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Abstract: Effective multiphase flow and transport simulations are a critical tool for screening, selec-
tion, and operation of geological CO2 storage sites. The relative permeability curve assumed for
these simulations can introduce a large source of uncertainty. It significantly impacts forecasts of all
aspects of the reservoir simulation, from CO2 trapping efficiency and phase behavior to volumes of
oil, water, and gas produced. Careful consideration must be given to this relationship, so a primary
goal of this study is to evaluate the impacts on CO2-EOR model forecasts of a wide range of relevant
relative permeability curves, from near linear to highly curved. The Farnsworth Unit (FWU) is an
active CO2-EOR operation in the Texas Panhandle and the location of our study site. The Morrow ‘B’
Sandstone, a clastic formation composed of medium to coarse sands, is the target storage formation.
Results indicate that uncertainty in the relative permeability curve can impart a significant impact on
model predictions. Therefore, selecting an appropriate relative permeability curve for the reservoir
of interest is critical for CO2-EOR model design. If measured laboratory relative permeability data
are not available, it must be considered as a significant source of uncertainty.

Keywords: relative permeability; geologic carbon storage; multi-phase flow simulation

1. Introduction

With the prospects of climate change looming and an ever-increasing demand for
power generation and heavy industry, reducing greenhouse gas emissions from large
point-source emitters, such as coal and natural gas power plants or fertilizer operations,
has become paramount. Geologic carbon storage (GCS) is one potential path for emission
reductions. Carbon dioxide is captured from the large point-source emitters, compressed
into a supercritical state and injected into a suitable storage formation such as a depleted
oil and gas reservoir or a deep saline aquifer [1–5]. Mature oil fields undergoing CO2-
Enhanced Oil Recovery (CO2-EOR) are another promising option for GCS that also offer
an economic benefit. The incremental recovery for CO2-EOR operations can produce an
additional 7–23% of the oil in place while simultaneously storing roughly 40% of the CO2
injected [6].

Multiphase flow and transport simulation that can characterize CO2 effects in oil and
water are an integral part of designing GCS projects for oil and gas fields. These simulations
are used in project design, permitting, forecasting oil production and storage capacity, and
quantifying possible site risks. Understanding the uncertainty in the simulation model
inputs and their impact on performance and predictions is critical for project success.
The permeability distribution in a reservoir is probably the biggest source of uncertainty,
followed closely by relative permeability. Three-phase relative permeability has significant
impacts on fluid flow and storage capacity, yet is poorly understood and often generalized.
Laboratory measurements have historically been focused on measuring two- and three-
phase relative permeability curves for oil and gas (CH4) reservoirs [7–9]. From these data,
empirical models have been developed which promise broad applicability, including use
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in GCS numerical simulations [7–14]. For this study, we utilized an empirical formula
for relative permeability developed by Corey [10] to described oil and gas flow in porous
media. This empirical formula was to create relative permeability curves for CO2-EOR
numerical simulations at our field site [15,16].

It is important to understand that when measuring three-phase relative permeability
(gas/oil/water), experimental methods generally fall into one of two categories. The first
general method measures pairs’ two-phase relative permeability, gas/oil and oil/water,
and then uses an empirical combination model such as Stone II or the Baker model to
calculate the three-phase relative permeability [7,13,14,17]. In the second general method,
all three phases are measured concurrently to create a true three-phase relationship for the
fluids of interest [8,17,18]. Generally, numerical simulation codes do not leverage three-
phase relative permeability data. Simulators such as STOMP use a two-phase empirical
model along with critical parameters like the residual wetting and non-wetting phase
saturations and a curve parameter to calculate the relative permeability from the fluid
saturations [19]. Alternatively, other numerical simulators, such as the Eclipse® numerical
simulator used in this study, leverage table data in the form of two-phase saturation
versus relative permeability tabular data coupled with linear interpolation between data
points [20]. These methods then use a combination model to calculate the three-phase
relative permeability. Either method requires the input data to be in the form of a pair
of two-phase relative permeability versus saturation curves, one for the gas/oil pair and
one for the oil/water pair. In this study, we leveraged the functionality in Eclipse® to use
tabular data by generating a suite of plausible curves using the Corey’s Curve empirical
formula, then importing those curves into the simulation model.

The choice of relative permeability curve can be a significant source of model uncer-
tainty. This uncertainty can come from the uncertainty inherent in laboratory measurements
or the general lack of relative permeability curves for most GCS candidate sites and for-
mations. At the time of this study, the target reservoir at our study site had a single pair
of binary relative permeability curves that were derived from a laboratory study [21,22].
Studies quantifying the model uncertainty related to the relative permeability curve on
numerical simulation forecasts are rare, and for our study site do not exist. Therefore, a
primary goal of this study is to evaluate how uncertainty in the relative permeability curves
impacts CO2-EOR model forecasts.

2. Study Site: Farnsworth Unit, Texas

The study site is the Farnsworth Unit, an active CO2-EOR site since 2010 located in the
Anadarko Basin of northern Texas. The target formation is in the Upper Morrow sequence
called the Morrow ‘B’ Sandstone. The field has produced 27 billion cubic feet of gas and
more than 1.9 million barrels of oil from the Morrow ‘B’ Sandstone, a fluvial valley-fill
sandstone [22–24]. The formation is at a depth of between 7550 and 7950 feet and is a series
of connected sandstone bodies dipping to the West at less than one degree [21,23,25]. The
sandstone sequences occur at the base of the ‘B’ unit and are up to 44 ft thick consisting of
medium to coarse sand and conglomerates that are thought to be deposited as a series of
fluvial point-bars that are all connected [23,24,26]. Laboratory measurements on core samples
and well log analysis indicate a mean porosity of 14% to 17% and average permeabilities that
range from 27 mD to 140 mD [24,25,27] The older work done by Bolyard (1989) indicated
higher porosity and permeability while the newer work done by Rose-Coss et al. (2016)
indicated lower average porosity and permeability [24,26].

3. Numerical Model Development
3.1. FWU Geological Model

A geological model of the Farnsworth Unit was developed by the Southwest Regional
Partnership on Carbon Sequestration (SWP) using the full suite of petrophysical data
collected during the ongoing characterization effort including SEM, XRD, seismic data sets,
well logs, core samples, and thin sections [26–29]. The full geological model represents



Energies 2021, 14, 2370 3 of 14

the whole oil field at Farnsworth. Petrophysical properties of porosity and permeability
were populated across the domain by stochastic algorithm constrained by well logs [16]. A
subset of the domain centered on the west half of the field was used for this study. This is
the current active injection and production area and primary focus of the SWP research.

3.2. Relative Permeability

For this study, 17 different relative permeability curves were constructed that represent
a possible set of curves which may apply to the reservoir. The goal is to study a wide range
of relative permeability curves with the assumption that as the relative permeability curve
becomes more linear, the saturation end-points and the relative permeability end-points
become larger, representing a transition from low fluid mobility to high fluid mobility.
The residual phase saturation, maximum relative permeability, and the curve shape were
varied to create a range of curves that bracket the parameter space from near linear to
highly curved. As of the time of this study, there was only a single relative permeability
curve measured for the Morrow Sandstone [21,22]. This lack of measured data necessitates
that a wide range of input parameters be examined to understand the influence relative
permeability has on a CO2-EOR operation. Figure 1 highlights a representative selection of
curves that transition from highly curved to near linear. The remaining relative permeability
curves used in the study are shown in Figures 2, A1 and A2.
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of high residual saturation and highly curved to low residual saturation and near linear curve. Only those shown here vary
the maximum relative permeability in addition to the other two variables.
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Figure 2. Plot shows the Base Case relative permeability curve from a UNOCAL study (solid lines) and the C1 relative
permeability curve that represents the most linear curve used in the study.

In this study we used the Eclipse® numerical simulation software for all the sim-
ulations. A key feature that we leveraged is its ability to use lookup tables with linear
interpolation between points instead of empirical formulas to calculate the relative per-
meability. This effectively decouples the empirical formula from the numerical simulator,
allowing much greater flexibility in specifying the saturation and relative permeability
endpoints as well as the degree of curvature. Any empirical formula could have been
chosen to create the curves.

We chose to use a modified version of the Corey’s Curve formula to create all the
Eclipse® lookup tables used except for the Base Case, discussed below. This relationship
provides great flexibility for developing a wide variety of curves from highly non-linear to
linear with the added ability to modify the residual phase saturation and maximum relative
permeability endpoints. The Corey’s Curve formula allows the creation of a wide range of
relative permeability curves based on three sets of inputs, residual saturation, maximum
relative permeability, and lambda (the curve parameter). The gas and non-aqueous liquid
(oil) curve are described by Equations (1) and (2), where St is the liquid saturation defined
as the non-aqueous liquid (oil) saturation plus the residual aqueous liquid saturation, Sgr
is the residual gas saturation, Str is the residual liquid saturation defined as the residual oil
saturation plus the residual water saturation, λ defines the shape of the curve, krgmax is
the maximum gas relative permeability, krnmax is the maximum non-aqueous liquid (oil)
relative permeability, and krg(St) and krn(St) are the gas and non-aqueous liquid relative
permeability at liquid saturation St [19].

krg(St) = krgmax(1 − (St − Str)/(1 − Str − Sgr))λ (1)

krn(St) = krnmax((St − Str)/(1 − Str − Sgr))λ (2)

The water and oil curves are described by Equations (3) and (4), where Sl is the
aqueous saturation, Slr is the residual aqueous saturation, Snr is the residual non-aqueous
(oil) saturation, λ defines the shape of the curve, krlmax is the maximum aqueous liquid
relative permeability, krnmax is the maximum non-aqueous liquid relative permeability,
and krl(Sl) and krn(Sl) are the aqueous and non-aqueous liquid relative permeability at
aqueous liquid saturation Sl [19]. Tables 1 and 2 have the parameters (residual phase
saturation, maximum phase relative permeability, and lambda) used to calculate all the
relative permeability curves in this study, including the subset shown in Figure 1.

krl(Sl) = krlmax((Sl − Slr)/(1 − Slr − Snr))λ (3)
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krn(Sl) = krnmax(1 − (Sl − Slr)/(1 − Slr − Snr))λ (4)

Table 1. Phase residual saturation and curve parameter lambda used in Equations (1)–(4) to create
the relative permeability curves used in this study.

Lambda(G/O) Lambda(O/W)
Model Sgr Str Slr Snr Oil Gas Oil Water

C1 0.020 0.540 0.310 0.270 1.000 1.250 1.250 1.250

C2 0.01 0.25 0.2 0.05 1 1.25 1.25 1.25

C3 0.01 0.25 0.2 0.05 1 1.25 1.25 1.25

C4 0.07 0.2 0.2175 0.0875 1 1.25 1.25 1.25

C5 0.0325 0.3325 0.2275 0.105 1.875 1.8125 2.0625 2.4375

C6 0.0325 0.3325 0.2275 0.105 1.875 1.8125 2.0625 2.4375

C7 0.13 0.1433 0.2533 0.12 1.875 1.8125 2.0625 2.4375

C8 0.055 0.415 0.255 0.16 2.75 2.375 2.875 3.625

C9 0.055 0.415 0.255 0.16 2.75 2.375 2.875 3.625

C10 0.08 0.1 0.15 0.09 2.75 2.375 2.875 3.625

C11 0.0775 0.4975 0.2825 0.215 3.625 2.9375 3.6875 4.8125

C12 0.0775 0.4975 0.2825 0.215 3.625 2.9375 3.6875 4.8125

C13 0.0733 0.26 0.3 0.153 3.625 2.9375 3.6875 4.8125

C14 0.1 0.58 0.31 0.27 4.5 3.5 4.5 6

C15 0.1 0.58 0.31 0.27 4.5 3.5 4.5 6

C16 0.12 0.13 0.215 0.15 4.5 3.5 4.5 6

Table 2. Maximum relative permeability values used in Equations (1)–(4) to create the relative
permeability curves used in this study.

Model krn(St)Max krg(St)Max krl(Sl)Max krn(Sl)Max

C1 0.8 0.95 0.27 0.8

C2 0.8 0.95 0.4 0.8

C3 0.8 0.95 0.27 0.8

C4 0.8 0.95 0.27 0.8

C5 0.7625 0.9125 0.3375 0.7625

C6 0.8 0.95 0.27 0.8

C7 0.8 0.95 0.27 0.8

C8 0.725 0.875 0.275 0.725

C9 0.8 0.95 0.27 0.8

C10 0.8 0.95 0.27 0.8

C11 0.6875 0.8375 0.2125 0.6875

C12 0.8 0.95 0.27 0.8

C13 0.8 0.95 0.27 0.8

C14 0.65 0.8 0.15 0.65

C15 0.8 0.95 0.27 0.8

C16 0.8 0.95 0.27 0.8
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The Base Case model permutation uses a relative permeability curve (BC in Figure 2)
developed by UNOCAL for a simulation study focused on the efficacy of water and CO2
flooding at the Farnsworth Unit [21,22]. The UNOCAL study did not provide a capillary
pressure curve for the Morrow ‘B’ Sandstone. For this site, it is initially believed that capillary
pressure had a negligible effect on phase movement and was thus ignored in the previous
models to aid in simplicity and computational speed. For consistency with previous work
and to reduce extra variables that may influence the simulation results capillary pressure
was not included [16,25]. We plan to study the influence that the addition of capillary
pressure may have on model forecasts to determine if this assumption is valid.

3.3. Farnsworth Units Model Domain

The Farnsworth Unit is divided into an east and west half that appear to be hydrauli-
cally split [22,23]. The west half is the site of most production and injection operations
historically and are where current and future CO2-EOR operations are occurring [22,23]. A
detailed geological model encompassing the Morrow ‘B’ Sandstone in the west half of the
reservoir was the basis of our simulation model [26]. We up-scaled this geologic model
with over 26 million cells to a simulation model consisting of 33,756 active cells. Along
with the grid geometry, we up-scaled the permeability and the porosity (Figure 3). This
yielded a mean permeability of 39 mD with a standard deviation of 54 mD and a mean
porosity of 14% with a standard deviation of 3%, in line with the original geological model
values of 13.6% porosity and 27 mD permeability. We assumed the sealing formation, the
Morrow Shale, made a no-flow boundary on all sides as well as the top and bottom of the
reservoir, so only the reservoir interval is included in the simulation model. See Moodie
et al. (2019) for more details on the model domain description [30].
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The initial conditions were derived from the results of the history-matched primary
production and water-flooding modeling study done previously by the SWP and include
the oil saturation and oil component distribution, the water saturation and the pressure [16].
The simulation is initialized with no gas phase. All methane (CH4) and other light volatiles
are dissolved in the oil. A compositional fluid model is specified for this study based on a
fluid properties report from initial exploration, then refined by fluid modeling [31,32].
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3.4. Well Operations Schedule and Model Fit

The Farnsworth Unit operates under a water alternating gas (WAG) injection scheme.
The schedule used in this study mimics current practices and future plans. Figure 3 indi-
cates the location of the injection and production wells used in the model. The production
and injection schedule are broken into two main operation periods. The first period extends
from 1 December 2010 to 31 July 2016 and uses historical monthly injection and production
data to define well rates. The second period extends from 1 August 2016 to 1 January 2036
and models potential future operations through to the end of the field’s lifetime. During
this second period, the CO2 injection volume gradually decreases until it is completely
reliant on recycled CO2 to meet targets. See Moodie et al. (2019) for a detailed breakdown
of the operations schedule [30].

To assess the model performance, we perform a regression analysis comparing the
historical oil production from December 2010 to January 2016 to the Base Case simulation
model. A R2 value of 0.94 indicates a reasonable fit and comparing this data to a history-
matched model developed by Ampomah et al. (2016) [16]. Reviewing Figure 4 indicates
a strong correlation between the historical data and the model data, with the Base Case
(dashed line), the history-matched model of Ampomah et al. (2016) (solid black line), and
the FWU historical data (open circles) all plotted [16].
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Figure 4. Plot shows the historical monthly oil production for the Farnsworth Units (black open cir-
cles), Base Case model forecasts (black dashed line), and history-matched model forecasts (SWP_HM)
(solid black line). Both numerical models show a good data fit to the historical production data.

4. Discussion

Results indicate that the shape and endpoints of the relative permeability curve impart
a significant influence on model forecasts. Generally, the more non-linear the curve, the
more CO2 that is predicted to be stored, and the less oil, water, and gas is predicted to
be produced. However, the saturation endpoints and the assumed maximum relative
permeability have a significant impact on this trend, with some of the more non-linear
curves (C11 & C12) predicting more oil production than the most linear curve (C1).

4.1. Carbon Dioxide Storage

The total amount of stored CO2 forecasted in this modeling study is between
2.8 million tons and 3.2 million tons by the end of the simulation. The largest fraction of
the CO2 is dissolved in the oil phase, between 1.2 and 2.4 million tons. The cases using
highly non-linear relative permeability curves with narrow saturation ranges (C11 through
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C16) had overall a larger portion of the CO2 dissolved in the oil phase while the more
linear curves with broader saturation ranges (C1 through C7) have almost a million tons
less CO2 dissolved in the oil phase but significantly more CO2 in the supercritical phase.
This indicates that the CO2 in the supercritical phase has an inverse relationship to the CO2
dissolved in the oil phase with respect to the changes in the relative permeability curve
(Figure 5). As the curve becomes more non-linear, the fluid mobility decreases, leading to
a decrease in the volume of CO2 dissolved in the oil and a corresponding increase in the
supercritical CO2. The highest fluid mobility curve (model C1) predicts an almost even CO2
distribution between the supercritical phase (46%) and oil phase (44%); while the lowest
fluid mobility curves (C14 to C16) predict a significant difference in CO2 phase distribution,
10% in the supercritical phase and 82% dissolved in the oil phase for model C14, see
Table 3 for stored CO2 mass distribution. The CO2 mass dissolved in the water phase is
mostly unaffected by changes in the relative permeability curve, varying by only 2% across
all model permutations, from 8% to 10% of the total CO2 stored. The Base Case (BC) model
predicts the largest mass of CO2 stored in the reservoir and the phase distribution matches
the models with relative permeability curves that describe intermediate fluid mobility. This
indicates that the Base Case relative permeability curve describes an intermediate fluid
mobility relationship, close to what C8 and C9 models predict.
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Figure 5. This chart shows CO2 storage for each of the model permutations. ‘CO2 SC’ is the supercritical CO2, ‘CO2 Oil’ is
the CO2 and CH4 that is dissolved in the oil phase, ‘CO2 Water’ is the CO2 dissolved in the aqueous phase, and ‘CO2 Total’
is the total amount of gas, both CO2 and CH4, in the reservoir.
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Table 3. The total mass of CO2 stored in each phase; supercritical, dissolved in the oil phase, dissolved
in the aqueous phase. These data are the totals for the end of the simulation.

Model Supercritical CO2 CO2 in Oil CO2 in Water Total
(Tons) (%) (Tons) (%) (Tons) (%) (Tons)

BC 8.98 × 105 30% 1.88 × 106 62% 2.61 × 105 9% 3.04 × 106

C1 1.28 × 106 46% 1.24 × 106 44% 2.79 × 105 10% 2.80 × 106

C2 1.37 × 106 47% 1.24 × 106 42% 3.24 × 105 11% 2.94 × 106

C3 1.18 × 106 41% 1.41 × 106 49% 2.80 × 105 10% 2.87 × 106

C4 1.35 × 106 46% 1.27 × 106 44% 2.89 × 105 10% 2.90 × 106

C5 1.08 × 106 36% 1.63 × 106 54% 3.18 × 105 10% 3.03 × 106

C6 1.16 × 106 39% 1.54 × 106 52% 2.81 × 105 9% 2.99 × 106

C7 1.28 × 106 42% 1.48 × 106 49% 2.77 × 105 9% 3.04 × 106

C8 7.30 × 105 24% 2.05 × 106 67% 2.97 × 105 10% 3.08 × 106

C9 9.46 × 105 31% 1.89 × 106 61% 2.66 × 105 9% 3.10 × 106

C10 1.03 × 106 33% 1.83 × 106 59% 2.50 × 105 8% 3.11 × 106

C11 5.14 × 105 17% 2.22 × 106 74% 2.75 × 105 9% 3.01 × 106

C12 7.27 × 105 23% 2.17 × 106 69% 2.53 × 105 8% 3.15 × 106

C13 7.48 × 105 24% 2.06 × 106 67% 2.69 × 105 9% 3.08 × 106

C14 2.84 × 105 10% 2.34 × 106 82% 2.28 × 105 8% 2.85 × 106

C15 5.08 × 105 16% 2.43 × 106 76% 2.52 × 105 8% 3.19 × 106

C16 5.77 × 105 20% 2.11 × 106 73% 2.22 × 105 8% 2.91 × 106

4.2. Oil Production

Oil production does not follow the same trend as the CO2 storage. Models C1 through
C9 indicate a declining oil production as fluid mobility described by the relative perme-
ability curves decreases, except models C4 and C7 (Table 4). The relative permeability
curve used in models C11, C12, and C14 describes a lower fluid mobility condition but
predicts similar oil production as the highest fluid mobility models (C1 and C2); whereas
the lowest fluid mobility relative permeability models predict the lowest oil production, as
would be expected. A possible reason for the high oil production show in models C11, C12,
and C14 is that the oil saturation falls within a range on the relative permeability curve
that promotes the oil phase mobility, the mid-range of the relative permeability curve. Oil
saturations are between 40% and 60% in the active production and injection areas giving
relative permeability ranges of 0.23 to 0.35. Within the same area, the relative permeabilities
to water never get above 0.1, promoting oil mobility over water mobility.
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Table 4. Table shows the forecasted total oil produced for each simulation case and the magnitude of
difference when compared to the Base Case (BC) forecasts.

Model Oil Produced (STB)
Total Delta vs. BC Model

BC 2.16 × 107 0

C1 2.68 × 107 5.14 × 106

C2 2.57 × 107 4.08 × 106

C3 2.32 × 107 1.59 × 106

C4 2.77 × 107 6.03 × 106

C5 2.20 × 107 3.56 × 105

C6 2.04 × 107 −1.23 × 106

C7 2.60 × 107 4.39 × 106

C8 1.89 × 107 −2.77 × 106

C9 1.77 × 107 −3.96 × 106

C10 2.30 × 107 1.38 × 106

C11 2.63 × 107 4.69 × 106

C12 2.90 × 107 7.40 × 106

C13 2.26 × 107 9.84 × 105

C14 2.60 × 107 4.33 × 106

C15 1.51 × 107 −6.54 × 106

C16 1.75 × 107 −4.17 × 106

The Base Case (BC) model’s oil production falls within the middle of the range
predicted by this study, similar to models C6, C10, C13 (Table 4). This indicates that the
Base Case relative permeability curve was measured from an area of the field that exhibits
medium fluid mobility when compared to the range of fluid mobilities predicted by the
synthetic relative permeability curves.

4.3. Pressure

The influence of relative permeability on the pressure field was highly time dependent.
Figure 6 indicates that during the first phase of injection when historical data are used to
control the injection rates (2010 to 2017), there is less difference in pressure between the
relative permeability curves tested. During the predictive phase of the injection schedule
(2017 to 2036), the difference across all the relative permeability curves tested increased
to 27% by the end of injection. This variation in pressure increases significantly as the
proportion of recycled CO2 in the injection stream increases. An inflection point in all of the
models on 1 January 2024 marks the point when CO2 availability for injection becomes tied
to production volumes and hence the fluid movement within the reservoir. On 1 January
2030, there is another inflection point that marks when new CO2 to the model is stopped
and only recycled CO2 is available to the injection wells.
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The relative permeability curves appear to have a smaller, but still significant, impact
on the average reservoir pressure when there is an unlimited source of CO2 for the injection
wells to meet their targets. Once the fluid mobility within the reservoir influences the
volume of CO2 available to meet injection targets, the impact of the relative permeability
curves becomes much more pronounced. Curves that restrict the fluid movement through
a high degree of curvature and narrow saturation range, such as C15 and C16, have lower
oil production, less CO2 present in the reservoir, and a higher average pressure, while the
curves that promote fluid movement through more linear curvature and a wider saturation
range (C1 and C2) have higher oil production, more CO2 in the reservoir, and a lower
average reservoir pressure.

5. Conclusions

Results of this study indicate that small variations in the shape of the relative perme-
ability curve have a significant impact on the model forecasts. While all models predicted
nearly the same total CO2 stored in the reservoir, the phase it is stored as (supercritical vs.
dissolved in oil vs. dissolved in water) is greatly influenced by the relative permeability
curve. Relative permeability curves that describe low fluid mobility predict most of the
CO2 is stored in the oil phase with very little in the supercritical phase. The relative perme-
ability curves that describe the highest overall fluid mobility predicts that there is an even
distribution of CO2 in the supercritical phase and the oil phase, allowing the CO2 to migrate
faster and in greater quantities to the production wells, leading to lower amounts of total
stored CO2. The higher the mobility, the more contact between the CO2 plume and the
oil, increasing the amount of CO2 that is dissolved in the oil phase and thereby increasing
production when compared to the relative permeability curves that predict low overall
fluid mobility. The reduction in the oil’s viscosity due to CO2 dissolution allows it greater
fluid mobility and may be why there is an increase in oil production when compared to
some of the relative permeability curves that predict low fluid mobility. This may also
account for why there is less CO2 stored in the oil phase with the relative permeability
curves that describe high fluid mobility.

The findings of this study indicate that the relative permeability curve is a critical pa-
rameter that must be given careful consideration when designing multiphase flow models.
It is essential to understand and quantify the uncertainty in the relative permeability curve.
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If measured laboratory relative permeability data are not available or limited for the study
domain, the relative permeability curve should be considered a significant source of model
uncertainty and accounted for as part of the simulation effort.
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