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Abstract: Recent EU legislation enforces the integration of European balancing markets, with har-
monized products and international platforms for the procurement and activation of reserves;
nonetheless, different power balancing strategies remain. The Netherlands and Belgium encourage
market participants to support balancing the control block by publishing real-time information. This
article refers to such concepts as smart balancing, and a market simulation tool was developed to
assess the relevant market parameters for effective smart balancing. This shall contribute to the true
integration of real-time balancing energy markets. The scope of the assessment of relevant market
parameters was Germany, and the results showed that a pricing scheme had less impact on the results,
as currently is understood by European TSOs and regulators. Moreover, the accuracy and frequency
of real-time publication indicate the effectiveness of smart balancing and the associated reduction of
the activation of balancing energy and associated costs. Consequently, this article proposed a road
map for Germany to introduce an adapted smart balancing approach, starting with a simple traffic
light.

Keywords: energy market design; smart balancing; passive balancing

1. Introduction

The tendency that the dispatch of electrical energy moves closer to real time is driven
by opportunities for financial optimization of intra-day markets. As a consequence, power
balancing becomes an ever-more interactive task where the imbalance price reflects the
real-time value of energy. Meanwhile, the European legislation enforces the transition from
national balancing markets to harmonized European platforms [1]. This article contributes
to the discussion about the enhancement of market freedom for the purposes of designing
more efficient balancing energy markets by paying special attention to an improved, market-
oriented balancing approach in Germany by providing transparent imbalance pricing.
Such an approach may be referred to as “self-balancing” [2] (p. 1048), “passive control” [3]
(p. 102), or “passive balancing” [4] (p. 45) and is applied in The Netherlands [5] and
Belgium [6]. Market participants are incentivized to deviate from their schedule to reduce
the demand of balancing energy. In this article, we refer to such an approach of balancing
as “smart balancing” in contrast to a balancing approach in which the market participants
are left uninformed (“unaware”) about the current state of imbalance of the system. Based
on simulations of a smart balancing concept designed for Germany, the results in this
article show which market design choices could be made to further support efficient power
balancing and establish true real-time balancing energy markets. This contributes to the
European harmonization, not only for Germany, but the EU in general.

Energies 2021, 14, 2309. https://doi.org/10.3390/en14082309 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-5209-8746
https://doi.org/10.3390/en14082309
https://doi.org/10.3390/en14082309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14082309
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14082309?type=check_update&version=2


Energies 2021, 14, 2309 2 of 25

Section 1 outlines power balancing strategies and smart balancing concepts. Section 2
introduces the smart balancing model, applied scenarios for Germany, and the market re-
sponse potentials considered. It describes the market design parameters regarded. Section 3
presents the results from the simulation runs including a quantification of risks and bene-
fits and identifies worst vs. best case balancing strategies. Section 4 discusses the results
and evaluates the considered market design options and policy implications. Section 5
concludes the article.

Power generation and consumption are dispatched on future, day-ahead, and intra-
day markets, leading to schedules. The physical constraint of balancing generation and
load is translated into the legal duty of having balanced portfolios. Therefore, market
participants that represent one or a group of grid connected parties are called Balance
Responsible Parties (BRPs). They financially account for any schedule deviation, which is
settled with an imbalance price, individually for each 15 min Imbalance Settlement Period
(ISP). As a result, unbalanced portfolios lead to financial risks of being accountable for
balancing energy activated [7].

As described above, different power balancing strategies are applied in the Belgian,
Dutch, and German control blocks. All countries measure the Area Control Error (ACE)
in real time and activate Frequency Restoration Reserves (FRR) accordingly. Schedule
deviations are settled with single imbalance pricing, meaning that every ISP is either settled
with a positive or a negative price for energy deviations. This leads to the fundamental
applicability of smart balancing in the first place, since participants of smart balancing
concepts need to be sure that their balancing contribution is able to generate a benefit
rather than additional costs. The Netherlands occasionally deviates from single pricing and
changes to dual pricing in the case of counter-activation of balancing energy. This concept
is referred to as “combined pricing” [8] (p. 82).

Smart balancing is a set of measures aiming at reducing the ACE and demand for
balancing reserves. Principally, smart balancing refers to enabling a market response
to transparent real-time imbalance pricing. Such an approach has been applied in The
Netherlands since 2001 [9] and in Belgium since 2017 [10]. This article describes a smart
balancing model applied for the German control block. Potential smart balancing of BRPs in
Germany, their influence on the ACE, and central European system frequency are examined.
Market design parameters that influence smart balancing risks and benefits are identified.

The research scopes are (i) the consequences of introducing smart balancing in Ger-
many and (ii) market design for efficient power balancing. This article contributes to the
question of which balancing market design best enables smart balancing.

2. Materials and Methods

The applied materials and methods are described to allow others to replicate and
build on the results. It was assumed that BRPs optimize their behavior with the aim of
maximizing their individual profit. Criteria for comparing different balancing system effi-
ciencies are demand and costs for balancing power, as well as the impact on the European
system frequency. A market design is found to be successful if it minimizes the demand
and costs for balancing power.

Section 2.1 outlines the structure of the smart balancing model. Section 2.2 gives an
overview of all simulated scenarios and introduces relevant market design parameter. The
underlying materials are the demand and prices of balancing reserves in Germany. Histori-
cal vs. synthetic data for balancing demand and balancing energy prices are introduced.
Section 2.3 describes the potential market response and the implemented fuzzy logic, which
anticipates the behavior of BRPs in different market environments. Since not all the BRPs
respond to market signals in the same way, the smart balancing model builds on a fuzzy
logic approach. That way, it is able to reflect a “fuzzy” market response to real-time price
incentives. Section 2.4 presents the validation of the smart balancing model. Section 2.5
reflects on recent studies about “under-cover” smart balancing and states the resulting
limitations of the presented model.
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2.1. Smart Balancing Model

The smart balancing model is implemented in Python and can be obtained by ap-
proaching the authors. Figure 1 illustrates the object-oriented model structure. On top,
instances of grid elements cover calculations on system frequency (f) and activation of
balancing energy according to the ENTSO-Egrid code [11]. Objects within a control block
are instances of BRPs. The simulation runs carried out covered the German control block.
The rest of the European synchronous zone was assumed to have a constant and balanced
generation and load of 300 GW. The model can be extended by other control blocks or
balancing groups.

Instances of
Grid Elements

Continental Europe
Synchronous zone

Generation/Load
Frequency

Calculating Grid 
Element

Generation / Load

German Control Block
Generation / Load

Schedules
Smart Balancing Power

Instances of
Balance Responsible Parties (BRP)

FlexGen
Generation
Schedules

Smart Balancing Power

Flexible Asset
Smart Balancing Power

Generator
Generation
Schedules

FlexLoad
Load

Schedules
Smart Balancing Power

Load
Load

Schedules

Figure 1. Smart balancing model: structure of objects and most important properties.

A previous version of the model was used to simulate the week from 18 November
2019 to 24 November 2019 in a one-second resolution with field data from four BRPs [12].
The simulated behavior of the BRPs (representing industrial consumption and generation
with volatile renewable sources) would have generated profit, while the demand and costs
for balancing energy are reduced. The lessons learned from this field test week were used
to improve and develop the model and behavior of BRPs further.

Figure 2 shows the simulation flowchart. Relevant input data from csv files are read in
the initial step. Afterwards, the simulation starts with a one-minute resolution. Generation,
load, and schedules are compared to calculate the ACE. Frequency and FCR activation are
calculated based on a steady-state estimation, followed by aFRR activation. In scenarios
with active smart balancing, the market response is calculated in the next step. The decision
for mFRR activation is not based on local load-frequency control block agreements. mFRR
is an optional response to critical situations, and the decision for its activation is made by
the responsible Transmission System Operator (TSO) by evaluating the individual situation.
mFRR is delivered in the next ISP and is included in the ACE calculation as scheduled
generation. The demand and costs of aFRR and mFRR are used to calculate the imbalance
price according to the current rules, enforced in 1 July 2020 [13].
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Schedules and 
ACE

Initial step:
Read Input

Generation 
and Load

Frequency and 
FCR

aFRR activation

Smart 
Balancing

mFRR 
activation

T =T + 1 
Start
T = 0 

Costs 
calculation

If (T – 5) % 15 = 0 

Else

T =T + 1 

Input from csv files:
Schedules
Generation
Load
Historic MOL for FRR
Smart Balancing 
Potential
Costs and ramps

T: Current timestep of simulation
Tend: Timesteps until simulation ends
ACE: Area Control Error
FCR: Frequency Containment Reserves
aFRR: automatic Frequency Restauration Reserves
mFRR: manual Frequency Restauration Reserves
ISP: Imbalance SettlementPeriod
MOL: Merit-Order-List

Approximation of decision
for mFRR activation in 
5th minute of any ISP

While T < Tend

Figure 2. Flowchart of smart balancing simulation.

2.2. Market Design Scenarios

The regarded scenarios analyze “active” smart balancing and represent different com-
binations of market design parameters, which have been identified in previous work [14].
In contrast to “active” smart balancing, Section 2.5 describes “under-cover” smart balancing
and related limitations of the analysis. Table 1 shows the market design parameters that
are taken into account in the model. They are introduced in the following subsections.

Table 1. Overview of market design parameters.

Parameter Variables

Availability of input Frequent 1/min
Traffic light (only in the case of high ACE)

Pricing scheme Single pricing (DE)
Combined pricing (NL)

Clearing scheme Pay-as-bid
Marginal with BEPP 15 min
Marginal with BEPP 1 min

Input signals Historic imbalance (ACE)
Synthetic imbalance (ACE)

Historic Merit-Order-Lists (MOLs)
Synthetic Merit-Order-Lists (MOLs)

Not all parameter combinations are of interest. Table 2 shows the simulated scenarios
with their related parameter variation. The first scenario with historic data and no smart
balancing served for validation of the model. Ten other scenarios were simulated to answer
the research question on which market design enabled efficient smart balancing.
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Table 2. Overview of investigated scenarios.

Scenario Input Signals Market Mechanisms
(Clearing, Pricing) ACE, MOL

1 no SB Reference without SB Pay-as-bid, single pricing historic 2019

2 TL2 Traffic light 2 steps Pay-as-bid, single pricing historic 2019
3 TL5 Traffic light 5 steps Pay-as-bid, single pricing historic 2019
4 DE Imbalance, price Pay-as-bid, single pricing historic 2019

5 NL Imbalance, price Pay-as-bid, combined
pricing historic 2019

6 no SB PAB Reference without SB Pay-as-bid, single pricing synthetic PAB

7 DEs Imbalance, price Pay-as-bid, single pricing synthetic PAB

8 NLs Imbalance, price Pay-as-bid, combined
pricing synthetic PAB

9 no SB BEPP15 Reference without SB marginal, single pricing synthetic MC

10 BEPP: 15 min Imbalance, price marginal, combined
pricing synthetic MC

11 no SB BEPP1 Reference without SB marginal, single pricing synthetic MC

12 BEPP: 1 min Imbalance, price marginal, combined
pricing synthetic MC

2.2.1. Availability of Information: Full Transparency vs. Traffic Light

Besides the Belgian and Dutch approach of making the activated FRR and the current
imbalance price available to the BRPs, the alternative approach to use traffic light concepts
that display fixed levels of imbalance situations was investigated. Two traffic light sce-
narios were defined. They represented less than full transparent approaches, but were
too suitable to incentivize a market response. These traffic light concepts might be used
if the fully transparent approach (as used in Belgium and The Netherlands) is regarded
“too risky” or is proven to trigger market responses that cause resonance oscillations in the
system imbalance.

Both traffic light approaches publish signals only in cases of higher demand of balanc-
ing energy. Concept 1 makes use of a traffic light with two increments (TL2) that distinguish
between situations when the balancing energy demand exceeds 80% and when the demand
exceeds 100% of contracted (automatic and manual) FRR. Concept 2 is a traffic light with
five increments (TL5). It adds a signal already when the demand exceeds 60% and two more
increments for high demand of over 120% and 150% of contracted FRR. Table 3 shows the
considered increments of both approaches and the resulting smart balancing contribution
of BRPs, which represent fuzzy rules (see Section 2.3) of the traffic light scenarios.

Table 3. Traffic light concepts depending on demand of contracted automatic and manual Frequency
Restoration Reserves (FRR).

FRR Demand Concept 1: TL2 Concept 2: TL5

over 60% - poor smart balancing
over 80% average smart balancing mediocre smart balancing

over 100% good smart balancing average smart balancing
over 120% - decent smart balancing
over 150% - good smart balancing

2.2.2. Single vs. Combined Pricing of Balance Responsible Parties’ Imbalance

Excluding the traffic light scenarios, all other simulated smart balancing concepts
make the real-time ACE and resulting imbalance price available to BRPs. In the scenarios
with single pricing, the imbalance price changes the sign only when the total sum of
activated FRR has a sign shift. This approach gives an incentive for smart balancing, but
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does not limit the BRPs’ contribution to the ACE and can make overreactions, especially in
the end of an ISP, beneficial.

In contrast to pure single pricing, the Dutch combined pricing approach was inves-
tigated. This concepts changes from single to dual pricing in any ISP with activation of
both positive and negative FRR. Dual imbalance pricing punishes all schedule deviations.
Therefore, combined pricing prevents the misplaced incentive of pure single pricing at the
end of an ISP.

2.2.3. Clearing of Activated Frequency Restoration Reserves

The costs for balancing result from the ACE in combination with the submitted energy
bids for FRR. All bids are ordered by price and together form a Merit-Order-List (MOL). The
comparison of the German balancing energy clearing scheme “pay-as-bid” vs. marginal
clearing is of interest, because Germany will introduce marginal clearing in 2021 due to the
European Electricity Balancing (EB) Regulation [1].

Pay-as-bid leads to an optimal bidding strategy where bids include mark-ups leading
to high prices in the repeated auction setting [15]. Bidders have an incentive to include a
mark-up reflecting their competitive position, but observed high prices for energy bids in
Germany are also caused by the limited set of suppliers and the auctions being repeated
on a regular basis [16]. Besides the energy bid, also the power bid (respectively capacity
bid) and related procurement mechanisms influence the bidding strategy [17], but are not
reflected by the presented model.

Marginal pricing, on the other hand, leads to underbidding of energy production
costs [18].

Marginal clearing does not incentivize bidders to reveal their true costs in their bids,
but to understate them for a good merit-order position. In contrast, considering the
observed extreme energy bids in Germany, we assumed that substantial mark-ups were
included when pay-as-bid was applied. The corresponding costs are higher than the costs
of paying the uniform price to all activated BRPs at a low ACE. On the other hand, marginal
pricing leads to high costs with high ACE. The resulting incentives for smart balancing
should lead to less occurrences of high ACE in a marginal clearing market. Figure 3
illustrates these assumed correlations, which are subject to the discussion in Section 4.

|ACE| in MW

Costs in €

ACE in MW

Occurrence in %

Pay-as-bid clearing of balancing energy
Marginal clearing of balancing energy
ACE: Area Control Error

Figure 3. Correlation of costs and imbalance occurrence with pay-as-bid vs. marginal clearing of balancing energy.

The Balancing Energy Pricing Period (BEPP) in a marginal clearing setup is usually
equal to the ISP. In the context of the new EB Regulation, a change from pay-as-bid to
marginal pricing with a BEPP of 15 min vs. a BEPP of 1 min is of interest. Figure 4 illustrates
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and explains the BEPP with an example. A small BEPP can prevent high costs for FRR in
the case of high ACE, as the marginal price is updated more frequently. A 15 min BEPP and
a 1 min BEPP were compared in this study to investigate their influence on smart balancing.
Since the simulations with historic data in Section 3 showed that combined pricing is a
useful instrument for successful smart balancing as practiced in The Netherlands, this
choice remained.
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Figure 4. Example with marginal clearing of balancing energy: BEPP 15 min vs. BEPP 5 min.

2.2.4. Historic vs. Synthetic Area Control Error and Merit-Order-Lists

As shown in Table 2, five investigated scenarios used historic data from the year 2019,
and six scenarios used synthetic data. In scenarios with historic data, market mechanisms
and flexibility providers face the historic ACE and MOLs. This includes events with high
imbalances in June 2019 and might showcase the advantage of smart balancing during
these events. The considered data to (re-)build the historic ACE in a 1-min resolution
were the automatic Frequency Restoration Reserves (aFFR) in a 1-s resolution and the
manual Frequency Restoration Reserves (mFRR) and the emergency reserves both in a
15-min resolution [19]. The total ACE would also include the German contribution to the
International Grid Control Cooperation (IGCC), but this contribution was neglected since
it did not lead to an activation of FRR and even reduced the demand for balancing energy
in other control blocks [20]. The historic ACE was only used for reference and for the four
scenarios with the pay-as-bid clearing.

The reference scenario of 2019 served for calibration and validation in the attempt
model the German energy market as it is. The current situation in Germany can be defined
as a “no active smart balancing”, “single pricing”, and “pay-as-bid clearing” scenario.

Nevertheless, the historic data did include “under-cover” smart balancing (see
Section 2.5), and the MOLs were determined in a pay-as-bid clearing scheme. Input
data including synthetic ACE and MOLs allowed generating reasonable scenarios for
market design comparison.

The ACE with pay-as-bid (PAB) clearing was defined to fluctuate between 1.1 GW
and −1.1 GW with a random variation between −40 MW and 40 MW, calculated by
Equation (1).

sACEPAB = 1.1 GW ∗ sin(T = 12.1h) + 40 MW ∗ rand(−1, 1) (1)

Marginal Clearing (MC) prevents high ACE by higher related costs, as illustrated
in Figure 3. Therefore, the ACE with marginal clearing is defined to fluctuate between
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1 GW and −1 GW with a random variation between −40 MW and 40 MW, calculated by
Equation (2).

sACEMC = 1 GW ∗ sin(T = 12.1h) + 40 MW ∗ rand(−1, 1) (2)

Scenarios with synthetic data used two different MOLs, depending on the clearing
scheme and resulting bidding behavior (see Section 2.2.3). The total average costs with pay-
as-bid vs. marginal clearing of balancing energy without smart balancing were assumed to
be equal, leading to the MOLs introduced in Table 4.

Table 4. Synthetic Merit-Order-Lists (MOLs) for smart balancing simulation.

Reserve Type Pay-as-Bid Clearing
Power Price

positive aFRR 1700 MW in 100 MW steps 30 to 350 EUR/MWh in 20
EUR/MWh steps

negative aFRR −1800 MW in 100 MW steps −10 to 330 EUR/MWh in 20
EUR/MWh steps

positive mFRR 800 MW in 100 MW steps 110 to 250 EUR/MWh in 20
EUR/MWh steps

negative mFRR −600 MW in 100 MW steps 80 to 220 EUR/MWh in 20
EUR/MWh steps

Marginal clearing
Power Price

positive aFRR 1700 MW in 100 MW steps 30 to 190 EUR/MWh in 10
EUR/MWh steps

negative aFRR −1800 MW in 100 MW steps −10 to 160 EUR/MWh in 10
EUR/MWh steps

positive mFRR 800 MW in 100 MW steps 110 to 180 EUR/MWh in 10
EUR/MWh steps

negative mFRR −600 MW in 100 MW steps 80 to 130 EUR/MWh in 10
EUR/MWh steps

2.3. Market Response with Fuzzy Logic

This section introduces the implemented flexibility providers. They respond to real-
time signals, if the imbalance price covers their marginal costs. Energy exchange resulting
from smart balancing contributions, as well as the resulting profit were calculated to
analyze their impact. BRPs were defined within the control block, and their behavior was
anticipated with fuzzy logic. They reacted to the ACE and the imbalance price of the
control block.

Information relevant for financial optimization at minimized risk was identified and
defined as input parameters for the fuzzy logic via fuzzy rules. Results were investigated
regarding the financial benefit of BRPs and their contribution to system stability.

2.3.1. Potential Market Response

The considered technologies that have a (smart) balancing potential are shown in
Table 5. Furthermore, their assumed flexibility potential and (smart) balancing logic are
shown. The technologies belong to three different categories. Industrial processes represent
the currently available flexibility from Demand Side Integration (DSI). Based on a recent
analysis [21], it can be assumed that only the stated DSI technologies are able to contribute
a market response without further investments. Renewable energy technologies have
the possibility to respond to external signals and ramp down power generation. Only
generation plants installed in the year 2017 and 2018 that fall under the “Markt-Prämien-
Modell” were considered, because they face an incentive for smart balancing.
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Table 5. Assumption for profit optimization parameters of BRP based on the German imbalance
price (Ausgleichs-Energie-Preis (AEP)) and the day-ahead auction price for electrical energy (daprice).

Technology Potential Up/Down
(MW) Marginal Costs Up/Down (Euro)

Aluminum electrolysis 281/- AEP − daprice > 100/-
Cement raw mill 116/50 AEP − daprice > 100/AEP < 10

Cement mill 265/113 AEP − daprice > 100/AEP < 10
Amalgam chlorine electrolysis 114/72 AEP − daprice > 100/AEP < 10

Membrane chlorine
electrolysis 359/227 AEP − daprice > 100/AEP < 10

Electric arc furnace (Steel) 753/- AEP − daprice > 250
Polisher in paper production 207/46 AEP − daprice > 100/AEP < 10
Refiner in paper production 105/23 AEP − daprice > 100/AEP < 10
Solar and wind (Build 2017,

2018) -/dynamic -/AEP < −EEGbonus − 40

Gas fired power plants dynamic/dynamic ) AEP > 50/AEP < 0

2.3.2. Profit Estimation of Smart BRPs

Smart balancing was determined by the given market design and the related oppor-
tunities to generate revenues. Figure 5 illustrates all steps around the fuzzy logic for the
calculation of the respective smart balancing contribution for BRPs and assets with smart
balancing potential. The net margin was derived from the imbalance price, which is the
incentive for smart balancing and therefore mandatory to be considered. It quantifies the
potential specific revenue and therefore the willingness to deviate from the BRP’s schedule.
The calculation logic differed for all simulated BRPs, as stated in Table 5. The imbalance
prices and the implemented marginal costs of BRPs led to individual net margin values.

Smart Balancing 
End of ISP?

(T – 14) % 15 = 0

Profit?
AEPT-1 > marginal costs

fuzzy logic
calc sb_PT+1

Sufficient ramp?
sb_PT+1 – sb_PT < ramp

T: Current timestep of simulation
T+1: Timestep of next simulation loop
T-1: Timestep of last simulation loop
ACE: Area Control Error
AEP: imbalance price
act. FRR: sum of activated FRR in ISP
FRR: Frequency Restauration Reserves
ISP: Imbalance Settlement Period
sb_P: Smart Balancing Power

No SB
sb_PT+1 = 0

TrueFalse 

False True

Limit SB
sb_PT+1 = sb_PT + ramp

True

False 

Input fuzzy logic:
Time 
sb_PT
Potential sb_P
ACET (combined pricing)
ACET-1 (combined pricing)
act. FRRT (single pricing)
act. FRRT-1 (single pricing)

Risk?
sb_PT+1 > ACE/3

Limit SB
sb_PT+1 = ACE / 3

False

True 

Figure 5. Details of smart balancing calculation in the simulation.
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The “End of ISP” box illustrates the test, if the end of an ISP is reached, implemented
by Equation (3). If T is equal to 14, the formula returns true and sets the smart balancing of
the regarded BRP to zero (“No SB” box).

(T − 14) modulo 15 = 0 (3)

The “Profit” box illustrates the consideration, if smart balancing would generate
revenues, tested by Equation (4). If the marginal costs are higher than the imbalance price,
the smart balancing of the regarded BRP was set to zero (“No SB” box).

AEPT−1 > marginalcosts (4)

The “fuzzy logic” box represents the “fuzzy” behavior of BRPs, described in
Section 2.3.3. The time step, the current smart balancing contribution, and the techni-
cal potential were used as the input. In addition, the ACE or the activated FRR quantified
the absolute revenue potential. A high imbalance enabled a high smart balancing participa-
tion and set an upper limit, since a market response larger than the occurring imbalance
could change the sign of the imbalance price and therefore cause monetary losses. Counter-
activation of FRR immediately changed the sign of the imbalance price in the case of
combined pricing, and the ACE was used as the fuzzy input. In the case of pure single pric-
ing, the sign only changed if the counter-activation was higher than the initially activated
FRR over 15 min, and the sum of activated FRR was used as input.

The “Risk” box illustrates a test, if the resulting behavior would reduce the ACE by
over a third of its value, tested by Equation (5). If this was true, the “Limit SB” box reduced
the smart balancing accordingly. The limit was chosen in order to avoid fast response in
case of high incentives.

sbPT+1 > ACE/3 (5)

The “Sufficient ramp” box illustrates the last test, if the resulting behavior can be
realized with the underlying technology, tested by Equation (6). If this was false, the “Limit
SB” box reduced the smart balancing according to the technical limit.

sbPT+1 − sbPT < ramp (6)

2.3.3. Fuzzy Behavior of Smart BRPs

Besides the basic consideration of profit and risks as shown in Figure 5, the further
decision on how much of the smart balancing potential was activated was simulated
using fuzzy logic. Fuzzy logic was first introduced in 1965 [22] for complex control of
systems where behavioral aspects of multi-criteria decision making are anticipated. The
applied Mamdani-type fuzzy inference was based on rules with linguistics, which was
first introduced in 1975 [23]. The implementation was realized with the Python library
scikit-fuzzy, which is a fuzzy logic toolkit for SciPy [24]. The centroid method was used as
the defuzzification technique.

A previous version of fuzzy logic was used to anticipate the behavior of BRPs in
changing market environments and a 1 GW imbalance test case [25]. The new version
introduced in the following was extended to represent BRPs market response according
to a situation in which all market participants would join smart balancing. It was better
scaling.

Table 6 gives an overview about the considered input parameters for the fuzzy logic
and implemented range.
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Table 6. Overview of parameters investigated for market response modeling.

Parameter Parameter Range Unit Explanation

Imbalance −1001 to 1001 MW Quantifies absolute revenue potential,
global balancing limit

Ratio 0 to 600 % Quantifies if Flexpotentialis
higher ACE

individual balancing limit

Time 0 to 15 min Indicates probability of changing sign
of imbalance price

actual billing period (ISP)

Imbalance sign 0 or 1 - Indicates that further SB contribution
would increase imbalance

Smart balancing 0 to 100 % Fuzzy output for smart balancing
power calculation

These parameters were chosen since they covered the information needed to enable
a reasonable balancing behavior, as simple as possible, as complex as necessary. Smart
balancing is a product of activated balancing energy, time, and imbalance price.

To identify ISPs with financial opportunities, information about the imbalance price,
the imbalance height, as well as the remaining time of the ISP as an indicator for the risk of
loosing money in case of a changing sign of the imbalance price within the ISP needed to
be regarded.

The time was used as an indicator for the risk of an changing imbalance sign. The
earlier within the actual billing period we are, the greater the risk of a changing sign.
For the fuzzy logic, the ISP of 15 min was therefore split into three uniform five-minute
intervals “early”, “middle”, and “late”.

Since balancing was conducted by several BRP at the same time, an additional param-
eter to anticipate the behavior of other participants was introduced. This was needed to
scale the market response and reduce overshoots. For this purpose, the power contribution
was added. The power contribution quantified the individual contribution to the system
state. A high power contribution scaled the markets response to a high value, and a low
contribution lowered it. This set an individual balancing limit to prevent overshooting and
profit loses.

Fuzzy membership functions and fuzzy rules are listed in Appendix A.

2.4. Validation via Correlation Factor

Correlation factors were used as an indicator for the quality of the simulation. The
rules for mFRR activation were tuned to optimize the correlation between the simulated
and the historic mFRR activation, resulting in the following “best-fit” approach:

• Check average value of ACE over the first five minutes of any ISP
• Activation of mFRR in case the average ACE exceeds 37%/36% of procured (pos./neg.)

aFRR
• Activation of mFRR, which reduces the demand to 41%/37.5% of available (pos./neg.)

aFRR

The results from the validation scenario with historic ACE, no smart balancing’,
and 525,600 time steps at 1-min resolution was used to generate data with 35,040 time
steps at 15-min resolution, representing the format of the historic data from ENTSO-
E Transparency [26]. The activated balancing energy and related costs, as well as the
imbalance price were compared to the historic values. Table 7 shows the correlation factors
between historic values and time series resulting from the 2019 validation scenario. The
comparison demonstrated that the validation scenario led to results with middle to high
correlations, and only costs for downwards mFRR had a small correlation. The aFRR energy
and costs values had a good quality. The mFRR energy values and costs for upwards mFRR
had a middle quality. The quality of mFRR values could be traced back to the manual
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process in reality vs. a static decision making in the model. The resulting imbalance price
had a middle correlation. On the other hand, the research scope was not to reproduce
historic energy and cost values, but to apply a suitable environment to simulate different
market environments and smart balancing behavior. For that reason, the model was
considered to enable valid analysis.

Table 7. Correlation factors between historic values [26] and time series resulting from the validation
scenario “1 no smart balancing”.

Parameter aFRR mFRR AEP

Energy up 0.86 0.58 -
Energy down 0.89 0.53 -

Costs up 0.69 0.57 -
Costs down 0.72 0.32 -

Price - - 0.52

The validation scenario was used as the benchmark “1 no smart balancing” for the four
smart balancing simulations with historic data and pay-as-bid clearing. The finding error
rate and accuracy of all smart balancing scenarios were not only based on the above-stated
correlation factors, but were mainly driven by the accuracy of the assumed smart balancing
behavior. Quantification of this accuracy made field tests necessary. The finding error rate
and accuracy should be analyzed in future work.

2.5. Limitations and “Under-Cover” Smart Balancing

Smart balancing, generally said, is the market response to the ACE and the resulting
imbalance price. The two input signals correlate, depending on the market design and
costs for balancing energy. Germany applies single pricing, but does not allow for schedule
deviations [7].

This paradox leads to “under-cover” smart balancing in Germany, which could be
shown in previous studies: An equilibrium in the market of supply and demand in real-
time was identified, where the system imbalance declined by 2.8 MW per 1 EUR/MWh
increase in the imbalance price. According to the analysis of historic data (12.06.18 to
29.09.2019), strategic schedule deviations reduced the German ACE by about 20% [27].
This benefit was reached mainly by strategic bidding at intra-day markets where BRPs took
all available information into account for an anticipation of the ACE in the next ISP. On
the other hand, such a price responsiveness could lead to overreactions of the market [28].
Another evidence-based study claimed that the activation of manual Frequency Restoration
Reserves (mFRR), which indicates high ACE and an expensive imbalance price, leads to
“under-cover” smart balancing [29]. As no further detail on this speculative behavior is
available, “under-cover” smart balancing was not included in the smart balancing model.

3. Results

This section provides the results for smart balancing simulations with different market
approaches. Section 2.2 gives an overview about all considered scenarios. The target values
FRR activation, FRR costs, and frequency deviations are compared. Finally, the outcome
for BRPs is analyzed.

3.1. Simulation with Historic ACE and MOLs

Table 8 shows the reduction of balancing energy and related costs in relation to the
simulation without smart balancing. The total costs for balancing energy were reduced
with all smart balancing concepts. Furthermore, the activation of mFRR was reduced in
all cases; the aFRR activation, on the other hand, was not significantly reduced in the two
traffic light scenarios.
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Table 8. Smart balancing simulation: activated FRR energy and total costs of scenarios with historic
ACE and pay-as-bid clearing.

Scenario pos.aFRR neg. aFRR pos. mFRR neg. mFRR Total Costs

1 No smart balancing 100% 100% 100% 100% 100%
2 Traffic light TL2 100% 100% 76% 95% 95%
3 Traffic light TL5 99% 99% 78% 90% 95%
4 Single pricing DE 91% 91% 53% 65% 83%
5 Combined pricing NL 85% 86% 55% 66% 70%

Figure 6 illustrates the absolute demand for positive and negative aFRR and mFRR
over the simulated year 2019. All scenarios supported the hypothesis that smart balancing
reduced the ACE and demand for balancing energy. The results showed that the traffic
light approaches mainly reduced the mFRR demand, while aFRR could only be reduced in
scenarios with full transparency.

aFRR pos aFRR neg mFRR pos mFRR neg
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Figure 6. Smart balancing simulation: demand of balancing energy in 2019.

Figure 7 illustrates the absolute costs for positive and negative aFRR and mFRR over
the simulated year 2019. Negative costs represent profit from the system perspective. The
costs for positive aFRR and positive mFRR were reduced with smart balancing. The profits
from activating negative aFRR were increased with smart balancing, but the profit from
activating negative mFRR was reduced.
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Figure 7. Smart Balancing simulation - Costs for balancing energy in 2019
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Figure 7. Smart balancing simulation: costs for balancing energy in 2019.

Table 9 shows the simulated effect of smart balancing on the frequency of the Central-
West European synchronous zone. In all cases, the frequency standard deviation (std) was
higher, and outliers (min,max) had a bigger distance to the set value of 50 Hz in scenarios
with smart balancing. Therefore, the results indicated that smart balancing could have a
negative side effect on the quality of the frequency.

Table 9. Smart balancing simulation: results of scenarios with historic ACE and pay-as-bid clearing.

Scenario f Mean f std f Min f Max

1 No smart balancing 50 Hz 0.0108 Hz 49.843 Hz 50.135 Hz

2 Traffic light TL2 50 Hz 0.0116 Hz 49.631 Hz 50.287 Hz
3 Traffic light TL3 50 Hz 0.0111 Hz 49.641 Hz 50.199 Hz
4 Single pricing DE 50 Hz 0.0123 Hz 49.759 Hz 50.179 Hz
5 Combined pricing NL 50 Hz 0.0113 Hz 49.763 Hz 50.174 Hz

The reason for the decrease in frequency quality with reduced demand for FRR is
illustrated in Figure 8. The figure showcases the worst imbalance event of the year 2019
with activated reserves of over 7 GW and simulation results of the traffic light scenarios
TL2 and TL5. The ACE and the demand for FRR could be reduced during each ISP, but
going back to schedule at the end of each ISP led to high-frequency deviations.



Energies 2021, 14, 2309 15 of 25

12 10:30 12 10:45 12 11:00 12 11:15 12 11:30 12 11:45 12 12:00 12 12:15
0

1000

2000

3000

4000

5000

6000

7000

AC
E 

in
 M

W

Historic
TL2
TL5
100% FRR
150% FRR

Figure 8. Historic imbalance event 12.06.2019 (Hist), traffic light scenarios (TL2 vs. TL5), and contracted automatic and
manual Frequency Restoration Reserves (FRR).

Figure 8 also illustrates the difference between the two traffic light scenarios TL2 and
TL5 in the case of high imbalance events. There was no further differentiation in case of an
ACE that was higher than 100% of the contracted FRR. TL6, on the other hand, changed
the signal at 12:00 from “over 150%” to “over 120%”, and a reduced smart balancing
contribution was the result. The slightly higher smart balancing contribution with the
TL2 approach before 12:00 can be traced back to the fuzzy logic, where less membership
functions were defined in the TL2, scenario leading to a higher output for “good smart
balancing”.

3.2. Simulation with Synthetic Data

As explained in Sections 2.2.3 and 2.5, the historic ACE includes “under-cover” smart
balancing and MOLs resulted from a pay-as-bid clearing environment. On order to exclude
these effects from the simulation, synthetic data instead of the historic data were used for
the following simulations. Section 2.2.4 introduces the applied synthetic data.

Table 10 shows the reduction of balancing energy and related costs relative to the
simulation without smart balancing and pay-as-bid clearing. As explained in Section 2.2.4,
the MOLs for marginal clearing were chosen to result in similar costs with a 15-min BEPP,
but no further differentiation of the MOLs was applied for the 1-min BEPP. As expected,
this led to a decrease of the total costs compared to pay-as-bid or marginal clearing with a
15-min BEPP.

Again, the demand for FRR and the total costs for balancing energy were reduced
with all smart balancing concepts. The activation of negative mFRR could even be reduced
to zero by smart balancing. This could be achieved by a negative flexibility potential
of DSI and renewable energies, as introduced in Section 2.3.1. Combined pricing “8
NLs” outperformed the approach with pure single pricing “7 DEs”. In comparison to
the simulation with historic data, this effect was less distinct. Nevertheless, the results
further supported the hypothesis that combined pricing improves the smart balancing
contribution.
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Table 10. Smart balancing simulation-activated FRR energy and total costs of scenarios with synthetic ACE.

Scenario pos. aFRR neg. aFRR pos. mFRR neg. mFRR Total Costs

6 no smart balancing PAB 100% 100% 100% 100% 100%

7 DEs 95% 66% 27% 0% 64%
8 NLs 91% 59% 39% 0% 62%

9 no SB BEPP15 98% 94% 74% 75% 99%

10 BEPP: 15 min 92% 55% 39% 0% 93%

11 no SB BEPP1 98% 94% 74% 75% 94%

12 BEPP: 1 min 91% 56% 39% 0% 65%

The effect of the imbalance pricing scheme outweighed the influence of the clearing
scheme on efficiency of the smart balancing approach. The three scenarios “8 NLs”, “10
BEPP: 15 min”, and “12 BEPP: 1 min” were all simulated with combined pricing, but
different FRR clearing schemes. Figure 9 illustrates that the differences in the activated
FRR of the three scenarios were very small.
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6 no Smart Balancing PAB 100% 100% 100% 100% 100%

7 DEs 95% 66% 27% 0% 64%
8 NLs 91% 59% 39% 0% 62%

9 no SB BEPP15 98% 94% 74% 75% 99%

10 BEPP: 15 min 92% 55% 39% 0% 93%

11 no SB BEPP1 98% 94% 74% 75% 94%

12 BEPP: 1 min 91% 56% 39% 0% 65%
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Figure 9. Smart Balancing simulation - Demand of balancing energy in synthetic scenarios
Figure 9. Smart balancing simulation: demand of balancing energy in synthetic scenarios.

In contrast to the demand of FRR, the related costs did differ, not only with the
imbalance pricing, but also with the clearing scheme. Figure 10 illustrates that smart
balancing could reduce the total costs only by 6% with marginal clearing and a 15-min
BEPP, but the cost reduction accounted for 35% with marginal clearing and a 1-min BEPP.
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Figure 10. Smart balancing simulation: demand of balancing energy in synthetic scenarios.

Table 11 shows the effect of smart balancing on the system frequency. The difference
between the scenario “6 no smart balancing pay-as-bid” with higher frequency deviation
in comparison to the two scenarios “9 no smart balancing BEPP15” and “11 no smart
balancing BEPP1” resulted from the different ACE, as introduced in Section 2.2.4. Similar
to the simulations with historic data, the simulations with synthetic data also indicated
that smart balancing could have a negative effect on the frequency quality. Again, this can
be traced back to the behavior at the end of an ISP when BRPs return to their schedule (see
Figure 5).

Table 11. Smart balancing simulation: results of scenarios with historic ACE and pay-as-bid clearing.

Scenario f Mean f std f Min f Max

6 no smart balancing PAB 50 Hz 0.0025 Hz 49.976 Hz 50.013 Hz

7 single pricing DE 50 Hz 0.0097 Hz 49.951 Hz 50.061 Hz
8 combined pricing NL 50 Hz 0.0085 Hz 49.931 Hz 50.063 Hz

9 no smart balancing BEPP15 50 Hz 0.0024 Hz 49.979 Hz 50.012 Hz

10 BEPP15 50 Hz 0.0116 Hz 49.901 Hz 50.071 Hz

11 no smart balancing BEPP1 50 Hz 0.0024 Hz 49.979 Hz 50.012 Hz

12 BEPP1 50 Hz 0.0093 Hz 49.932 Hz 50.073 Hz
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3.3. Results from the Perspective of Participating Technologies

We compared the different scenarios from a participant technology perspective by
energy, profit, specific energy purchase costs, number of balancing participation, and their
average duration. Energy and profit data were used to specify the participation profile. Is
more energy consumed or produced? Did a technology manage to generate profit from
the participation in smart balancing, or was money lost? This information was used to
assess the suitability of the different approaches for the single technologies. To give a
more detailed assessment of the balancing behavior, the number of balancing actions was
counted, and the average duration of the balancing action was calculated. In the case of
a very short duration, it might be necessary to do further investigations on the impact
of rapid load changes on the plants’ operation and lifetime. The comparison of total
profits and energy included the installed capacity and balancing potential of the single
technologies. For a comparison of the monetary benefit for the participating technologies,
therefore, the specific energy purchase costs were analyzed.

3.3.1. Technologies

In a first step, the single technologies’ total energy balance and their overall profit
were investigated. The energy balances are visualized in Table 12, and related profits can
be read from Table 13. To enable a good overview about all technologies and scenarios, the
values for energies and profits were simplified and clustered as described in Table 14.

Solar power plants achieved monetary benefits by reducing their feed-in in more than
half of the scenarios. Exceptions were TL2, TL5, and the DE approach based on historic
data. The same applied for wind onshore and wind offshore.

Aluminum and steel gained profits by reducing their demand. This applied for all
scenarios including the exception that steel did not participate in the scenarios based on syn-
thetic data. The revenues from demand reduction varied between 61 and 143 EUR/MWh
for aluminum and from 105 and 234 EUR/MWh for steel.

Table 12. Overview of the technologies’ energy balance in the investigated scenarios.

Scenario Sol WOn WOf Gas Alu Ste Cem Pap Chl

Historic data

2 TL2 - - - - - - - - - + ++ +++ + + +
3 TL5 - - - - - - - - - + ++ +++ + + +
4 DE - - - - - - - +++ +++ 0 - - - - - - - - -
5 NL - - - - - - +++ ++ 0 - - - - - - - - -

Synthetic data

7 DEs - - - +++ ++ 0 - - - - - - - - -
8 NLs – - - - ++ +++ 0 - - - - - - - - -
10 BEPP: 15 min - - - - - - - - - - +++ 0 - - - - - - - - -
12 BEPP: 1 min - - - - - - + +++ 0 - - - - - - - - -

In the TL2 and TL5 scenarios, cement, paper, and chlorine also reduced their demand
for revenues between 108 and 127 EUR/MWh. In the other scenarios, the three technologies
increased their demands and achieved profits that way. In the case of the DE approach,
cement and chlorine had additional costs of 0.8 and 4.1 EUR/MWh for increasing their
demand. In the other scenarios, profits from 5 to 127 EUR/MWh were made.

Gas power plants mainly increased their production. There was only the BEPP 15-min
scenario where production was decreased. Profit was generated in all cases. The revenues
from lowering the production varied between 81 and 1373 EUR/MWh.
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In scenarios based on synthetic data, the contribution of renewables and metal indus-
tries were generally less than those of the remaining industries and the gas power plants.
In the NL scenario based on historic data, average values of below two minutes were
observed for renewables, which was very short. The TL2 and TL5 approaches generally
led to durations above 8 min for all technologies.

Table 13. Overview of the technologies’ profit in the investigated scenarios.

Scenario Sol WOn WOf Gas Alu Ste Cem Pap Chl

Historic data

2 TL2 - - - - - - - - - + +++ +++ +++ +++ +++
3 TL5 - - - - - - - - - + ++ +++ +++ +++ +++
4 DE - - - - - - - - - +++ +++ 0 - ++ –
5 NL +++ +++ +++ +++ ++ 0 ++ +++ ++

Synthetic data

7 DEs + + + +++ + 0 ++ ++ ++
8 NLs + + + +++ ++ 0 ++ ++ ++
10 BEPP: 15 min +++ +++ +++ +++ +++ 0 +++ +++ +++
12 BEPP: 1 min ++ ++ ++ +++ ++ 0 ++ ++ ++

Table 14. Legend for Tables 12 and 13.

Energy

+ increase production = decrease consumption
- decrease production = increase consumption

Profit

+ profits
- losses

Ranges

+++/- - - x > 2/3 of technologies maximum/minimum value
++/- - 1/3 < x < 2/3 of technologies maximum/minimum value

+/- 1/20 < x < 1/3 of technologies maximum/minimum value
0 x < 1/20 of technologies maximum/minimum value

3.3.2. Overall Comparison

To be able to compare the benefit of the different scenarios for the single technologies,
the specific costs or profits of the technologies smart balancing contributions were regarded.
Therefore, it was distinguished whether there was an additional energy purchase or an
increased production. A successful additional purchase might lead to costs lower than
the average energy purchase costs. This is of importance for consumers like the industrial
plants. In the case of renewable energy plants, changes in generation were successful
only if profits were achieved by that, since there were no production costs to be saved. In
the case of the gas power plants, both cases were possible. Table 15 gives an overview
of the technologies’ specific profits in the different scenarios. As a reference, always the
maximum profit from the regarded technology was chosen. The values for specific profits
were simplified and clustered, as described in Table 16.
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Table 15. Overview of the technologies’ specific profits in the investigated scenarios.

Scenario Sol WOn WOf Gas Alu Ste Cem Pap Chl

Historic data

2 TL2 (-) (- -) (-) + +++ ++ +++ +++ +++
3 TL5 (- - -) (- - -) (- - -) + +++ ++ +++ +++ +++
4 DE (- -) (- - -) (- -) + +++ +++ - + -
5 NL + + + + +++ +++ + + +

Synthetic data

7 DEs ++ +++ +++ + ++ none + + +
8 NLs ++ ++ ++ ++ ++ none + + +
10 BEPP: 15 min +++ +++ +++ +++ +++ none ++ ++ ++
12 BEPP: 1 min ++ ++ ++ +++ ++ none + + +

Table 16. Legend for the table.

Specific Profit

+ profits
- costs for energy purchase

(-) costs from energy sales = losses
none no values

Specific profits

+++ x > 2/3 of technologies maximum profit
++ 1/3 < x < 2/3 of technologies maximum profit
+ 1/20 < x < 1/3 of technologies maximum/profit

Specific energy purchase costs

- x > 1/3 of technologies maximum profit
- - 1/3 < x < 2/3 of technologies maximum profit

- - - 2/3 < x < 1 of technologies maximum profit

From Table 15, it can be seen that the specific profits were more consistent in the
synthetic data-based scenarios. The TL scenarios offered high profits for industries, but
also losses for renewables. In the historic data scenarios, only the NL approach led to
profits for all technologies. The highest specific profits were observed in the BEPP 15-min
scenario, but also, the BEPP 1-min scenario had high specific profits. A comparison with
the total profits confirmed the NL scenario and the BEPP 15-min scenario as the most
profitable scenarios for all technologies.

3.3.3. Summary/Conclusions Technologies

From the evaluation of the single technologies’ data, it can be seen that the consistency
between the data of different technologies was higher in scenarios based on synthetic data
than in the scenarios based on historic data. Based on synthetic data, the highest revenues
could be achieved in the BEPP 15-min scenario.

4. Discussion

Based on the model presented in Section 2, the simulation outcomes showed the effects
different smart balancing schemes could have if applied in Germany. The impacts of the
imbalance pricing (single vs. combined) and the method of balancing energy clearing (pay-
as-bid vs. marginal pricing with 15-min BEPP vs. marginal pricing with 1-min BEPP) were
quantified. The results supported the initial hypothesis that smart balancing can reduce
the ACE closed loop and the demand for balancing energy activated via FRR products. In
all considered scenarios, the demand for balancing energy and related costs were reduced
by active smart balancing.
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As expected, especially the reduction of manual FRR balancing energy was a direct
consequence of smart balancing, since large system imbalances sustained for several ISPs
were especially suitable for BRPs to support the system without taking high risks that the
direction of the system imbalance changes and the imbalance price results in costs rather
than revenues.

Regarding the FRR settlement, results were surprisingly similar when comparing
pay-as-bid and marginal pricing in all the settings with each other. The potential of smart
balancing was apparently not mainly driven by marginal pricing with a BEPP of 15 min.
Nonetheless, a disclaimer has to be made for the applied pay-as-bid and marginal bidding
curves with the synthetic data in our simulations. In cases where prices of balancing energy
bids are more volatile and extreme, smart balancing would probably lead to better results
in a marginal pricing scheme rather than in a pay-as-bid scheme.

The results were more driven by the technology chosen to contribute to smart balanc-
ing, especially since the demand-side integration technologies mainly provided downward
energy in the simulations. For an application of smart balancing in Germany, the obtained
real effects will obviously deviate from the presented effects.

For a gradual implementation of smart balancing in Germany, the traffic light concept
might be a concept to be considered. Independent of the chosen layout of the German
imbalance price calculation based on a PICASSO cycle-based BEPP, such a concept could
support Germany during system scarcity and persistent imbalances exposed to the system.

Secondly, it is recommended to apply a combined pricing for imbalance in case the
German system is exposed to zero-crossings.

Future research may focus on how active smart balancing could work best within the
emerging European platforms IGCC and PICASSO. The damping effect of changing the
BEPP in a future marginal clearing environment, including effects on the MOL, should be
analyzed with higher accuracy. Regarding the applied fuzzy logic, further investigations
on the effects of tuning fuzzy sets, fuzzy rules, type of inference, defuzzification technique,
and type-1 vs. type-2 fuzzy logic can improve the understanding of market response.
Other smart balancing algorithms could also lead to similar results, and future work could
investigate the effect of replacing the fuzzy logic by conventional decision trees or applying
machine learning. On the other hand, simulation-based research cannot predict the real
market behavior without big uncertainties, as described in Section 2.4. This limitation
leads to the need for field tests to generate more profound knowledge about active smart
balancing and its value.

5. Conclusions

The simulation with synthetic ACE and MOL confirmed the findings from the pay-as-
bid simulations with historic data. Combined pricing is more beneficial than single pricing.
The scenarios with combined pricing and marginal clearing could benefit from smart
balancing and reduce the demand for balancing reserves in a similar range, but related
costs substantially decreased only in the case of a 1-min BEPP. This could be traced back
to the limited reflection of bidding behavior, as no difference between the two marginal
pricing scenarios (BEPP15 vs. BEPP1) was assumed. Nevertheless, the result that smart
balancing saved a higher share of the total costs with pay-as-bid pricing confirmed the
correlation between cost and imbalance occurrence, illustrated in Figure 3. The results were
considered to be plausible, because BRPs would have generated profit with their behavior.

Other findings could be made from defining the smart balancing decision making
process of BRPs in the first place. Implementing a fuzzy logic which leads to profit for
BRPs is required to limit the reaction in order to prevent overreaction and financial losses,
as described in Section 2 and Appendix A. Nevertheless, the introduction of active smart
balancing could lead to overreaction and financial losses on the first day. An optimization
of smart balancing, similar to the tuning of fuzzy rules, might be seen in real operations.
This hypothesis is supported by the observations made in The Netherlands in 2001, when
the smart balancing was introduced and improved over time [9].
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As a consequence, to reduce the risks from potential overreactions, a damping of
smart balancing with the traffic light approach or a limitation of financial incentives could
be chosen for a first introduction period. Pay-as-bid clearing and marginal clearing with a
short BEPP would limit the incentive in comparison to marginal pricing with 15-min BEPP.
On the other hand, the optimization of BRPs could make damping unnecessary.

In contrast to the reduction of demand and costs for balancing energy, the simulation
indicates that smart balancing might have a negative effect on the overall frequency stability
at the transition form one ISP to the next. The higher deviation and lower minimum and
higher maximum of the frequency result from the fast reaction, especially at the end of
each ISP, when all BRPs return to their schedule. Such an extreme behavior is not seen
in real operations in The Netherlands and Belgium, but the smart balancing logic in the
simulation led to this fast behavior in response to the uncertain source of the ACE, which
also reflected scheduled energy exchanges with other control blocks and can, therefore,
change in the beginning of an ISP.
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DE Germany (Deutschland)
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FRR Frequency Restoration Reserves
IGCC International Grid Control Cooperation
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MOL Merit-Order-List
MC Marginal Clearing of balancing energy
NL Netherlands
PAB Pay-As-Bid clearing of balancing energy
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SB Smart Balancing
TL2 traffic Light with two increments
TL5 traffic Light with five increments
TSO Transmission System Operator

Appendix A. Fuzzy Logic Input Parameters, Membership Functions, and Rules

Section 2.3.3 introduces the applied fuzzy logic, representing the decision of BRPs
with smart balancing potential in the model. The input parameters represent all relevant
information for smart balancing. The fuzzy rules were developed in order to analyze
different imbalance clearing schemes (single and combined clearing). In a last step, the
fuzzy membership functions were optimized until the decisions of BRPs led to profit rather
than overshoots and financial losses.

Input parameters were distributed into fuzzy logic membership functions to apply
the fuzzy rules. Table A1 gives an overview about the used parameters, the used number
of fuzzy membership functions, and the style of definition. A uniform distribution in a
given number of membership functions is referred to as “auto”. Other distributions are
defined individual.

Table A1. Overview of assumed profit optimization parameters of BRP.

Parameter Membership Functions Section Style

Imbalance 5 5 individual
Power contribution 5 5 individual

Time 3 3 individual
Change of imbalance sign 2 2 individual
Output: smart balancing 5 5 auto

Table A2 shows the wording of the membership functions. After the definition of
fuzzy logic membership functions, fuzzy logic rules can be applied.

Table A2. Overview of profit optimization parameters of BRP.

Parameter Section Wording Section Shifts at

Imbalance neg high, neg average, close to
zero, pos average, pos high −1150, −900, −350, 350, 900, 1150

FRRsum neg high, neg average, close to
zero, pos average, pos high −1150, −900, −350, 350, 900, 1150

Time early, middle, late 3.5, 10.5
Change of imbalance sign no change, change 0.5

Output: smart balancing poor, mediocre, average,
decent, good auto (0 to 100)

The applied fuzzy logic rules depend on the chosen market design. Different rules
apply with changing market design, as summarized in the following Tables. Time-related
rules are similar, because the risk assessment of changing incentives is improving over time
within each ISP.

Table A3 shows fuzzy logic rules with the German approach of single pricing.
“FRRsum” means all activated FRR energy in the current ISP, which was set to zero in
the beginning of each ISP. This value represents the risk of a changing sign of the single
imbalance price.
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Table A3. Overview of fuzzy logic rule set for single pricing (DE).

Rule Input: If ... Output: SB Is ...

SP 1 Time is early mediocre
SP 2 Time is middle mediocre
SP 3 (Time is late) AND (FRRsum is (neg average OR pos average)) mediocre
SP 4 (Time is late) AND (FRRsum is (neg high OR pos high)) average
SP 5 (Time is late) AND (FRRsum is close to zero) poor
SP 6 (Imba sign is no change) AND (FRRsum is (neg OR pos high)) good
SP 7 (Imba sign is no change) AND (FRRsum is (neg OR pos average)) decent
SP 8 FRRsum is close to zero poor

Table A4 shows fuzzy logic rules with the Dutch approach of combined pricing.
Imbalance means the ACE in the current time step. This value represents the risk of
changing to dual pricing in the combined pricing approach.

Table A4. Overview of fuzzy logic rule set for combined pricing (NL).

Rule Input: If ... Output: SB Is ...

CP 1 Time is early mediocre
CP 2 Time is middle mediocre
CP 3 (Time is late) AND (Imbalance is (neg average OR pos average)) mediocre
CP 4 (Time is late) AND (Imbalance is (neg high OR pos high)) average
CP 5 (Time is late) AND (Imbalance is close to zero) poor
CP 6 (Imbasign is not changed) AND (Imbalance is (neg OR pos high)) good

CP 7 (Imba sign is not changed) AND (Imbalance is (neg OR
pos average)) decent

CP 8 Imbalance is close to zero poor
CP 9 Imba sign is changed poor
CP 10 Imba sign is not changed average

The presented scenarios are based on these parameters and rules.
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