power in the mid of June 2018 by using the
2D-CNN approach with the univariate input on 3-day test set (see Table 5, row 1, column 2).

Figure 4. Predicted (red) and real (blue) value of output power in the mid of June 2018 by using
the 2D-CNN approach with {S1, S5} as the best combination on 3-day test set (see Table 5, row 5,
column 2).



Energies 2021, 14, 2392 11 of 18

Figure 5. Predicted (red) and real (blue) value of output power in the mid of June 2018 by using the
2D-CNN approach with all the time series on 3-day test set (see Table 5, row 18, column 2).

Figure 6. Predicted (red) and real (blue) value of output power in the mid of June 2018 by using the
2D-CNN approach with the univariate input on 7-day test set (see Table 5, row 1, column 4).

Figure 7. Predicted (red) and real (blue) value of output power in the mid of June 2018 by using
the 2D-CNN approach with {S1, S2} as the best combination on 7-day test set (see Table 5, row 2,
column 4).
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Figure 8. Predicted (red) and real (blue) value of output power in the mid of June 2018 by using the
2D-CNN approach with the combination of all the time series on 7-day test set (see Table 5, row 18,
column 4).

The results for the July tests, which are reported in Table 6, show a similar behavior
given the small difference in terms of irradiation and physical phenomena variations
with respect to June. Additionally, the increasing stability in weather conditions gives a
prominent effect that can be seen in the similarities of the RMSE values in all cases. The
results for the September tests in Table 7 are definitely on par with the aforementioned
cases. Here, the difference between the V-LSTM and 2D-CNN is evident, especially for the
3-day test set. The same analysis can be drawn for the October results shown in Table 8.
The only noticeable difference is the general higher error due to the worsening of weather
conditions, resulting in a higher variability in the associated physical quantities.

Table 6. Average RMSE for July 2018 tests, carried out by using V-LSTM and 2D-CNN models and
different combinations of time series.

Input Data 3-Day Test 7-Day Test
V-LSTM 2D-CNN V-LSTM 2D-CNN

S1 (univariate) 12.010 12.020 15.421 14.650
S1, S2 12.200 12.003 15.250 14.783
S1, S3 12.310 11.552 15.304 14.568
S1, S4 12.840 11.268 15.512 15.013
S1, S5 12.502 11.171 15.472 15.005
S1, S6 12.561 12.005 17.309 14.960
S1, S7 17.710 12.210 18.385 14.610
S1, S8 11.860 11.409 15.548 14.778
S1, S9 12.498 11.016 15.821 14.023
S1, S10 13.610 11.890 16.140 14.577
S1, S11 11.910 9.307 17.607 14.990
S1, S2, S3 12.320 11.024 15.325 14.329
S1, S5, S7, S9 15.754 11.002 18.740 14.380
S1, S4, S6, S8 11.682 11.599 16.547 15.062
S1, S4, S5, S6, S7 13.656 12.067 18.638 14.830
S1, S3, S5, S7, S9 13.935 11.944 18.240 14.245
S1, S2, S4, S6, S8 11.864 10.048 16.397 14.768
All data 13.601 10.916 19.128 13.960
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Table 7. Average RMSE for September 2018 tests, carried out by using V-LSTM and 2D-CNN models
and different combinations of time series.

Input Data 3-Day Test 7-Day Test
V-LSTM 2D-CNN V-LSTM 2D-CNN

S1 (univariate) 10.679 9.949 10.210 10.122
S1, S2 11.524 6.220 10.215 9.305
S1, S3 11.311 6.431 10.630 8.402
S1, S4 10.743 5.480 10.437 8.410
S1, S5 10.561 6.805 10.576 8.251
S1, S6 11.624 8.266 10.606 9.600
S1, S7 12.272 9.372 10.780 10.017
S1, S8 10.829 8.681 10.386 9.768
S1, S9 10.972 7.791 10.697 9.190
S1, S10 11.602 7.310 10.130 9.351
S1, S11 12.101 7.511 10.115 8.511
S1, S2, S3 12.034 7.324 11.204 10.003
S1, S5, S7, S9 11.952 7.507 11.709 8.975
S1, S4, S6, S8 11.604 7.814 10.685 8.942
S1, S4, S5, S6, S7 12.766 7.505 11.506 9.147
S1, S3, S5, S7, S9 12.297 7.311 11.397 10.007
S1, S2, S4, S6, S8 12.068 6.682 10.980 9.668
All data 12.568 7.457 11.560 8.004

Table 8. Average RMSE for October 2018 tests, carried out by using V-LSTM and 2D-CNN models
and different combinations of time series.

Input Data 3-Day Test 7-Day Test
V-LSTM 2D-CNN V-LSTM 2D-CNN

S1 (univariate) 14.220 13.102 12.340 12.550
S1, S2 13.801 12.053 12.590 12.090
S1, S3 13.190 12.740 12.580 11.931
S1, S4 13.047 12.940 12.724 11.401
S1, S5 13.404 12.068 12.240 11.150
S1, S6 13.507 11.997 14.201 11.670
S1, S7 13.777 13.001 14.701 11.670
S1, S8 14.180 12.916 12.840 11.810
S1, S9 13.442 12.274 12.395 11.190
S1, S10 16.500 12.422 14.205 11.310
S1, S11 14.201 11.980 13.011 11.210
S1, S2, S3 12.933 12.005 12.930 11.320
S1, S5, S7, S9 13.570 12.836 13.079 11.790
S1, S4, S6, S8 13.940 11.664 12.884 11.680
S1, S4, S5, S6, S7 13.645 11.741 13.460 11.451
S1, S3, S5, S7, S9 13.920 10.960 14.290 11.879
S1, S2, S4, S6, S8 13.588 10.760 14.116 11.003
All data 13.092 11.002 14.889 10.360

Lastly, some interesting remarks can be drawn from the analysis of the December
results reported in Table 9. In fact, along a similar line with the analysis of the June test
set, the December case proves the high stability and accuracy of our proposed method.
The V-LSTM model and both the univariate methods are always worse than the proposed
2D-CNN method applied on a multivariate dataset. Furthermore, we show, for December
tests, the graphical results of 2D-CNN for both the 3-day and 7-day tests. For 3-day tests,
the univariate case is reported in Figure 9, while the best case coincides, in this case, with
the multivariate one using all data in Figure 10; for 7-day tests, the univariate case is shown
in Figure 11, and the best one is associated with the fully multivariate case in Figure 12.
These figures are in accordance with the numerical results and they highlight that the
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variability is scarce in all cases. While the error is still low, due to the lowest irradiance for
the winter season, the accuracy of the multivariate 2D-CNN is consistently better.

Table 9. Average RMSE for December 2018 tests, carried out by using V-LSTM and 2D-CNN models
and different combinations of time series.

Input Data 3-Day Test 7-Day Test
V-LSTM 2D-CNN V-LSTM 2D-CNN

S1 (univariate) 5.904 3.840 5.863 4.920
S1, S2 5.328 3.404 5.497 4.810
S1, S3 5.993 3.764 4.305 4.704
S1, S4 5.041 4.492 5.840 4.050
S1, S5 5.640 4.603 5.964 5.004
S1, S6 5.031 4.201 4.280 4.890
S1, S7 5.194 3.790 5.170 4.395
S1, S8 6.240 3.343 5.810 4.568
S1, S9 5.840 3.992 5.795 4.750
S1, S10 5.902 4.688 6.110 4.851
S1, S11 6.002 4.487 6.011 4.970
S1, S2, S3 5.618 4.440 6.230 4.120
S1, S5, S7, S9 5.904 3.091 6.790 4.390
S1, S4, S6, S8 5.767 3.295 6.264 4.887
S1, S4, S5, S6, S7 5.671 3.099 6.470 4.461
S1, S3, S5, S7, S9 5.821 2.541 6.853 4.608
S1, S2, S4, S6, S8 6.005 3.540 6.267 4.040
All data 5.687 2.480 7.340 4.010

Figure 9. Predicted (red) and real (blue) value of output power in the mid of December 2018, by using
the 2D-CNN approach with the univariate input on the 3-day test set (see Table 9, row 1, column 2).



Energies 2021, 14, 2392 15 of 18

Figure 10. Predicted (red) and real (blue) value of output power in the mid of December 2018, by
using the 2D-CNN approach with the combination of all the time series, which is also associated
with the best performance on the 3-day test set (see Table 9, row 18, column 2).

Figure 11. Predicted (red) and real (blue) value of output power in the mid of December 2018, by using
the 2D-CNN approach with the univariate input on the 7-day test set (see Table 9, row 1, column 4).

Figure 12. Predicted (red) and real (blue) value of output power in the mid of December 2018, by
using the 2D-CNN approach with the combination of all the time series, which is also associated
with the best performance on the 7-day test set (see Table 9, row 18, column 4).
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Summarizing the results by a general outlook, the most significant improvement with
respect to the univariate approach is met when considering the time series relative to
wind and the ones relative to a higher altitude. Overall, this is in accordance with [27],
because irradiance is strictly linked with cloud movement, which is predictable using wind
information at high altitudes. In fact, as in December, the variation in weather is more
frequent, the prediction performance is evidently improved by the multivariate approach.
This improvement is less evident in more stable months, as in June.

As expected, the results of the 7-day case are slightly worse than the ones of the 3-day
case. While this is obviously due to the longer forecasting horizon, the difference is not so
large; the proposed method can be valued as stable and consistent for the tested method-
ologies. It is also evident that the proposed convolutive structure gives advantages over
the pure LSTM, despite the low dimensionality of the frame processed by the convolutional
filter. In fact, all the numerical results sport the same trend, despite the heavy changes
during different seasons.

An additional remark can be drawn from the visual analysis of the results; there is
quite a difference in the absolute value of the analyzed time series. This is the result of
a different general dynamic in the physical system, which is quite complicated. For this
matter, the complex multivariate analysis, along with the higher variability, impose that
changes should be carried out in the training phase, and thus the different dynamics are
reflected in the network tuning. In fact, we suggest that the latter is retrained when those
drastic changes occur in actual operational applications.

5. Conclusions

In this work, we studied a new technique for multivariate forecasting of energy time
series. Our contribution relies on a bidimensional convolutional layer to obtain an enriched
embedding representation, feeding an LSTM model used to take advantage of long-term
dependencies among the different physical time series. We carried out several tests on
real world data to assess the efficient performance of the proposed model, comparing it
with state-of-the-art LSTM techniques. It is possible to conclude that this novel system is
a viable and robust solution for prediction applications, with the main advantage being
its efficient and smart ways of exploiting access to different physical data. Future works
might focus on considering architectures employing multi-stacked CNNs and tentatively
applying the same concepts to distributed forecasting models.
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