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Abstract: In this study, we implemented a depletion (D)-mode gallium nitride high electron mobility
transistor (GaN HEMT, which has the advantage of having no body diode) in a class-E amplifier.
Instead of applying a zero voltage switching control, which requires high frequency sampling at
a high voltage (>600 V), we developed an innovative control method called the minimum power
input control. The output of this minimum power input control can be presented in simple empirical
equations allowing the optimal power transfer efficiency for 6.78 MHz resonant wireless power
transfer (WPT). In order to reduce the switching loss, a gate drive design for the D-mode GaN HEMT,
which is highly influential for the reliability of the resonant WPT, was also produced and described
here for circuit designers.

Keywords: wireless power transfer; class-E amplifier; minimum power input control; D-mode; GaN
HEMT; gate drive

1. Introduction

Class-E power amplifiers perform well in wireless power transfer (WPT) applica-
tions [1] because of their simple topology as well as high efficiency under zero voltage
switching (ZVS) and zero voltage derivative switching (ZVDS) conditions. Thus, they have
been used in various applications, such as battery charging [2], drones [3], LED lighting [4],
and biomedicine [5]. Many studies have demonstrated the excellent performance of class-E
power amplifiers [6,7], particularly when gallium nitride high electron mobility transistors
(GaN HEMTs) are used [7–11]. GaN HEMTs provide high efficiency and performance
due to their exceptional characteristics, such as low gate charge loss [7] and gate-source
capacitance, which almost produce an ideal ZVS [8,9].

However, the performance of class-E power amplifiers is affected by load variation
in addition to various non-ideal factors [12]. In response, different strategies have been
proposed to optimize class-E amplifiers to increase operating efficiency and extend the
transfer distance. These strategies involve a tuning couple [13]; the tuning duty ratio
and frequency in relation to inductors and capacitors [14]; the control and compensation
of variations in coupling and load impedance [10,11]; the coupling structure [15]; and
the addition of transmitters [16,17]. In addition, a study proposed an analytical method
that accounts for non-ideal factors (such as the inductance resistance, on resistance, and
leakage current) in order to reduce the difference between calculated and actual values [18].
Moreover, although the use of GaN HEMTs in class-E power amplifiers improves efficiency
and performance, a compatible and suitable gate driver must be designed to drive the
GaN HEMT [19,20]. To this end, the charge pump gate drive presented by Ishibashi [20] is
useful for driving the depletion (D)-mode GaN HEMT in a class-E amplifier.
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Previous studies have proposed several laboratory-fabricated D-mode GaN HEMTs in
cascade configurations [21,22]. To fully exploit the advantages of fabricated GaN HEMTs
in class-E amplifiers, this study used a D-mode GaN HEMT with a charge pump gate
driver. Specifically, in this study, the equivalent circuit of a class-E amplifier with a D-mode
GaN HEMT was experimentally tested. In addition, based on the equivalent circuit, the
characteristics of a fabricated D-mode GaN HEMT and the parameter of a compatible
charge pump gate driver for the D-mode GaN HEMT were included in analyses to improve
practicability. We continue on our work presented in [23] to optimize the operation for
each scenario by using the proposed minimum power input control. The demo of the ZVS
manual operation was provided in the previous article [23]. Previous studies have also
proposed their own unique methods to achieve the high efficiency class-E power amplifier
for WPT systems. The PTE of the TX-coil with an NIC [24] was much higher than that of
a conventional WPT system. A class-E PA [25], based on the load-pull and impedance-
transformation technique, showed a high-efficiency WPT for a wide load range. In this
study, a simple look-up table, selecting the best combination and procedure of different
duty cycles, frequencies, and VDDs, was used to yield a quick response and optimize
efficiency in class-E amplifiers. This paper is organized as follows. The design of the
D-mode GaN HEMT gate drive for the wireless power transfer is sensitive to parameters
such as parasitic capacitances, output characteristic, transfer characteristic, and leakage
current. Therefore, the fabrication conditions and parameters of the D-mode GaN HEMT
are introduced in Section 2.1 in order to explain the design for a gate drive compatible
with wireless power transfer. The design of the gate drive for the D-mode GaN HEMT is
highly influential for the reliability of the resonant WPT. Taking into account the electrical
characteristics of the fabricated D-mode GaN HEMT, the design of the charge pump gate
drive for the D-mode GaN HEMT is presented in Section 2.2. Finally, the class-E amplifier
with a charge pump gate drive circuit, and the proposed minimum power input control,
are described in Sections 2.3 and 2.4. Section 3 presents the experimental verification of
resonant WPT with minimum power input control, and the conclusions are presented in
Section 4.

2. Materials and Methods

In our previous paper [23], the mathematical derivation of the ZVS control of a class-E
WPT unit was proposed. As stated in [23], one of the critical issues for WPT is dealing
with the switching loss of the GaN HEMT transistor. The switching loss is mainly caused
by GaN HEMT characteristics, including the output parasitic capacitance Coss and the
input parasitic capacitance Ciss. Hence, the D-mode GaN HEMT characteristics, which
are provided in Section 2.1, must be carefully studied and examined before and after the
packaging. Nevertheless, the parasitic capacitance variations between turn-on and turn-off
are the dominant factor for the switching loss. Hence, the gate driver design methodology
is provided in Section 2.2. The design of the charge pump gate drive for the D-mode GaN
HEMT is critical for class-E WPT efficiency. With regard to the maximum power transfer,
we need to understand how the impedance matching mechanism is adjusted through the
resonant frequency ωo, which is discussed in Section 2.4. Finally, we introduce a method
called minimum power input control that functions by controlling the duty ratio δ, given in
Section 2.5, to ensure the best power transfer efficiency (PTE), which implies the high PDL
associated with a low switching loss. Figure 1 shows a flowchart of the key characteristic
parameters for achieving the minimum power input control which is introduced in the
following sections.
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Figure 1. Flowchart of key characteristic parameters, which may also refer to [23], for achieving the
minimum power input control.

2.1. D-Mode GaN HEMT

Figure 2a illustrates the transfer characteristics of the fabricated D-mode GaN HEMT
device when VG = −10 to 1 V, with VD = 10 V in Figure 2b. The threshold voltage given
by the tangent of the ID–VG was found to intersect at −7 V. Therefore, the turn-on voltage
of the D-mode GaN HEMT, vGS,ON, was recorded at −7 V. The maximum allowable gate
voltage VGS,max was tested under the condition of |VGS,max| < 30 V. According to the
leakage current due to different voltages, COSS = CGD + CDS varied, albeit only slightly, in
the turn-on and turn-off periods. Furthermore, as the D-mode GaN HEMT had no body
diode, the leakage current only flowed when vDS was negative. Table 1 summarizes the
characteristics of the D-mode GaN HEMT.
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Table 1. Summary of characteristics of the D-mode GaN HEMT.

Symbol Parameter Value Unit

vGS,ON Turn-on voltage −7 V
CDS Drain-source parasitic capacitance 100 pF

CGD
Gate drain

Parasitic capacitance 80 pF

CGS
Gate source

Parasitic capacitance 420 pF

VGS,max Maximum gate-source voltage 8 V
VDS,BD Drain-source breakdown voltage 1000 V
id,max Maximum drain current 35 A

The main reasons that the GaN HEMT is well-suited for WPT applications are that
(1) it can perform high frequency switching with low switching loss; (2) it possesses no
body diode; and (3) it involves low Ciss and Coss variation. The characteristic of have
no body diode can ease the ZVS control and provide low energy loss during class-E
switching operations. The Ciss and Coss variations of MOSFET can be as high as several
hundred times between turn-on and turn-off. As for the GaN HEMT, Table 2 summarizes
the parasitic capacitance of the D-mode GaN HEMT before packaging. The parasitic
capacitances were nearly one-third of the MOSFET. The parasitic capacitance value and
its variation were different for different packaging. For instance, the TO247, as shown in
Figure 3b, yielded smaller capacitance than the TO220 shown in Figure 3a. Both types of
packaging showed that the capacitance variation between turn-off at low VDS and turn-on
at high VDS becomes smaller as the switching frequency increases. This is very good for
resonant WPT in which the switching frequency is targeted at 6.78 MHz. In this study,
the GaN HEMT in the TO220 packaging was used as it resulted in a smaller size than the
TO247 packaging.

Table 2. The parasitic capacitances of the D-mode GaN HEMT.

Symbol Parameter Typical (pf) Conditions

Ciss Input capacitance 99.7
VDS = 150 V, VG = −10 V,

T = 25 ◦C, 1 MHz
Coss Output capacitance 9.2
Crss Transfer capacitance 7.1
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The design of the D-mode GaN HEMT gate drive for the wireless power transfer
is sensitive to parameters including the gate-drain parasitic capacitance Crss (=CGD) and
the gate input parasitic capacitance Ciss (=CGD +CGS). It is preferable for these parasitic
capacitances to be as small as possible to enable higher frequency switching without much
switching loss. On the other hand, the drain-source parasitic capacitance CDS incorporated
with C2 and L2 forms a useful LC tank for the power transfer unit (PTU), which needs to
be as constant as possible during the time the transistor is switching on and off. All the
parasitic capacitances are closely related to the GaN HEMT design, including the thickness
of the epitaxial structure of the GaN device. The resulting output characteristic in Figure
2b determines the RD,on related to the efficiency of the wireless power transfer. The transfer
characteristic in Figure 2a shows the preferable vGS control range. It is preferable for the
turn-on voltage vGS,ON to be as near to zero as possible to reduce the voltage level of the
power supply for the gate drive.

2.2. Design of Charge Pump Gate Drive for D-Mode GaN HEMT

In order to design the D-mode GaN HEMT gate drive for class-E amplifiers, Ishibashi’s [20]
charge pump gate drive was adopted in this study. The leakage current is critical to the charge
pump reservoir dynamics, which result from the reverse saturation current of the Schottky
barrier diodes (SBD), which is preferably kept as small as possible. The disadvantage of the
charge pump circuit—the current leaking through the diode reverse saturation current—causes
no harm to the high frequency switching. However, the class-E amplifier has the additional
disadvantage of CGD being connected to the high voltage switching of vDS.

In a p–n junction diode, two types of capacitance occur: transition capacitance (CT)
and diffusion capacitance (CD):

Cj0 = CT + CD, (1)

In a forward-biased diode, CD, which is the focus of the following derivation, is much
larger than the CT. Furthermore, the gate drive vs is high, and the current iG passes from
VGH to VSS, which, for simplicity, is taken as the ground. The current iG passes from VGL
to VSS when vs is low. As shown in Figure 4, we first assumed that VDS is floating and
that RG,p = RG. In the gate drive state, vs is high and vG,h = 0.7 V, according to the diode
forward-threshold voltage (built-in potential). The charge on the gate and diode side is:

QG,h = (CGS + Cj0)·vG,h, (2)
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Figure 4. Charge pump gate drive design.

The charge on the capacitor side is:

QC,h = CC·(VGH − vG,h), (3)

The steady state gate voltage when the gate is turning off is:

vG,l = QC,l/(CGS + Cj0) = −QC,l/CC + VGL, (4)

Assuming that CC >> CGS + Cj0 and VGL = 0 V, vG,h is small compared with VGH.

QC,l ≈ −CC·VGH, (5)

vC,l ≈ VGH, (6)

The leaking current in the charge pump occurs due to the diode reverse saturation
current. When vDS is connected to a half sine voltage such that

vDS ≈ 0 V when vs is high, vDS ≈ VDS,maxsin(ωot) when vs is low (7)

the charge pump requires some amount of negative charge, which must be quickly supplied,
because of CGD (the Miller capacitor) when vDS is increasing to a high voltage and the gate
is turning off. The charge pump must also retract the same quantity of negative charges
when the gate is turning on. Thus, in such dynamic behavior, the resulting effect is the
Miller plateau: a low voltage surge occurs when the gate is turning on, and the period in
the Miller plateau increases when the gate is turning off. As shown in Figure 5, when RG,p
is too high (as indicated by the dotted line), RG,p causes a negative voltage surge due to
the rapid retraction of negative charges through CGD and CC to RG,p. The negative voltage
can potentially surge down to lower than −VGS,max and cause the gate source to break
down. In such cases, RG,p must be reduced to prevent a large voltage drop in vG,h when
the gate is turning on; the corresponding design parameters for the gate drive are shown
in Table 3. The ideal gate source voltage for 6.78 MHz switching is also indicated by a
dark solid line in Figure 5. Using the D-mode GaN HEMT as the switching device, the
resonance mechanism for proper resonant frequency is a function of the duty cycle settings
based on the hypotheses of zero voltage control and zero current control for the class-E
amplifier [23]. ZVS and ZCS are achieved by adjusting both the duty cycle and resonant
frequency to comply with the known phenomenon in GaN HEMT control, including the
Miller plateau and current clamp in the gate drive design.
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Table 3. Parameters used in the charge pump gate drive.

Symbol Parameter Value Unit

RG,p Turn-on gate resistance 12 Ω
RG,n Turn-off gate resistance 30 Ω
CC Charge pump capacitance 5 nF
CGS Diode capacitance 40 pF

IR
Diode reverse saturation

current 50 µA

2.3. Class-E Amplifier Circuit

Class-E amplifiers, as shown in Figure 6, have been used in 6.78 MHz resonant WPT
applications. In this study, the actual load ZL for a wireless power transfer system was
considered to be the mutual inductance in parallel with the equivalent impedance of the
receiver side. For simplicity in exposition, we let the load RL be purely resistive. In the
circuitry, the capacitor CDS is the parasitic capacitor of the D-mode GaN HEMT. As the
GaN HEMT contains no body diode, (1) a current path where vDS is negative is impossible
and (2) the resonant current i2 can be sinusoidal with low total harmonic distortion (THD).
In the equivalent circuit, the input and output power of the class-E amplifier are defined
as Pin = i1VDD and Pout = i2vL, respectively. The WPT experimental layout is shown in
Figure 7a, and the charge pump gate driver for the D-mode GaN HEMT is shown in
Figure 7b. The circuit parameters are shown in Table 4.
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Table 4. Class-E amplifier equivalent parameters.

Symbol Unit Value

RL kΩ 5 1

CDS pF 100
C2 pF 75
L1 µH 47
L2 µH 8

1 Equivalent.

PWM Control and Circuit Response

In this study, the class-E amplifier circuit was considered in terms of two aspects: the
switching power supply and impedance loading. The duty cycle of switching is denoted δ
(i.e., the pulse width is δT (Figure 8a)). The SPICE analysis is shown in Figure 8b.
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Figure 8. (a) PWM control of D-mode GaN HEMT; (b) SPICE analysis.

The switch was operated at a frequency of ωo = 2π/T. In the steady state, the output
current is i2 = I2 sin(ωot + β) + I2,a cos(2ωot + β). The higher order terms I2,a << I2 cause
the sinusoidal output to be asymmetric on its upswing and downswing wave forms. An
example in which β = −180◦, I2 = 1, and I2,a = 0.15, which are often seen in experiments, is
shown in Figure 9a. The SPICE analysis is shown in Figure 9b.
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In practice, the vGS signal of the class-E amplifier, as shown in Figure 10, is different
from that of the SPICE analysis simulation. The output signal from the gate drive was no
longer a square wave when the gate driver input signal from the PWM was a square wave
between 0 and 5 V. The distortion of the gate drive output vGS is due to the input parasitic
capacitance Ciss. Since the Ciss is relatively small at the high drain-source voltage vDS,
as shown in Figure 3, compared to the Ciss at the low drain-source voltage, the turn-off
delay time td,off is therefore larger than the turn-on delay time td,on. The actual duty ratio is
larger than the designed duty ratio. Thus an emperical result, and not just the SPICE model
simulation result alone, was required to compensate in the design. Knowledge about the
device characteristics, especially the parasitic capacitance variation resulting from different
packaging and different switching frequencies, is essential to control resonant WPT via a
class-E amplifier.

2.4. Maximum Power Transfer

The equivalent circuit of the wireless power transfer for a single PTU transferring
power to a single PRU is shown in Figure 11. The resonant frequency ωo was selected to
yield the best impedance matching between ZPTU(jωo) and ZPRU(jωo) in order to obtain
the maximum power transfer, which is also referred to as the maximum amount of power
delivered to the load (PDL). The equivalent turn ratio a within the equivalent circuit for
the wireless power transfer is a function of the distance between PTU and PRU. Hence, ωo
must be controlled from time to time to achieve the impedance matching condition when
the PRU is moving. In a closed loop control, to tune the resonant frequency ωo, the Airfuel
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Alliance recommends obtaining the required feedback of the actual power reading of the
PRU via a 2.4 GHz communication network.
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The PDL is also a function of VDS,max of the switching power supply circuit shown
in Figure 6. We need a high VDS,max to enable linkage travel for the magnetic flux in the
air, linking it to the PRU antenna coil. From [23], the VDS,max is derived into a function
of the duty ratio δ, as shown in Figure 12. Theoretically, the VDS,max is a monotonically
increasing function in terms of the duty ratio δ. On the other hand, while the switching loss
of the D-mode GaN HEMT also increases with the VDS,max, the power transfer efficiency
degrades due to the high VDS,max. The reason that the switching loss of the D-mode GaN
HEMT increases is that the GaN HEMT has no body diode. There is really only one
disadvantage of the GaN HEMT having no body diode: a higher reverse voltage drop. The
reverse voltage drop of a GaN HEMT includes a resistive element arising from the channel
resistance and threshold voltage. The voltage drop in a high voltage GaN HEMT can be as
much as several volts when conducting large currents, which is larger than the equivalent
drop in a MOSFET. Thus, we have a situation in which there is a trade-off between a high
PDL and a high switching loss in terms of the duty ratio δ.
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In practice, when we monitor the power input of the PTU, we see the power input
increase due to either the mismatching of the impedances, resulting in low PDL in the low
duty ratio δ region, or the high switching loss from the high VDS,max in the high duty ratio
δ region. The minimum power input, which trades off both deficiencies, is the optimal
solution. In the following section, we introduce an empirical technique to locate the optimal
duty ratio δ and achieve the best power transfer efficiency, which implies the high PDL
associated with a low switching loss.

2.5. Minimum Power Input Control

The minimum power input control of a class-E amplifier can be obtained experimen-
tally. A specific power transmitter unit, with its equivalent parameters, is detailed in
Table 4. We completed a set of 70 experiments and interpolated the results (Figure 13). In
the experiments, VDD = 108 V, nominal resonant frequency = 4.12 MHz, and δ% (nominal
duty ratio) = 30%. We calculated the minimum power points, which are indicated by red
dots in Figure 13 and corresponded to the lowest power loss from Coss to the ground in
the switching. The experiment was extended to different input voltages VDD. The results
are shown in Figure 14. In WPT applications, higher input voltages VDD are required for
greater power transfer distances. Conversely, power input Pin increases with the distance
between the PTU and power receiver unit (PRU). Furthermore, in cases of multiple PRUs,
the power input Pin must be increased accordingly to supply sufficient power to the PRUs.
We thus formulated our minimum control strategy according to the following steps:

(1) Due to the power transfer query issued by the PRU, we determined the input
voltage VDD according to the measured distance between the PTU and PRU.

(2) Due to the immediate power input Pin required for all PRUs, we determined the
duty cycle δ (or duty ratio) according to the empirical data in Figure 14.

(3) From the duty ratio δ% calculated in step 2, we determined the resonant frequency
f 0 according to the empirical data in Figure 15.

The minimum power input Pin is supplied to the WPT based on the empirical data
or equations in Figures 14 and 15, which guarantees optimal power transfer efficiency.
The minimum power input control is equivalent neither to conventional ZVS nor to zero
current switching because of the absence of a body diode in the D-mode GaN HEMT. The
energy stored in the CDS is not released to ground when vDS is negative. However, the
minimum power input control minimizes the energy stored in the CDS when the gate is
turned on, which is like the ZVS control. A more important feature of our design is that
almost all energy loss in the class-E amplifier is due to switching loss. Thus, the power loss
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on the transistor switched-off time, which is the product of the drain current with the vDS,
is the key factor affecting the minimum power input control. The power loss is related to
the gate drive design and the parasitic capacitance of the D-mode GaN HEMT; it is also
absent in conventional ZVS control derivations.
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3. Resonant WPT Results

As shown in Figure 16, a single PTU for the resonant WPT based on the D-mode GaN
HEMT class-E amplifier was capable of transferring 1 W of power to a PRU 140 cm away. In
the experiment, the load comprised 44 LEDs in series, each of which had a nominal power
of 0.06 W. The maximum voltage VDS,max was 700 V, and the maximum current iD was 2.5 A.
The radii of the coils for both PTU and PRU were approximately 25 cm. When the PRU
was 50 cm from the PTU, the PRU received 5 W power from the PTU (Figure 17). Due to
the different distances between the PTU and PRUs in the WPT application, the maximum
voltage VDS,max, which is proportional to the duty cycle δ, must be adjusted to send power
at an optimal efficiency. The minimum power input control was applied for this purpose
according to the look-up table. The maximum voltage VDS,max is typically triple the input
voltage VDD in practice. Hence, the breakdown voltage of the D-mode GaN HEMT had
to be higher than 1000 V for the application of 220 VAC, which was rectified to 310 VDC.
Figure 18 shows the performance comparison of the PTE (%) in terms of transmission
distance (cm). The method proposed in this paper yields performance comparable to
the WPT with NIC method [24] with, however, no additional impedance transformation
network circuit.
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4. Conclusions

The D-mode GaN HEMT fabricated at the authors’ university, the National Chiao
Tung University, was successfully implemented into the class-E amplifier circuit. The
design of the D-mode GaN HEMT gate drive for the wireless power transfer is sensitive
to parameters including the gate-drain parasitic capacitance Crss (=CGD) and the gate
input parasitic capacitance Ciss (=CGD + CGS). These parasitic capacitances of the GaN
HEMT are essential for higher frequency switching with low switching loss. In the circuit
design aimed at achieving the maximum power transfer, the corresponding impedance
matching control was obtained in this research via adjustment of the resonant frequency ωo,.
Nevertheless, by controlling the duty ratio δ, a minimum power input control that trades
off the power delivered to load for the switching loss of the GaN HEMT was obtained and
found to yield good power transfer efficiency. The resulting resonant WPT was capable
of transferring 1 W over the 140 cm distance between the PTU and PRU. Our minimum
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power input control is an empirical method that generates a look-up table to optimize
efficiency in WPT applications. In the future, the proposed design will be implemented
for multiple-input and multiple-output (MIMO) applications—i.e., multiple PTUs serving
multiple PRUs, which need to obtain the proper optimization method from among their
individual look-up tables—via a 2.4 GHz communication network (recommended by the
Airfuel Alliance) in order to improve the efficiency of power transfer.
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