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Abstract: The brushless doubly fed reluctance machine (BDFRM) is receiving an increased amount
of attention from the research community thanks to its potential as an alternative drive for variable
speed applications, both as motor and generator. Currently, the sizing of the BDFRM in the literature
is based on the model of an ideal axially laminated rotor (ALR) and discrepancies are hidden in
compensation factors which are in turn tuned with a finite element analysis (FEA). This paper
proposes an analytical framework to accurately model the air gap field modulation, and by extension
the torque density, of the BDFRM with ducted segmental rotor (DSR) and salient pole rotor (SPR).
The results are verified with FEA and validated on a BDFRM prototype.

Keywords: BDFRM; magnetic design; variable speed drive; reluctance; electrical machines; ma-
chine design

1. Introduction
1.1. Literature Review

The brushless doubly fed reluctance machine (BDFRM), with a reluctance rotor, was
first announced as a ‘new’ machine type by Liang [1], due to its doubly AC excited nature,
as an alternative for the self-cascaded induction machines with wound rotors, also named
the brushless doubly fed induction machine (BDFIM). Both types of machine combine
two three-phase stator windings of different pole numbers onto the same stator-rotor
unit. One winding, the primary or grid winding (further denoted with subscript g), is
connected to the grid supply, while the other, the secondary or control winding (denoted
with subscript c), is connected to a (bidirectional) converter. These machines are of interest
thanks to their slip recovery nature, meaning that the active power flow is divided between
the grid and control winding. When operated in a limited speed range, it is possible to use
a partially rated converter, which lowers the costs of the drive system. This makes these
machine types attractive for variable speed applications such as pumps [2], wind power
applications [3,4] and heating, ventilation and air conditioning (HVAC). Previous studies
proposed the BDFRM in a variety of power ranges, from 45 kW to 320 kW for pumps and
small wind turbines [5,6], up to 1.5–2 MW for larger wind turbines and even turbo-electric
propulsion systems [3,7].

The self-cascaded induction machine was proposed for the first time by Hunt [8],
more than a century ago, to omit the disadvantages of sliprings while still being able to
perform speed control by resistance control. The Hunt machine is the oldest precursor of
both the BDFRM and the BDFIM as they are known today and was particularly interesting
for low-speed applications. About 50 years later, in the early 1970s, Broadway studied the
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self-cascaded induction machine ([9–12]) and introduced improvements to the BDFIM-rotor
design with a nested-loop rotor, increasing the robustness and simplicity of the motor. He
also conducted research on reluctance rotor variants and performed experimental tests, but
only in the two special cases where (i) the control winding is short-circuited (asynchronous
operation mode) and (ii) the control winding is excited with a DC voltage (synchronous
operation mode). In these two cases, there is no need for a converter to be connected
to the control winding. Broadway, however, mentioned the possibility of operating the
reluctance variants in a doubly AC excited manner. The earliest developments on the
doubly fed machines were focused on the BDFIM. Jovanović states in [2] that this is due to
the limited capabilities, at the time, to generate a rotor with a saliency ratio high enough to
make the BDFRM competitive compared to the BDFIM. However, the BDFRM has several
advantages with respect to the BDFIM: while having no Ohmic losses in the rotor it has a
potentially higher efficiency, it is easier to model and to control than the BDFIM and the
BDFRM allows decoupled control of the active and reactive power [2,13–16]. The BDFRM
can have superior performance over the BDFIM and has a better performance for adjustable
speed applications [14].

Extensive research has led to several possibilities in rotor design, depicted in Figure 1,
and a variety of control strategies [17,18]. All these rotors have the function to distort and
modulate the field distribution in the air gap, thereby introducing coupling between the
two stator windings of different spatial frequencies, i.e., windings with a different pole
pair number. This coupling has a direct impact on the torque density and the active and
reactive power flow and can differ strongly between the different rotor designs. A first
distinction can be made based on how the rotor material is stacked, resulting radially
laminated rotors, depicted in Figure 1a–c and the axially laminated rotor (ALR), depicted
in Figure 1d, treated by [2] as a BDFRM. In ALRs, the flux guides consist of a stack of axial
laminates of magnetic iron, electrically and magnetically insulated from each other. This
kind of rotor is also found in studies of the synchronous reluctance machine (SynRM) and
are known for their superior saliency and thus superior performance. However, the ALR
is less suited for industrial production than other rotor types [19]. Furthermore, studies
show that the ALR is prone to high eddy currents resulting in important iron losses in the
rotor [19,20]. These iron losses are expected to be even more pronounced for the BDFRM
than for the SynRM. This is since in steady state, the SynRM rotor rotates synchronously
with the fundamental component of the induced magnetic field and thus ‘sees’ a constant
field. On the contrary, the BDFRM rotor does not rotate synchronously with either induced
fields of the stator windings, it thus continuously ‘sees’ a rotating field and is as such more
prone to eddy currents.

The radially laminated rotor comes in four different shapes in a BDFRM. The salient
pole rotor (SPR) in Figure 1a, the ducted rotor (DR) in Figure 1b and the segmental rotor
(SR) in Figure 1c, which was theoretically treated by [9]. The SPR is an interesting rotor
to analytically derive the working principle of the BDFRM, but is less performant with
respect to others, due to a poor power factor and a high leakage inductance [21,22].
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The DR introduces a preferred (low reluctance) path for the flux but consists of a
complete magnetic iron rotor that is radially laminated in which so called barriers or
ducts (of air) are cut or punched out to create the flux guides. This rotor type was first
developed and patented by Vagati [19,23,24] and is nowadays the reference rotor type
for SynRMs. The DR figures in many proposed BDFRM designs [7,25–27]. The ducted
segmental rotor (DSR), which is receiving growing attention [18,22,28–32], is closely related
to the DR and is a combination of the SR and the DR. Both DR and DSR are preferred over
the SPR and the ALR with a better coupling between the stator windings and no excessive
iron losses [15,27,33]. In fact, the DSR is closely related to the DR in a way that bridges
connecting different segments of flux ducts in the DR are designed to be saturated at rated
conditions, thereby behaving as air and magnetically insulating the adjacent flux guides
from each other. These bridges in the DR are needed to ensure the structural integrity
of the iron stack, mounted on a round shaft, whereas for the DSR, the shaft is adapted
to accommodate different segments. This comes at the cost of the mutual coupling due
to leakage flux needed to saturate the bridges for the DR on the one hand, and a more
complex shaft design for the DSR on the other hand.

The mutual coupling between the two stator windings, if dependent on the rotor
position, leads to a change in coenergy, and thus reluctance torque generation. To obtain
this coupling, the air gap field modulation performed by the reluctance rotor must modulate
the field, induced by one of the two stator windings, to create sideband harmonics. These
harmonics must coincide with the field of the other stator winding with different pole pair
number. The rotor is thus especially designed to obtain a rotor position dependent mutual
coupling and its number of poles must comply to Equation (1), where pr is the number
of poles or segments on the rotor and pg and pc are the pole pair numbers of the grid
and control winding, respectively. To generate a constant reluctance torque in steady state
operation, the BDFRM also must comply to Equation (2). The different sign possibilities in
Equation (1) are part of the design choices to be made. The sign in Equation (1) directly
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impacts the one in Equation (2). For further reading on the working of the BDFRM with an
SPR based on the winding function theory, two other studies [34,35] are suggested.

pr = |pg ± pc

∣∣∣ (1)

Ωr =
ωg ± ωc

pr
(2)

1.2. Hypothesis and Paper Subject

The sizing for machines with DR or DSR is based on the model for an ideal ALR.
This type of rotor is known to have superior performance compared to other reluctance
rotor types due to its ideal nature and because eddy currents are not considered in the
model. However, this approach results in a significant under sizing of the machine when
designing for torque. Until now, engineers have attributed this discrepancy to saturation
and magnetic potential drops in the iron rotor core and introduced a saturation factor ksat
to compensate for it. The latter is then estimated using a finite element analysis (FEA).
However, even though saturation and magnetic potential drops are expected to attenuate
the overall performance of the BDFRM, it is believed that these alone cannot possibly
be the cause of this important degradation in performance and therefore, an underlying
theoretical explanation should exist.

This paper aims to give a detailed overview of the analytical modeling of the BDFRM
and proposes a new analytical approach to have a better estimate of the BDFRM torque
density. First, a spectral analysis is carried out on the ideal ALR and its coupling factors are
derived. The DSR with single flux guide and the SPR are then treated in a similar way and
the resulting coupling factors are compared to FEA results and inductance measurements
on a prototype.

2. Analytical Modeling of Different Rotor Topologies
2.1. Spatial Frequency Analysis
2.1.1. Ideal ALR

An early study of the BDFRM in [2] explored the use of an ALR. However, the
modeling was mainly based on expressions of inductances derived with the winding
function theory. Almost a decade later, the first idea of flux modulation was emitted in [36]
where the flux density in the air gap is described by a modulo function. This idea was
developed analytically further in [22,29,37] following the magneto-motive force (MMF)
modulation theory.

In this model, the rotor consists of conductors for magnetic flux with infinitesimal
thickness that are laid out in a concentric way as depicted in Figure 2. The conductors
are assumed to be ideal; this entails (i) that no magnetic flux flows from one conductor to
the other and (ii) that no MMF drop occurs inside the material. In this case, Gauss’s law
imposes that the radial component of the air gap flux density at the surface between the
rotor and the air gap relate by Equation (3). Furthermore, one set of concentric conductors
are insulated from the neighboring sets. The parameter pr indicates the total number of
rotor segments.

Br(θi) = −Br

(
2π
pr
− θi

)
θi ∈

[
0,

2π
pr

]
(3)
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Figure 2. Ideal axially laminated rotor. The flux channels appear to have a finite thickness but are
assumed to have an infinitesimal thickness in the model.

The resulting magnetic flux density in the air gap, can be expressed in terms of stator
MMF (A.4), as derived in Appendix A. The influence of the rotor on the magnetic flux
density can thus be reflected to the MMF and be modeled as an equivalent machine with a
full iron rotor and a modulated stator MMF Equation (4).

Fm(θi) =
F(θi)− F

(
2π
pr
− θi

)
2

(4)

In fact, F
(

2π
pr
− θi

)
is the mirrored image of F(θi) with respect to the center of the

rotor segment. The expressions Equations (3) and (4) are expressed in a local reference
system with θi for each set i of concentric laminations. For the entire air gap circumference,
the modulated MMF wave is expressed by Equation (5). The modulation with a pulse
function (The normalized sinc function is considered here: sinc(k) = sin(kπ)

kπ ) will ensure
that the mirrored image of F will only be accounted for over the rotor segment i. The origin
in Figure 2, is the d-axis, i.e., the rotor axis of minimum reluctance, is shifted with θr to
account for the change in rotor position.

Fm(θ, θr) =
1
2

F(θ)− 1
2

pr−1

∑
i=0

F
(
(2i + 1)

2π
pr
− θ+ 2θr

)
· pulse

(
θ− (2i + 1)

π

pr
− θr

)
(5)

pulse(θ) =
1
pr

(
1+

∞

∑
k=1

2 sin c
(

k
pr

)
cos(kθ)

)
=

{
1
0

if θ ∈ [−π/pr, π/pr]
else

(6)

The modulation process of an ideal ALR is depicted in Figures 3 and 4 for an original
MMF wave with four- and two-pole pairs, respectively.

Figure 3. Effect of an ideal ALR with six rotor segments on the original MMF wave with four
pole pairs.
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Figure 4. Effect of an ideal ALR with six rotor segments on the original MMF wave with two
pole pairs.

The modulation of an original MMF wave described by Equation (7), under the
influence of an ALR with pr segments, can be expressed as a Fourier series Equation (8).
The details of this derivation based on Equations (5) and (6) are laid out in Appendix B.

F(θ, t)= Fcos
(
psθ−ϕs(t)

)
(7)

Fm(θ, θr, t) = F
2 cos

(
psθ−ϕs(t)

)
− F

2

+∞
∑

k=−∞
(−1)ksin c

(
2ps+kpr

pr

)
cos
((

ps+kpr
)
θ− kprθr −ϕs(t)

) (8)

Expression Equation (8) shows that half of the original waveform is attenuated while
the other half is modulated into spatial frequencies

(
ps ± kpr

)
. This is illustrated in

Figures 5 and 6 for a four- and two-pole pair MMF, respectively. The generation of addi-
tional spatial frequencies by the rotor lies at the base of the BDFRM working principle.
Indeed, when selecting an appropriate combination of pole pairs and rotor segments
Equation (1), the spatial frequency of the harmonics generated by modulation from one
winding will match the spatial frequency of the original MMF of the other winding, and
vice versa. This matching in spatial frequency involves a mutual coupling of the two stator
windings through the rotor, which will generate net torque in steady state, on the condition
that the additional time frequency condition is met Equation (2).

Figure 5. Spatial frequency spectrum of the original and modulated MMF waves expressed in
Equation (7) for a combination: ps= 4 and pr= 6.



Energies 2021, 14, 2388 7 of 25

Figure 6. Spatial frequency spectrum of the original and modulated MMF waves expressed in
Equation (7) for a combination: ps = 2 and pr = 6.

The Fourier coefficients of the modulated MMF wave that are relevant to the basic
working principle of the ideal ALR BDFRM were called ‘coupling factors’ by [36]. The first
appearance of such factors in the literature as ‘spread factors’ for an ideal segmental
BDFRM can be found in [9]. The coupling factors for the grid and converter windings
are defined by truncating Equation (8) to Equation (9) and Equation (10), for the case
pg + pc= npr with n a non-zero natural number. For the ideal ALR, the self-coupling and
mutual factors are defined by Equation (11) and Equation (12), respectively.

Fmg(θ, θr, t) = FgCg cos
(

pgθ−ϕg(t)
)

+ FgCgc cos
(
pcθ− nprθr −ϕg(t)

)
+ . . . with n ∈ N (9)

Fmc(θ, θr, t) = Fc Cc cos
(
pcθ−ϕc(t)

)
+ FcCcg cos

(
pcθ− nprθr −ϕc(t)

)
+ . . . with n ∈ N (10)

Cg =
1
2

(
1− sin c

(
2pg

pr

))
Cc =

1
2

(
1− sin c

(
2pc
pr

))
(11)

Cgc = Ccg =
1
2

sin c

(
2pg − npr

pr

)
=

1
2

sin c
(

2pc − npr
pr

)
(12)

2.1.2. Ideal DSR with Single Flux Duct

In this modeling approach, a flux guide as depicted in Figure 7 is considered, and the
following assumptions are made: (i) saturation of flux guides is not considered, (ii) MMF
drop inside the flux guide is not considered and (iii) magnetic flux enters and leaves the
flux guides exclusively at the interface with air gap at radius Rr.

Figure 7. Model for single flux guide rotor.
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The flux entering or leaving the flux guide i over the interval [θ1, θ2] can be written as
Equation (13), where a constant ‘magnetic potential’ Ui is assumed for the flux guide.

φ =
µ0L

g

(
Rs

∫ θ2

θ1

Fs(θ) dθ− Rr

∫ θ2

θ1

Ui dθ
)

(13)

Expressing Gauss’s law over the entire flux guide, where the flux over intervals[
θqi − β− τ, θqi − β

]
and

[
θqi+β, θqi+β+ τ

]
is considered, yields an expression for Ui

Equation (14) for an MMF wave in the shape of a pure cosine as in Equation (7).

Ui(θi) = sin c
(psτ

2π

)Rs

Rr

(
Fs
(
θqi − β− τ

2
)
+ Fs

(
θqi+β+

τ
2
))

2
(14)

By expressing the magnetic flux over the entire air gap circumference, the modulated
MMF Equation (15) can be derived using a pulse function Equation (16) that will only allow
non-zero flux over the intervals

[
θqi − β− τ, θqi − β

]
and

[
θqi+β, θqi+β+ τ

]
.

Fm(θ, θr) =
pr−1

∑
i=0

(
Fs(θ)−

Rr

Rs
Ui
(
θqi
))
· pulse

(
θ− θqi

)
(15)

pulse(θ) =
τ

π
+

+∞

∑
k=1

2τ
π

sin c
(

kτ
2π

)
cos
(

k
(
β+

τ

2

))
cos(kθ) =


1
1
0

if θ ∈ [−β− τ,− β]
if θ ∈ [β,β+ τ]

else
(16)

In contrast to the ideal ALR model, a local reference frame is considered with respect
to the middle of the segment. The relation of this reference frame with the one used in the
ideal ALR model is expressed by Equation (17).

θqi = θr +
π

pr
+i

2π
pr

i = 0, . . . , pr − 1 (17)

The modulated MMF can finally be expressed as a Fourier series Equation (18) with
coefficients Equation (19). The effect of a single flux guide segmental rotor on a four- and
two-pole pair MMFs is depicted in Figures 8 and 9, respectively.

Fm(θ, θr) = F
+∞

∑
k=−∞

Ck
(
ps,β, τ

)
cos
((

ps+kpr
)
θ− kprθr −ϕs(t)

)
(18)

Ck
(
ps,β, τ

)
=

τpr
π (−1)ksin c

(
kprτ
2π

)
cos
(
kpr
(
β+τ2

))
−τpr
π (−1)ksin c

(
psτ
2π

)
cos
(
ps
(
β+τ2

))
sin c

(
(ps+kpr)τ

2π

)
cos
((

ps+kpr
)(
β+τ2

)) (19)
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Figure 8. Effect of an ideal segmental rotor with six segments and single flux guide on the original
MMF wave with four pole pairs.

Figure 9. Effect of an ideal segmental rotor with six segments and single flux guide on the original
MMF wave with two pole pairs.

The presented model does not consider the air gap share over the interval [θqi −
β, θqi+β], which entails that the estimate will be the same for rotor segments with equal
angles β and τ, irrespective of the air gap shape.

For a rotor meeting condition Equation (13), the new coupling factors are defined
as Equations (20) and (21) for the self- and mutual-coupling, respectively, based on
Equation (19).

Cg= Ck=0

(
pg,β, τ

)
Cc= Ck=0

(
pc,β, τ

)
(20)

Cgc= Ck=−1

(
pg,β, τ

)
Ccg= Ck=−1

(
pc,β, τ

)
(21)

Compared to the ideal ALR, the spatial frequency spectra in Figures 10 and 11 show
that the DSR generates more frequency components with higher amplitude, which opens
the path for more potential pole-pair combinations.
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Figure 10. Spatial frequency spectrum of the original and modulated MMF waves expressed in
Equation (7) for a combination: ps = 4 and pr = 6 and physical parameters β = 10

◦
and τ = 10

◦
.

Figure 11. Spatial frequency spectrum of the original and modulated MMF waves expressed in
Equation (7) for a combination: ps = 2 and pr= 6 and physical parameters β = 10◦ and τ = 10◦.

2.1.3. Salient Pole Rotor

The modulation process of the SPR can be divided in two parts Equation (22). First,
the effect of the rotor poles, the parts of the rotor with the smallest air gap, will be modeled
using a pulse function that is one at the rotor poles and zero at the rotor slots Equation (23).
An ideal SPR would be modeled by only considering the rotor poles. Modeling the effect
of the rotor slots involves adding a similar pulse function Equation (24) but with an
attenuation Equation (25) that is derived from the static solution of Ampere’s law for
a round rotor with rotor slot radius Rslot, as detailed in [38,39]. The only part that is
not considered here is thus the transition between rotor slots and rotor poles. Therefore,
the analytical model that is presented will give a slight underestimation of the radial
flux density.

Fm(θ, θr) =
(

pulsepoles(θ− θr)+ρslots pulseslots(θ− θr)
)
· F(θ) (22)

pulsepoles(θ) =
τpr
π

+
∞

∑
k=1

4
kπ

sin
(

kpr
τ

2

)
cos
(

kpr
τ

2

)
cos(kprθ) (23)

pulseslots(θ)= ρslots

(
βpr
π

+
∞

∑
k=1

(−1)k 2
kπ

sin(kprβ ) cos(kprθ)

)
(24)

ρslots =
g ps
Rm

(
Rm

Rslot

)ps
+
(

Rslot
Rm

)ps(
Rs

Rslot

)ps −
(

Rslot
Rs

)ps
(25)
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The waveforms in a BDFRM with an SPR are illustrated in Figures 12 and 13 for a
four- and two-pole pair excitation, respectively.

Fm(θ, θr) =
Fpr
π ·

+∞
∑

k=−∞

(
τ sin c

(
kprτ
π

)
+ (−1)kρslotsβ sin c

(
kprβ
π

))
cos
((

ps+kpr
)
θ− kprθr −ϕs

) (26)

Figure 12. Effect of salient pole rotor with six poles on the original MMF wave with four pole pairs.

Figure 13. Effect of salient pole rotor with six poles on the original MMF wave with two pairs.

The modulated MMF wave Equation (26) is found to have a similar Fourier series
as the ideal ALR rotor except for the Fourier coefficients. The grid and control winding
coupling factors for the SPR are defined as Equations (27) and (28).

Cg =
pr
π
(τ+ ρslotsβ) Cc =

pr
π
(τ+ ρslotsβ) (27)

Cgc= Ccg =
pr
π

(
τ sin c

(prτ

π

)
− ρslotsβ sin c

(
prβ

π

))
(28)
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2.1.4. Phase Inductances

Based on the analysis in the previous sections, the effect of the different rotors on the
original MMF wave of phase i of stator winding x ∈ {c, g} can be written as Equation (29)
where coefficients Cx,k are dependent on the rotor type, and physical parameters. The
phase shift φi and φj are limited to the set

{
− 2π

3 , 0,+ 2π
3
}

, where i, j ∈ {u, v, w} for a
three-phase winding. The phases φg and φc represent the position of the magnetic axis of
phase u of the grid and control winding, respectively.

Fmx,i(θ, θr, t)= Fx,i

+∞

∑
k=−∞

Cx,k cos((px+kpr)θ− kprθr −φx −φi) (29)

Using the fundamental component of the winding function Ny,i(θ) with y ∈ {c, g},
the phase inductances for the grid and control winding are derived in Equation (31) and
Equation (32), respectively, as well as the mutual inductances between the two stator
windings Equation (33). The latter is showing a rotor position dependency, expressing the
reluctance nature of the BDFRM. These expressions are derived for the case of Equation (30)
of Equation (1).

pr = pg+pc (30)

Ljc,ic =
µ0πRsL

g

(
4
π

kw,cNc

2pc

)2
Cc cos

(
φj −φi

)
(31)

Ljg,ig =
µ0πRsL

g

(
4
π

kw,gNg

2pg

)2

Cg cos
(
φj −φi

)
(32)

Mjg,ic =
µ0πRsL

g

(
4
π

kw,gNg

2pg

)(
4
π

kw,cNc

2pc

)
Cgc cos

(
prθr −φj −φi −φg −φc

)
(33)

2.2. Time Frequency Analysis

The modulation process by the reluctance rotor not only affects the field distribution
in space, i.e., along the circumference of the air gap, but also in time. This is due to
the reluctance nature of the BDFRM, which will generate torque in order to place the
magnetically anisotropic rotor in a position of minimum coenergy, as demonstrated by [40].

With the assumption of linear magnetic behavior, based on Equation (8), and in the
case of a sum in Equation (33), the coenergy for a purely cosine MMF distribution can be
derived Equation (34), as presented in Appendix C.

W(θr, t) = µ0
g
πRsL

2

(
F2

g
+∞
∑

k=−∞
C2

gk+F2
c

+∞
∑

k=−∞
C2

ck

)
+µ0

g
πRsL

2

(
2FgFc

(
Cgc+Ccg

2

)
cos
(
prθr −ϕg(t)−ϕc(t)

)) (34)

The reluctance torque developed by the BDFRM in Equation (35) is found to be
dependent on the product of the MMF amplitudes and the relative rotor position with
respect to the grid and control MMF waves.

T(t) = ∂W(θr,t)
∂θr

= −µ0
g
πRsL

2 pr FgFc
(
Cgc+Ccg

)
sin
(
prθr−ϕg(t)−ϕc(t)

) (35)

During normal operation of the machine, the MMF waves are rotating with angular
velocities ωg and ωc and phase shifts φg and φc with respect to an arbitrary reference,
as in Equations (36) and (37) for the grid and control winding, respectively. The rotor
position will depend on angular velocity Ωr and phase shift γ with respect to that same
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reference Equation (38). This phase shift is commonly denominated as the load angle in
mechanical radians.

ϕg(t) = ωgt + φg (36)

ϕc(t) = ωct + φc (37)

θr(t) = Ωrt + γ (38)

For the BDFRM to generate a constant reluctance torque in steady state, the time
frequency condition Equation (39) must be met. In that case, the amplitude of torque is
given by Equation (40).

Ωr =
ωg+ωc

pr
(39)

T =− µ0
g
πRsL

2
pr FgFc

(
Cgc+Ccg

)
sin
(

prγ−φg −φc

)
(40)

Finally, rewriting the expression for electromagnetic torque Equation (40) in terms of
RMS linear current density of the grid and control windings Ksg and Ksc in A/m, defined
in terms of RMS current by Equation (41) with x ∈ {c, g}, respectively, yields the sizing
equation for the BDFRM Equation (42).

Ksx =
3
π

kw,xNx

Rs
Ix (41)

T =− 2
µ0πRs

3L
g

(
Cgc+Ccg

2

)
pr

pgpc

(
KsgKsc

)
sin
(
prθr −ϕg(t)−ϕc(t)

)
(42)

3. Results
3.1. Verification with FEA
3.1.1. Salient Pole Rotor

Finally, the proposed model is verified with FEA for an SPR and an approximation of
an ideal stator where the stator is modeled as a current sheet of finite thickness. An FFT
analysis on the field value in the middle of the air gap allows the retrieval of the coupling
coefficients, presented in Table 1. A relatively high accuracy is reached for the proposed
model of the SPR which is mainly due to the modeling of the flux through the rotor slots.
The remaining discrepancy is due to the flux going through the radial sides of the rotor
poles, which also explains why the proposed model gives a slight underestimation. The
waveforms also show a good match in Figure 14.

Table 1. Accuracy of the proposed model in relation to the FEA solution for an SPR with six rotor poles.

Cg ∆r (%) 1 Cgc ∆r (%) 1 Cc ∆r (%) 1 Ccg ∆r (%) 1

FEA 0.3887 - 0.2715 - 0.3932 - 0.2724 -
Proposed model 0.3637 −6.4 0.2631 −3 0.3676 −6.5 0.2614 −4

1 Relative error in relation to the FEA results.



Energies 2021, 14, 2388 14 of 25

Figure 14. (a) FEA model for an SPR. (b) Waveform comparison of the modulated MMF of the proposed model for a DSR
with the FEM solution, for a stator excitation with four pole pairs.

3.1.2. Ducted Segmental Rotor

The waveform of the proposed model is closer to the FEA result than the ideal ALR
model, as illustrated in Figure 15. Furthermore, the improvement brought by the proposed
model is quantified in Table 2, where the inaccuracy of the mutual coupling coefficient is
reduced by more than 70%. The self-coupling factors are also improved. The relatively high
error on the self-coupling factors is due to the absence of leakage in the proposed model.
Finally, the proposed model gives an underestimation of the mutual coupling coefficient
because some flux lines that are not modeled are contributing to the mutual coupling of the
two stator windings. Flux lines that are not captured in the proposed model are illustrated
in Figure 16.

Figure 15. Waveform comparison of the modulated MMF of the proposed for a DSR and the ideal
ALR model with the solution obtained with FEA for a DSR with the FEM solution, for a stator
excitation with four pole pairs.

Table 2. Accuracy improvement of the presented model for a DSR with respect to the ideal ALR model.

Cg ∆r (%) 1 Cgc ∆r (%) 1 Cc ∆r (%) 1 Ccg ∆r (%) 1

FEA 0.1953 - 0.2329 - 0.4552 - 0.2326 -
Ideal ALR

model 0.2933 +50 0.4135 +78 0.6034 +33 0.4135 +78

Proposed
model 0.1430 −27 0.2177 −7 0.3765 −17 0.2177 −6

1 Relative error in relation to the FEA results.
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Figure 16. FEA solution for a DSR with ideal stator excitation with four-pole pairs. The color legend
expresses magnetic flux in Wb. One segment is magnified to illustrate flux lines that are not included
in the proposed model.

3.1.3. Sensitivity Analysis for DSR

As leakage and non-modeled flux paths change with the geometry of the rotor, so does
the accuracy of the proposed model. Figure 17 shows how the mutual coupling coefficient
changes in function of angle β while τ is kept constant at 10◦. Aside from the two extrema,
i.e., β equal to 0◦ and 20◦, which coincide with a purely segmental rotor and a salient pole
rotor, respectively, the error of the proposed model stays within 10% compared to FEA.

Figure 17. Effect on the mutual coupling factor with variation in angle β for a fixed angle τ = 10◦.

3.1.4. DSR with Multiple Flux Ducts

Considering the assumptions of the proposed model for a DSR with single flux duct,
expression Equation (18) can be extended to a total Fourier coefficient Cn, total for a rotor
segment with ND flux guides by adding up the coefficients of the different flux guides
Equation (43).

Cn,total =
ND

∑
i=1

Cn(βi, τi) (43)

This is verified with FEA for a rotor with three and four flux ducts as illustrated in
Figure 18a,b, respectively. The results in Tables 3 and 4 show that on the one side, the
proposed model still manages to estimate the mutual coupling factors with 18% relative
error. The FEA results also show that the accuracy of ideal ALR model for the self-coupling
factors depends on the amount and position of the flux ducts. When βi and τi are such that
the distance between neighboring segments is small, the ALR model gives a better estimate
for the self-coupling factors than the proposed model. The waveforms in Figure 18c,d also
show that the peaks of the FEA solution are close to the ideal ALR model for the rotor
with a higher number of flux ducts and with close distance between segments. For DSRs
with a geometry that is close to Figure 18c a combination of the ideal ALR model for the
self-coupling factors and the proposed model for the mutual coupling factors.
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Figure 18. (a,b) are FEA models for a segmental rotor with three and four flux guides, respectively. (c,d) are waveform
comparisons of the modulated MMF of the proposed and the ideal ALR model with the FEM solution with a stator with
four pole pairs for a segmental rotor with three and four flux guides, respectively.

Table 3. Accuracy improvement of the presented model for a DSR with three flux ducts in relation to
the ideal ALR model.

Cg ∆r (%) 1 Cgc ∆r (%) 1 Cc ∆r (%) 1 Ccg ∆r (%) 1

FEA 0.1537 - 0.1871 - 0.3765 - 0.1883 -
Ideal
ALR

model
0.2933 +91 0.4135 +121 0.6034 +60 0.4135 +120

Proposed
model 0.0938 −39 0.1540 −18 0.2600 −31 0.1539 −18

1 Relative error in relation to the FEA results.

Table 4. Accuracy improvement of the presented model for a DSR with four flux ducts in relation to
the ideal ALR model.

Cg ∆r (%) 1 Cgc ∆r (%) 1 Cc ∆r (%) 1 Ccg ∆r (%) 1

FEA 0.2719 - 0.2974 - 0.5249 - 0.2968 -
Ideal
ALR

model
0.2933 +8 0.4135 +39 0.6034 +15 0.4135 +39

Proposed
model 0.1670 −39 0.2442 −18 0.3727 −29 0.2441 −18

1 Relative error in relation to the FEA results.

3.2. Experimental Results

The proposed model for the mutual coupling factor is validated on a BDFRM prototype
depicted in Figure 19, for which the specifications are presented in Table 5. The rotor is of
DSR type with a single flux duct.
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Figure 19. (a) Sketch and (b) assembled parts of the stator and skewed rotor of the BDFRM prototype
under test, and (c) setup for testing the prototype at different speeds.

Table 5. Specifications of the BDFRM prototype.

Parameter Value

Rated power (kW) 1.0
Rated speed (rpm) 750

Stator inner/outer diameter (mm) (92.15 ± 0.01)/(139.8 ± 0.01)
Air gap/Stack length (mm) (0.195 ± 0.02)/(116.15 ± 0.025)

pg/pc/pr 2/4/6
β/τ (deg) 10.3/15.2

Total numbers of turns in series Ng/Nc 198/369
Parallel circuits in grid/control winding cg/cc 2/1

Carter’s coefficient kc 1.22

The turns functions of the grid and control windings are depicted in Figure 20a,b, respectively.

Figure 20. Turns functions of (a) the grid winding and (b) the control winding of the BDFRM
prototype under test.
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To measure the mutual inductance, the induced voltage in the grid winding is mea-
sured while injecting a constant DC current Iuc in phase u of the control winding and
rotating the rotor at constant speed Ωr. This is schematically represented in Figure 21.

Figure 21. Electrical circuit of the BDFRM prototype while performing a mutual inductance measurement.

The analytical estimates for the peak value of the mutual inductances Mig,uc are
calculated with Equation (43), where the stator Carter’s coefficient and the number of
parallel circuits are included.

Mig,uc =
µ0πRsL

kcg

(
4
π

kw,gNg

2pgcg

)(
4
π

kw,ucNc

2pccc

)
Cgc (44)

The measured inductances are calculated in Equation (45) with the fundamental
components U1,ig of the induced phase-to-neutral voltages. Both analytically estimated
and measured inductance values are compared in Figure 22. The induced phase-to-neutral
voltages are depicted in Figure 23 at different rotor speeds.

Mig,uc =
U1,ig

prΩrIuc
(45)

Figure 22. Comparison of measured and analytically estimated inductance values of the mutual inductance at different
rotor speeds.
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Figure 23. Induced phase-to-neutral voltages on the grid winding with 2.5 A through phase a of the grid winding at
(a) 500 rpm, (b) 750 rpm and (c) 1000 rpm.

The results show that the measured mutual inductances fall within the boundaries of
the analytical estimates. The boundaries of the latter are relatively large mainly due to the
small air gap length of 195 µm and the accuracy of its measurement.

4. Discussion and Conclusions

The presented models for a DR, DSR and SPR allow BDFRM designers to analytically
determine the torque density without resorting to FEA. Until now, the ideal ALR was
used as a reference for designing the BDFRM. This approach results in an important under
sizing as the ideal ALR has superior performance, due to its ideal nature. In the literature,
the under sizing is solved by introducing a saturation factor or oversizing factor which is
determined by FEA. The results show that the presented models show a relatively good
accuracy for the estimation of the mutual coupling factor for the SPR, DSR with single
and multiple flux ducts. The self-coupling factors are well estimated for the SPR thanks
to the modeling of the rotor slots. For the DSR with single flux duct, the inaccuracy on
the self-coupling factors is relatively high, yet better than the ideal ALR model. When
increasing the number of flux ducts and the proximity of neighboring segments, the ALR
model is more suited for the self-coupling coefficients.

The mutual coupling factor estimation was validated on a BDFRM prototype with a
DSR with single flux guide through the measurement of mutual inductances. The measured
inductance values fall within the boundaries of the analytical estimates, without resorting
to any kind of compensation factor, thus validating the presented model.
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Whereas the presented model accurately estimates the torque density though the
mutual coupling, the power factor estimation, which also depends on the self-coupling
factors, still needs improvement. The self-coupling factors depend more heavily on leakage
flux and flux paths that are not captured yet in the presented models. Improving the
self-coupling factors estimation will open the path to analytical optimization of the rotor
geometry for torque density and power factor.
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Abbreviations

ALR Axially laminated rotor
BDFIM Brushless Doubly Fed Inductance Machine
BDFRM Brushless Doubly Fed Reluctance Machine
DR Ducted rotor
DSR Ducted segmental rotor
FEA Finite Element Analysis
MMF Magnetomotive force
SPR Salient Pole Rotor
SynRM Synchronous Reluctance Motor

Nomenclature

Symbol Meaning
Br Radial component of air gap the flux density in (T)
Cc Self-coupling factor of the control winding
Ccg Mutual coupling factor of the control winding
Cg Grid winding coefficient
Cgc Mutual coupling coefficient with grid winding excitation
Cn, total Total Fourier coefficient of a DSR with multiple flux ducts
cc Number of parallel circuits in the control winding
cg Number of parallel circuits in the grid winding
F Amplitude of the stator MMF in (A · turns)
Fx,i Amplitude of the stator MMF of phase i of winding x in (A · turns)
g Air gap length in (m)
Ic RMS phase current in the control winding in (A)
Ig RMS phase current in the grid winding in (A)
kc The stator Carter’s coefficient
kw,c Fundamental winding factor of the control winding
kw,g Fundamental winding factor of the grid winding
L Stack length in (m)
Ljx,ix Inductance of phase j of winding x when exciting phase i of winding x in (H)
Mjx,iy Mutual inductance of phase j of winding x when exciting phase i of winding y in (H)
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Nc Number turns in series for the control winding
ND Number of flux ducts per segment
Ng Number turns in series for the grid winding
pr Number of rotor poles or segments
pg Pole pair number on the grid winding
pc Pole pair number on the control winding
Rg Radius in the middle of the air gap in (m)
Rr Rotor outer radius in (m)
Rs Stator inner radius in (m)
Ui Magnetic potential of segment i in (A · turns)

Greek Symbols

β Geometry parameter of the DSR in (rad)
γ Load angle in mechanical radians (rad)
δ(k) Dirac delta function
θi Angular position of the d-axis for segment i in mechanical radians (rad)
θqi Angular position of the q-axis for segment i in mechanical radians (rad)

θr
Angular position of the d-axis of the rotor with respect to an arbitrary reference frame in
mechanical radians (rad)

µ0 Permeability of air in (H/m)
ρslots Dimensionless attenuation factor of the rotor slots
τ Geometry parameter of the DSR in (rad)

φx
Phase shift of the stator MMF wave of winding x with respect to an arbitrary reference
frame in electrical radians (rad)

ϕx
Angular position of the stator MMF wave of winding x with respect to an arbitrary
reference frame in electrical radians (rad)

Ωr Angular velocity of the rotor in mechanical radians per second (rad/s)

ωx
Angular velocity of the stator MMF wave of winding x in electrical radians
per second (rad/s)

Appendix A

Due to infinite permeability, the induced magnetic field has only a radial component
at the interfaces between iron and air, and thus also in the air gap as depicted in Figure A1.
Furthermore, the cylindrical symmetry of the machine and the infinitesimal thickness δθ of
the rotor segment reduces Gauss’s law for a portion of the air gap to Equation (A1). This
expresses that the magnitude of the magnetic flux density is constant along any arbitrary
radius. The same exercise is performed for the rotor segment while assuming perfectly
magnetically insulated segment walls Equation (A2). The magnetic flux density at the
‘entry’ and ‘exit’ of the rotor segment can then be expressed as Equation (A3).

Figure A1. Schematic representation of a rotor segment of an ideal ALR.
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∮
Vair gap

Br · dV = 0

⇒ −Br(θi, Rr) Rr δθ + Br(θi, Rs) Rs δθ = 0
⇒ Rr Br(θi, Rr) = Rs Br(θi, Rs)

(A1)

∮
Vsegment

Br · dV = 0

⇒ Br(θi, Rr) δθ + Br

(
2π
pr
− θi, Rr

)
δθ = 0

⇒ Br(θi, Rr) = −Br

(
2π
pr
− θi, Rr

) (A2)

Br(θi, Rs) =
Br(θi, Rs) +

Rr
Rs

Br(θi, Rr)

2
=

Br(θi, Rs)− Br

(
2π
pr
− θi, Rs

)
2

(A3)

Finally, the magnetic flux density in the air gap can be rewritten in terms of the MMF
along the stator inner radius Equation (A4).

Br(θi) =
µ0
g

F(θi)− F
(

2π
pr
− θi

)
2

(A4)

Appendix B

This section will detail the derivation of Equation (8), based on Equations (5) and (6),
for a an original MMF wave that is described by a cosine function as in Equation (7). First,
the pulse function is rewritten as a complex Fourier series Equation (A5) and injected in
the expression for the modulated MMF Equation (A6).

pulse(θ) =
1
pr

+∞

∑
k=−∞

sin c
(

kπ
pr

)
ejkθ =

{
1
0

if θ ∈ [−π/pr, π/pr]
else

(A5)

Fm(θ, θr) =
F
2 cos

(
psθ−ϕs(t)

)
− F

2pr

pr−1
∑

i=0
cos
(

ps

(
(2i + 1) 2π

pr
− θ+ 2θr

)
−ϕs(t)

)
·
(

+∞
∑

k=−∞
sin c

(
k
pr

)
ejk(θ−(2i+1) πpr

−θr)

)
(A6)

The second term, containing the sum over index i, is expanded further using complex
numbers in Equation (A7).

pr−1

∑
i=0

cos
(

ps

(
(2i + 1)

2π
pr
− θ+ 2θr

)
−ϕs(t)

)
·
(

+∞

∑
k=−∞

sin c
(

k
pr

)
ejk(θ−(2i+1) πpr

−θr)

)
(A7)

pr−1
∑

i=0

e
jps((2i+1) 2π

pr
−θ+2θr)−jϕs(t)+e

−jps((2i+1) 2π
pr
−θ+2θr)+jϕs(t)

2 ·
(

+∞
∑

k=−∞
sinc

(
k
pr

)
ejk(θ−(2i+1) πpr

−θr)

)
= 1

2

+∞
∑

k=−∞
sinc

(
k
pr

) pr−1
∑

i=0

(
ejps((2i+1) 2π

pr
−θ+2θr)−jϕs(t)+e−jps((2i+1) 2π

pr
−θ+2θr)+jϕs(t)

)
ejk(θ−(2i+1) πpr

−θr)

= 1
2

+∞
∑

k=−∞
sinc

(
k
pr

) pr−1
∑

i=0

(
ej[ps((2i+1) 2π

pr
−θ+2θr)+k(θ−(2i+1) πpr

)−kθr−ϕs(t)]+ej[−ps((2i+1) 2π
pr
−θ+2θr)+k(θ−(2i+1) πpr

)−kθr+ϕs(t)]
)

= 1
2

+∞
∑

k=−∞
sinc

(
k
pr

)(
ej(k−ps)θ−(k−2ps)θr−ϕ

pr−1
∑

i=0
ej(2i+1) πpr

(2ps−k)
+ej(k+ps)θ−(k+2ps)θr+ϕ

pr−1
∑

i=0
e−j(2i+1) πpr

(2ps+k)
)

The sums over index i Equations (A9) and (A10) can now be calculated using the finite
sum Equation (A8).

N

∑
i=0

ej(iα+β) =
sin (N+1)α

2
sinα2

ej(β+Nα
2 ) (A8)
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pr−1
∑

i=0
ej(2i+1) πpr

(2ps−k)

=
pr−1
∑

i=0
ej(i( 2π

pr
(2ps−k))+ π

pr
(2ps−k))

=
sin(π(2ps−k))

sin
(
π
pr
(2ps−k)

) ej( πpr
(2ps−k)+(pr−1) πpr

(2ps−k))

⇒
pr−1
∑

i=0
ej(2i+1) πpr

(2ps−k)
=

{
(−1)n pr

0
if

else

(
2ps−k

)
= npr with n ∈ Z

(A9)

pr−1

∑
i=0

ej(2i+1) πpr
(2ps+k)

=

{
(−1)n pr

0
if

else

(
2ps+k

)
= npr with n ∈ Z

(A10)

Finally, the sum over k in Equation (A7) can be rewritten as Equation (A11) and
thereby, expression Equation (8) is proven.

1
pr

pr−1
∑

i=0
cos
(
(2i + 1) 2π

pr
−θ+ 2θr−ϕs(t)

)
·
(

+∞
∑

k=−∞
sin c

(
k
pr

)
ejk(θ−(2i+1) πpr

−θr)

)
= 1

2

+∞
∑

n=−∞
(−1)nsinc

(
2ps−npr

pr

)
ej(ps−npr)θ+jnprθr−jϕs(t)

+ 1
2

+∞
∑

n=−∞
(−1)nsinc

(
− 2ps−npr

pr

)
ej(npr−ps)θ−jnprθr+jϕs(t)

= 1
2

+∞
∑

n=−∞
(−1)nsin c

(
2ps−npr

pr

)(
ej(ps−npr)θ+jnprθr−jϕs(t)+ej(npr−ps)θ−jnprθr+jϕs(t)

)
=

+∞
∑

n=−∞
(−1)nsin c

(
2ps−npr

pr

)
cos
((

ps−npr
)
θ+ nprθr−ϕs(t)

)
(A11)

Appendix C

In this section, the analytical expression is derived for the energy, and coenergy in the
case of linear magnetic behavior, stored in the air gap of a BDFRM with an ideal ALR.

W(θr, t) = 1
2µ0

∫
Vair gap

Br(θ, θr, t)2 dV

= 1
2µ0

∫ L
0

∫ Rs
Rs−g

∫ 2π
0 Br(θ, θr, t)2 Rsdθ dr dz

=
gRsL
2µ0

∫ 2π
0 Br(θ, θr, t)2 dθ

= µ0
g

RsL
2

∫ 2π
0 Fm(θ, θr, t)2 dθ

= µ0
g

RsL
2

∫ 2π
0

(
Fmg(θ, θr, t)+Fmc(θ, θr, t)

)2dθ

(A12)

To calculate the integrals, the modulated MMF waves are rewritten as Equation (A13)
with new coefficients Cxk defined by Equation (A14).

Fmx(θ, θr, t)= Fx

+∞

∑
k=−∞

Cx,k cos((px+kpr)θ− kprθr−ϕx(t)) (A13)

Cx,k 6=0= −
1
2
(−1)ksin c

(
2px+kpr

pr

)
Cx,k=0 =

1
2
− 1

2
(−1)ksin c

(
2px
pr

)
(A14)

Based on integral Equation (A15) that can be proven using trigonometric identities, the
integrals Equations (A16)–(A18) are calculated. The coenery is the sum of these integrals.

∫ 2π

0
cos(pxθ+ α) · cos(p y θ+ β)dθ =

{
0

π cos(α− β)
if px 6= py
if px= py

(A15)

∫ 2π

0
Fmg(θ, θr, t)2 dθ = πF2

g

+∞

∑
k=−∞

C2
g,k (A16)
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∫ 2π

0
Fmc(θ, θr, t)2 dθ = πF2

c

+∞

∑
k=−∞

C2
c,k (A17)

∫ 2π
0 2Fmg(θ, θr, t) Fmc(θ, θr, t) dθ

= 2π FgFccos
(
prθ−ϕg(t)−ϕc(t)

) +∞
∑

k=−∞
Cg,kCc,−(k+1)

(A18)

The sum in Equation (A18) contains the mutual coupling factors Cgc and Ccg and an
additional sum as detailed in Equation (A19). It can be verified numerically that the latter
is at least 10−4 times smaller than the sum Cgc+Ccg

2 , and this for any pg 6= pc for which
Equation (13) is valid.

+∞
∑

k=−∞
Cg,kCc,−(k+1)

= 1
4

+∞
∑

k=−∞

(
δ(k)− (−1)ksin c

(
2pg+kpr

pr

))
·
(
δ(−(k + 1))− (−1)−(k+1)sin c

(
2pc−(k+1)pr

pr

))
= 1

4

+∞
∑

k=−∞

(
δ(k)− (−1)ksin c

(
2pg+kpr

pr

))
·
(
δ(−(k + 1)) + (−1)ksin c

(
2pc−(k+1)pr

pr

))
= 1

4

(
sin c

( 2pg−pr
pr

)
+ sin c

(
2pc−pr

pr

)
−

+∞
∑

k=−∞
sin c

(
2pg+kpr

pr

)
sin c

(
2pc−(k+1)pr

pr

))

= 1
4

(
2Cgc+2Ccg −

+∞
∑

k=−∞
sin c

(
2pg+kpr

pr

)
sin c

(
2pc−(k+1)pr

pr

))
≈ Cgc+Ccg

2

(A19)
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