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Abstract: The interconnection of wind power plants (WPPs) with distribution networks has posed
many challenges concerned with voltage stability at the point of common coupling (PCC). In a
distribution network connected WPP, the short-circuit ratio (SCR) and impedance angle ratio seen
at PCC (X/RPCC) are the most important parameters, which affect the PCC voltage (VPCC) stability.
Hence, design engineers need to conduct the WPP siting and sizing assessment considering the SCR
and X/RPCC seen at each potential PCC site to ensure that the voltage stability requirements defined
by grid codes are provided. In various literature works, optimal siting and sizing of distributed gen-
eration in distribution networks (DG) has been carried out using analytical, numerical, and heuristics
approaches. The majority of these methods require performing computational tasks or simulate
the whole distribution network, which is complex and time-consuming. In addition, other works
proposed to simplify the WPP siting and sizing have limited accuracy. To address the aforementioned
issues, in this paper, a decision tree algorithm-based model was developed for WPP siting and sizing
in distribution networks. The proposed model eliminates the need to simulate the whole system and
provides a higher accuracy compared to the similar previous works. For this purpose, the model
accurately predicts key voltage stability criteria at a given interconnection point, including VPCC

profile and maximum permissible wind power generation, using the SCR and X/RPCC values seen
at that point. The results confirmed the proposed model provides a noticeable high accuracy in
predicting the voltage stability criteria under various validation scenarios considered.

Keywords: wind power plant; distribution network; X/R ratio; short-circuit capacity; decision tree

1. Introduction

Wind power is one of the most sustainable, abundant and cost-effective energy
sources [1,2]. A large portion of wind power is being injected into distribution systems
through small wind power plants (WPPs). According to voltage regulation requirements
defined by grid codes in various countries, such as Australia, the UK and Canada, the
interconnection of WPPs to distribution networks must ensure that the steady-state voltage
at the point of common coupling (PCC) is maintained between 95% and 105% of the rated
grid voltage [3]. At a given distribution network connected WPP, the steady-state voltage
at the PCC (VPCC) is significantly impacted by short circuit capacity (SCC), short circuit
ratio (SCR) and overall system impedance angle ratio seen at that site expressed by the
X/RPCC. These parameters are explained as follows:

• SCC: The amount of power that flows through a specified point when a short-circuit
fault occurs at that point is expressed by SCC. The value of SCC depends on rated
voltage (Vrated) and short-circuit impedance (Zsc) and is given as in (1) [4].

SCC =
3
2
×Vrated × Isc =

3
2
(Vrated)

2

Zsc
(1)
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• SCR: The ratio between the grid’s SCC and the power injected by WPP is given by
SCR. At the PCC bus of a distribution system connected to WPP, SCR quantifies the
bus strength against the power quality issues caused by the wind power penetration.
The value of SCR is calculated, as shown in (2) [4].

SCR =
SCC
Pwind

(2)

Given that wind turbine generators are generally installed on areas located far from
the distribution substation, e.g., hilltops and close by the ocean, the output electrical power
is transmitted to the grid through long lines. This results in large short-circuit impedance
(Zsc) and small SCC and SCR [1,5]. Typically, the SCR value is less than 10 in distribution
grid-connected WPPs. The small range of SCR, in turn, causes high voltage variations and
power Quality issues at the PCC [4]. Hence, there is a tradeoff between the value of SCR
and the voltage stability in distribution systems connected to WPP.

• X/RPCC: The grid impedance angle ratio seen at the PCC bus is defined by the X/RPCC.
The value of the X/RPCC is determined by the ratio of Thevenin equivalent reactance
and Thevenin equivalent resistance seen from that specified point [4]. The internal
reactance of distribution lines is small, making the equivalent X/R value seen at
the PCC small. The majority of existing approaches proposed for mitigating the
voltage stability issues through reactive power compensation are applicable to power
transmission networks where the X/R ratio is large [6]. Hence, these methods are not
appropriate for distribution networks.

Given the significance of the three aforementioned parameters in the PCC voltage
stability in distribution systems connected to WPP, designers should select an optimal PCC
site where the values of SCC and X/RPCC ensure the VPCC stability requirements defined
by the grid codes. In addition, given the relation between wind power penetration and
SCR, engineers need to define the maximum power that can be injected by WPP, ensuring
that VPCC is maintained within the standard range, i.e., 0.95 pu < VPCC < 1.05 pu.

Different approaches have been proposed in the literature for siting and sizing of
distributed generators (DGs) in distribution networks. Authors in [7] applied analytical
methods for sizing and siting of DGs to minimize power losses in the system. Such
analytical methods require calculating the system bus impedance matrix, the inverse of
bus admittance matrix and Jacobean matrix. Given the large size of distribution networks,
calculating these matrices is computationally demanding [1]. In [8], A. Keane and M.
O’Malley proposed linear programming (LP)-based DG allocation method for harvesting
maximum DG energy and minimizing the voltage variations in an Irish 38-KV seven-
bus radial distribution network. Mixed-integer nonlinear programming (MINLP)-based
method has been studied in [9] to determine the optimal combination of different renewable
DGs with minimum power loss in an IEEE-RTS 41-bus test system. Similarly, dynamic
programming (DP) has been utilized in [10] for optimal allocation of DGs for power-loss
reduction and reliability improvement in a 9-bus radial test distribution system. The main
drawback of the methods proposed in [8–10] is that the methods rely on simulation of the
whole distribution system, which is a complicated and time-consuming task and requires
specifications of each system component [11].

Heuristics methods have been commonly used in optimal distributed generation
placement (ODGP) because of their simplicity, generality, flexibility and superiority in
solving optimization problems [12]. Ali et al. in [13] investigated four DG sizing and siting
methods based on simulated annealing (SA), variable search environment descending
(VSED), genetic algorithm (GA) and hybrid genetic algorithm (HGA) to minimize the
power loss and improve the voltage profile in IEEE standard 34 bus test distribution.
Similarly, particle swarm optimization (PSO) has been applied for sizing and sitting of DGs
in [14] to improve voltage profile and minimize the cost of power losses in four different
bus systems: 12-, 15-, 33- and 69-bus system. Ant colony optimization (ACO) has been
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utilized in [12] to determine the optimal sizing and placement of multiple DGs using a
69-bus distribution system. Artificial bee colony (ABC) algorithm has been proposed for
optimal placement and sizing of DGs in [15] for improvement of voltage profile in IEEE 33,
69 and 229 bus system. In addition, other heuristics methods, such as harmony search (HS),
differential evolution (DE), Tabu search (TS) etc., have been applied for DG optimal sizing
and siting. These methods can deal with large and complex ODGP and provide a near-
optimal solution. However, similar to the previous analytical methods discussed earlier, the
heuristic methods also rely on simulation of a whole distribution system, which is complex
and time-consuming [11]. Moreover, the accuracy of the heuristic methods depends on the
tuning of optimization parameters, such as crossover and mutation in GA [13], acceleration
constants (c1, c2) in PSO [14], etc. Improper tuning of these parameters may lead to higher
computational effort and adversely affect the accuracy of the prediction [4]. In addition,
using analytical approaches and artificial intelligence (AI)-based methods for WPP siting
and sizing produces unrealistic results as the reactive power exchanged between the grid
and WPP is considered to be zero in these methods [4].

To address the aforementioned issues related to using analytical and AI-based meth-
ods, it is required to simplify the WPP sizing and siting in distribution systems using more
efficient and accurate approaches. As a suitable approach for WPP sizing in the distribution
systems, the author in [5] developed a mathematical relation between VPCC and SCR for a
test system with 0 ≤ SCR ≤ 2.5. Referring to [5], VPCC can be taken as a quadratic function
of SCR. However, the equation proposed in [5] did not consider the relation between VPCC
and X/RPCC ratio. Given the significant effect of the X/RPCC ratio on VPCC stability, the
lack of consideration of the relationship between these parameters adversely impacts the
accuracy and validation of the relation proposed in [5]. In addition, in the majority of actual
distribution networks, the SCR value is more than 2.5 [16]. Given that the mathematical
model has been tested for 0 ≤ SCR ≤ 2.5, the validity of the proposed relation in [5] for
a system with SCR > 2.5 is ambiguous. The aforementioned issues concerned with the
mathematical relation proposed in [5] were addressed and removed by a more compre-
hensive mathematical model proposed in our previous work presented in [1]. The model
expressed the mathematical relation between the VPCC variation, SCR and X/RPCC ratio for
various test distribution networks connected to induction generator (IG) and doubly-fed
induction generator (DFIG)-based WPPs. For IG-based WPPs, two mathematical relations
were developed regarding the range of the X/RPCC: an exponential function for WPPs with
the X/RPCC < 2 and a quadratic function for WPPs with the X/RPCC > 2. Furthermore, for
DFIG-based WPPs, a mathematical relation was developed considering that the X/RPCC < 2.
The mathematical method presented in [1] is one of the most valuable and comprehensive
approaches expressing the relationships between VPCC and the main PCC parameters of
distribution network connected WPPs. Such a mathematical model enables the prediction
of the key VPCC stability criteria, including VPCC profile, step-VPCC variation and maximum
permissible size of WPP. Taking advantage of the predicted VPCC parameters, the design
engineers can easily find the best bus for the interconnection of a WPP without carrying
out complex and time-demanding computational tasks and simulating the test systems.
However, the results obtained in [1] demonstrated that the accuracy of the mathematical
relations is adversely impacted when SCR and X/RPCC ratios are small. In addition, for
IG-based WPPs, the accuracy of the proposed relations is low when the X/RPCC is around
2. Hence, although the method proposed in [1] simplifies the WPP siting and sizing process
compared to the other existing methods, its accuracy is impacted by small SCR and X/RPCC
ratios, which, in turn, limits the method applicability. To address this issue and increase the
prediction accuracy, the mathematical model proposed in [1] was replaced by a decision
tree algorithm-based method in this paper. Therefore, in this work, a decision tree algo-
rithm method was developed to model the relation between VPCC variation (dVPCC), SCR
and X/RPCC. The input parameters of the proposed decision tree-based model are SCR and
X/RPCC, which are the baseline characteristics of distribution feeders and easily available
in any power system network. Using the values of input parameters, the model precisely
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predicts the Pwind-dVPCC characteristic, which can then be used for optimal WPP siting
and sizing. The decision tree algorithm is one of the supervised learning algorithms and
can be implemented for regression and classification problems [17]. The accuracy of the
decision tree algorithm in predicting output parameters is enhanced by training decision
trees with a large training data set [17]. In this study, the X/RPCC-dVPCC data points were
initially obtained using simulation test systems with different SCR values. Later on, the
simulation results were extended to enlarge the training data set. The extended data were
then used to develop the decision tree algorithm-based model. The proposed decision
tree-based model enables to plot Pwind versus dVPCC and provides the design engineer
with insightful information to carry out an initial predictive assessment on the key power
quality parameters at the PCC of WPPs, including VPCC profile, and maximum permissible
power can be injected into the distribution network (Pwind_max). Taking advantage of the
power quality parameters predicted by the proposed decision tree algorithm, WPP plan-
ning engineers can easily estimate the optimal size of WPP and select the most appropriate
site for the interconnection of WPP to distribution networks where the voltage stability
requirements defined by the grid codes are provided with very high accuracy. Hence, the
main contribution of this work to the existing knowledge is to simplify the WPP sizing and
siting analysis as well as achieving a noticeable higher accuracy compared to the similar
methods recently published in the literature. The aims of this study were to:

• Develop a novel voltage stability decision tree algorithm-based model predicting the
key power quality components at a given PCC bus, i.e., VPCC and Pwind, based on the
values of SCR and X/RPCC seen at that bus;

• Simplify the siting and sizing of IG- and DFIG-based WPPs in weak distribution network;
• Increase the prediction accuracy compared to the voltage stability mathematical model

presented in [1].

The paper structure is as follows: Section 2 outlines and discusses the methodology
and different steps followed to develop the decision tree algorithm-based model. Section 3
presents the validation results obtained and compares the accuracy of the proposed model
with similar previous techniques. Section 4 explains the significance and novelty of the
work and its application in predicting the key voltage stability criteria and analyzing the
WPP siting and sizing. Finally, Section 5 summarizes the highlights of this work.

2. Methodology

The overall methodology used in developing the decision tree algorithm for predicting
the aforementioned power quality parameters is presented as follows:

• Data collection and extension: In this study, the X/RPCC-dVPCC characteristics were
required for test systems with different SCR ratios. For this purpose, the X/RPCC-
dVPCC data points were obtained simulating the test systems from authors’ previous
work presented in [1]. As discussed earlier, the higher accuracy of the prediction
can be achieved by increasing the number of data points. However, the size of
simulation data obtained by the test systems is small due to the limited capability of
the MATLAB/Simulink solver in providing X/RPCC-dVPCC data points. Hence the
obtained simulation data were then extended to obtain large training data set. In this
work, the extension of simulation data was conducted using Microsoft Excel.

• Developing decision tree algorithm: The extended data were then trained in the
decision tree in the MATLAB (version 2014a developed by MathWorks) to formulate a
model for predicting dVPCC using the values of SCR and X/RPCC. Boosted regression
decision tree was utilized to predict the voltage profile from given network parameters
(SCR and X/RPCC).

2.1. Data Collection and Extension

Modeling of decision tree requires a training data set based on which it creates a model
for the prediction of unknown feature from known features [18]. The aim of this study
was to develop a model that predicts voltage variations in response to changes in wind



Energies 2021, 14, 2293 5 of 24

power generation (Pwind) at a given PCC bus with specific SCC and X/R values. Hence, to
develop such a predictive model, it is required to obtain a training data set, which includes
X/RPCC-dVPCC values for a range of SCR ratios. In this study, the initial training data
set was obtained using four simulation test systems considered in the authors’ previous
work presented in [1]. The test systems were simulated based on the IEEE 9-bus and IEEE
37-bus distribution network models. Given that the power quality issues in distribution
network-connected WPPs are mainly related to the PCC sites with SCR < 10, the SCR range
considered in this study is 4 < SCR < 10. In addition, the range of the X/RPCC considered is
based on the analysis results gained using actual distribution systems presented in [19].

In this study, the analysis was carried out for both IG and DFIG-based WPP. Figures 1
and 2 show the single-line block diagram of the test systems. The specifications of the test
systems were discussed and presented in the authors’ previous work available in [1].

Figure 1. 37-bus test distribution system, Reprinted from ref. [1].

Figure 2. Nine-bus test distribution system, Reprinted from ref. [1].



Energies 2021, 14, 2293 6 of 24

As shown in Figures 1 and 2, the PCC site in the 37-bus and 9-bus test systems are Bus
6 and Bus 9, respectively. The lengths of the lines are different among the four test systems
considered resulting in different SCC and SCR values. For each test system, the SCC, Pwind
and the corresponding SCR values are as presented in Table 1.

Table 1. Test distribution system model parameters.

Case Study Topology Isc (kA) SCC (MVA) Pwind (MW) SCR

Test 1 IEEE 37-bus system 0.95 36 9 4
Test 2 IEEE 37-bus system 1.42 54 9 6
Test 3 IEEE 37-bus system 1.89 72 9 8
Test 4 IEEE 9-bus system 0.71 27 3 9

From Table 1, it can be observed that Test 1 is weaker than the other test systems as it
has the lowest SCR value. On the other hand, the highest SCR value is related to Test 4,
making this test system stiffer than the other systems considered.

For each test system shown in Table 1, the X/RPCC ratio was changed to monitor the
corresponding VPCC value, while the values of SCC, Pwind and SCR are constant. Having
the X/RPCC-dVPCC data points, the VPCC variation was calculated using (3).

dVPCC = VPCC −Vinitial, (3)

where VPCC signifies the PCC voltage value after the Pwind is generated and injected into
the test distribution systems and Vinitial is the PCC voltage value before the WPP connection
when the Pwind = 0.

Referring to [1], the Vinitial value at the PCC of test systems was considered to be 0.98 p.u.
Figures 3 and 4 show the X/RPCC-dVPCC characteristics for the IG and DFIG-based

test WPPs, respectively.

Figure 3. X/RPCC–dVPCC characteristics curves of IG-based WPPs [1].



Energies 2021, 14, 2293 7 of 24

Figure 4. X/RPCC–dVPCC characteristics curves of DFIG-based WPPs [1].

As discussed, for the X/RPCC-dVPCC curve characteristics presented in Figures 3 and 4,
the mathematical functions of graphs with the best fit were developed in [1]. However,
as discussed by the authors in [1], the prediction error of the method presented in [1] is
high for interconnection points with a small SCC, SCR and X/RPCC ratio. In this study, the
mathematical model developed in [1] was replaced by a decision tree algorithm to improve
the prediction accuracy. The algorithm was developed using the X/RPCC-dVPCC data points
presented in Figures 3 and 4. As discussed earlier, to obtain the X/RPCC-dVPCC data points,
in each simulation test system with the characteristics shown in Table 1, the X/RPCC ratio
was changed, and the corresponding dVPCC was monitored. However, MATLAB/Simulink
solver was not able to show the difference in dVPCC value when the X/RPCC was slightly
changed. For example, when the X/RPCC was changed by 1%, the dVPCC value obtained
by the simulation models was constant, meaning that the change in the X/RPCC was not
reflected in the dVPCC value. The limited capability of the MATLAB/Simulink solver in
providing exclusive dVPCC value for each X/RPCC value resulted in collecting a small
number of the X/RPCC-dVPCC data points. Hence, only 15 data points were obtained from
each simulation test system. On the other hand, the prediction accuracy of the algorithm is
increased if the larger data set is used to train the decision tree algorithm [17]. Given that
the number of data points obtained by the simulation models is not sufficient for training
the decision tree algorithm, the data were extended to obtain large training data set.

In this study, Microsoft Excel (Microsoft office 2013 developed by Microsoft) was used
to extend the simulated data by forming a trendline between dVPCC and X/RPCC for each
SCR level. Higher-order polynomials were fitted, maximizing R2 value by trial and error
method. R2 value represents the goodness of fit and lies between 0 and 1. R2 closer to
1 represents a better fit [20] and can represent more data points. The best-fit polynomial
was then utilized to determine dVPCC from the X/RPCC, forming a large dataset for each
SCR level. Finally, the extended X/RPCC-dVPCC data were obtained for both IG- and
DFIG-based WPPs, as shown in Figures 5 and 6, respectively.
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Figure 5. Extended X/RPCC–dVPCC data for IG-based WPPs.

Figure 6. Extended X/RPCC–dVPCC data for DFIG-based WPPs.

The dataset presented in Figures 5 and 6 contains a large dataset (on average 500 data
points for each test system), which is appropriate to be used as training data set in the
next step.

2.2. Decision Tree Algorithm

The decision tree algorithm is one of the machine-learning (ML) algorithms, which de-
velops regression or classification models forming a tree structure [21]. The model is
trained to predict the class or value of a target parameter using learning decision rules
inferred from prior data (training data) [22]. As discussed, the better prediction accuracy
of the decision tree-based model can be achieved by using larger training data set [17].
The training data set must contain the values of feature and response variables. Feature
variables are those, which are being given to the model as input and the response variable
is the model output.



Energies 2021, 14, 2293 9 of 24

As discussed in the previous section, the proposed decision tree-based model is
developed using the training data set containing 90% of extended values of the X/RPCC-
dVPCC obtained for each SCR value shown in Figures 5 and 6, whereas 10% of extended
data were set aside as test data set.

The block diagram of the proposed algorithm is presented in Figure 7.

Figure 7. Proposed decision tree algorithm.

As shown in Figure 7, the input parameters of the proposed model are X/RPCC
and the ratio between SCC and Pwind, i.e., SCR. The model can predict the Pwind-dVPCC
characteristic curve using the value of input parameters.

In this study, MATLAB (MATLAB R2014a developed by MathWorks) was used to
create the decision tree algorithm. This study aimed to develop a model from a numerical
set of data, which suits the regression tree model. An ensemble-learning was utilized for
training decision trees with “input variables” and “response variables” provided in the
extended datasheet. Ensemble learning provides the best solution using multiple learning
algorithms to increase the efficiency of the prediction [23].

To develop the decision-tree algorithm in MATLAB, it is required to accurately define
the values of algorithm parameters. The minimum number of training data per leaf of the
decision tree is denoted by minimum leaf size. Large minimum leaf size values increase
the prediction error, and small values lead to overfitting [18]. The value of minimum leaf
size should be at least 5 to prevent noises due to overfitting, while an increase in the leaf
size will start deviating from the actual pattern of the data and increases the prediction
error [18]. The losses in the decision tree model from the actual pattern of data can be
determined using the MATLAB function “loss()”. As an example, when the minimum leaf
size is increased from 5 to 10, the value calculated by loss() function is increased, which
indicates that the developed model skewed from the actual pattern. Hence, in this study,
the value of minimum leaf size was considered to be 5 to ensure that the actual pattern
of the data is reflected in the prediction. The other decision tree parameters should be
selected, which provides a better prediction for the regression data. Furthermore, the least
square boosting method (“LSBoost”) was selected for boosting the decision tree algorithm.
The pseudo-code for developing the decision tree algorithm is provided in Table 2.
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Table 2. Pseudo-code for developing the prediction of voltage profile using decision tree.

Step Pseudo Code Description

1. Load IG_data/DFIG_data (extended) The table that contains extended data (SCR, X/RPCC,
dVPCC) is loaded as training data set.

2. Feature variable (input)← SCR,X/RPCC Assign feature and response variable
response variable (output)← dVPCC

3. T← template tree (min leaf size = 5) Create a template tree having a minimum number of data
points in a leaf = 5

4.
model← fit regression tree (SCC, X/RPCC, dVPCC)

Method← least square boosting
number of learning cycles← 100

The ensemble tree is created from training data set using the
least square boosting method and with 100 learning cycles

5. Prompt SCC, X/RPCC Request input from the user

6. Pwind ← [SCC/SCR]
Input = (SCR, X/RPCC) Find power points for respective SCR values

7. [dVPCC] = predict (Igmodel, Input) Predict the response variable (dVPCC) from features (SCR,
X/RPCC)

8. Plot (Pwind, dVPCC) Plot variation in voltage profile with the amount of
penetrated power

3. Results and Discussion

This section provides the analysis studies carried out to verify the accuracy of the pro-
posed decision tree-based model in predicting the Pwind-dVPCC characteristic for different
test systems. In this regard, the Pwind-dVPCC characteristics plotted by the proposed model
were compared with the reference characteristics given by the IEEE test systems presented
in Figures 5 and 6. In addition, the Pwind-dVPCC characteristics gained by the proposed
decision tree algorithm-based model were compared with the results obtained by one of
the most efficient methods presented in [1], which is capable of simplifying the WPP sizing
and siting. Both IG and DFIG-based WPPs were considered in the verification analysis.

3.1. IG-Based WPPs

Nine test systems were considered with different SCC and X/RPCC values, as shown
in Table 3.

Table 3. Test distribution parameters for IG-based test systems.

Test No. SCC X/RPCC

1 35 0.7
2 70 0.6
3 15 0.5
4 18 0.4
5 33 0.75
6 20 1.2
7 30 1.5
8 17 1.9
9 27 2.1

For each scenario, the considered test system was run to obtain the dVPCC for various
Pwind values. Having the simulation results, the reference Pwind-dVPCC characteristic
was plotted for each scenario. In addition, the Pwind-dVPCC characteristics were obtained
for each scenario using the decision tree-based model developed in this paper and the
mathematical model proposed in [1] considering the SCC and X/RPCC ratios presented
in Table 3. Given that the analysis was carried out for the IG-based WPP, the following
equations were depicted from [1] to calculate dVPCC.

dVPCC = 0.0912e(−0.29×X/RPCC× SCC
Pwind

)
+ 0.0067 For the X/RPCC < 2 (4)
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dVPCC = 0.0013− 0.0427
(

X/RPCC ×
Pwind
SCC

)
+ 0.002

(
X/RPCC ×

Pwind
SCC

)2
For the X/RPCC > 2 (5)

Figure 8a–i shows the results obtained for the scenarios stated in Table 3.

Figure 8. Cont.
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Figure 8. (a–i): Pwind–dVPCC for IG-based test systems.

As shown in Figure 8a–i, for all scenarios considered in Table 3, the Pwind-dVPCC
characteristics predicted by the decision tree-based model developed in this paper follow
the reference graphs obtained by the simulation test models even when the large wind
power generation weakens the PCC feeder. As discussed earlier, at the weak PCC sites, the
large wind power penetration makes the SCR value small. Hence, the small SCR values do
not adversely impact the accuracy of the proposed model in predicting the Pwind-dVPCC
characteristics. On the other hand, the results demonstrate that the curves predicted by the
mathematical relations proposed in [1] largely deviate from the reference graphs, especially
when the SCR value is small due to the large wind power generation. Hence, as the authors
mentioned in [1], the accuracy of the mathematical model is adversely impacted at weak
PCC where the grid’s SCC and SCR are small. For example, referring to Figure 8c,d related
to the results for the scenarios with the small grid’s SCC, i.e., Scenario 3 with an SCC of
15MVA and Scenario 4 with an SCC of 18 MVA, the highest error between the reference
graphs and the characteristics predicted by the proposed decision tree algorithm is less
than 0.5%. However, Figure 8c,d show that the error between the reference curve and the
curve predicted by the equations proposed in [1] is more than 1% when the wind power
generation is around 4 MW, which corresponds to the SCR of around 4.

One of the other advantages of the proposed decision tree-based model over the math-
ematical method developed in [1] is to provide significantly high accuracy in predicting
the Pwind-dVPCC characteristic when the X/R ratio is around 2. From the results presented
in Figure 8h,i related to the scenarios with X/R ratio close to 2, i.e., Scenarios 8 and 9,
it shown that the error between the curves plotted by the decision tree-based model and
the corresponding reference curves is negligible. However, the results in Figure 8h,i show
that curve characteristics plotted by the mathematical model noticeably deviate from the
reference graphs when the X/RPCC ratio is around 2, and the wind power generation
is large.

Generally, the results in Figure 8a–i demonstrate that the Pwind-dVPCC characteristics
plotted by the proposed decision tree-based model follow the corresponding reference
graphs for different ranges of the X/RPCC ratio and wind power penetration, whereas the
accuracy of the mathematical model in predicting the characteristics is decreased when
wind power generation is increased and/or the X/RPCC ratio is around 2.

3.2. DFIG-Based WPPs

This section discusses the analysis conducted to validate the accuracy of the decision
tree-based model developed in this work in predicting the Pwind-dVPCC characteristics
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for the DFIG-based WPPs. Nine test systems were considered with the SCC and X/RPCC
values shown in Table 4.

Table 4. Test distribution parameters for DFIG-based test systems.

Test No. SCC X/RPCC

1 16 1
2 25 0.45
3 45 0.75
4 35 0.7
5 23 0.85
6 45 0.6
7 15 1.2
8 27 1.7
9 34 1.9

Similar to the verification studies carried out for the IG-based WPPs, for each test
system shown in Table 4, the curves predicted using the proposed model are compared
with the reference curves obtained using the simulation results and the curves plotted by
the mathematical model proposed in [1]. Referring to [1], for the DFIG-based WPPs, the
dVPCC is given by:

dVPCC = 0.01 + 0.101× e(−0.347×SCR×X/RPCC) (6)

Figure 9a–i show the results gained for the test systems stated in Table 4.
Referring to Figure 9a–i, the prediction of the Pwind-dVPCC characteristics using the

proposed decision tree-based model has a minimal error, while the error between the
reference and predicted results are noticeable in most cases when the graphs are plotted
using the mathematical equation. The results shown in Figure 9b related to the scenario
with the smallest X/R (Scenarios 2) confirms the discussion presented in [1] regarding
the low prediction accuracy of the mathematical equation for weak PCC sites with a
small X/RPCC ratio. From Figure 9b, the error between the reference results gained by
the simulation models and the graphs predicted by the mathematical model is over 1%
when the wind power penetration is large, whereas the graph plotted using the proposed
decision tree algorithm precisely tracks the reference curve characteristic for any level
of wind power penetration. From Figure 9e, it can be seen that the highest error of the
proposed decision tree-based model in predicting the Pwind-dVPCC curve characteristic is
less than 0.5% in Scenario 5, while the error is greater than 1% in this scenario when the
characteristic is predicted using the mathematical relation.

Figure 9. Cont.
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Figure 9. (a–i) Pwind–dVPCC for DFIG-based test systems.

The next section compares the model proposed in this work with the mathematical
model developed in [1] by calculating the exact value of the prediction error (PE) for each
IG and DFIG-based scenario presented in Tables 3 and 4.

3.3. Comparison of Decision Tree Model and Mathematical Model for Different Ranges of X/RPCC

To compare the prediction accuracy of the decision tree-based model proposed in this
paper and the mathematical method developed in [1], the error between the predicted and
reference Pwind-dVPCC characteristics, so-called prediction error (PE), was evaluated for
the scenarios considered in Tables 3 and 4. For each scenario, the prediction error is given
by (7) [24]:

P.E. =
1
N

N

∑
i=1

(∆VP − ∆Vr)
2 (7)

where:

N is the number of the Pwind-dVPCC data points;
∆Vp expresses the dVPCC value obtained by the predictive models, i.e., the decision tree-
based model proposed in this paper and the mathematical model presented in [1], given
the Pwind value;
∆Vr expresses the reference dVPCC obtained using the test simulation systems for each
level of wind power penetration.

As an example, the PE values of both the proposed decision tree algorithm and
mathematical model developed in [1] were calculated for test system 2 in Table 3, as shown
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in (8) and (9). The curve characteristics shown in Figure 8b were used to find the ∆Vp and
∆Vr values, as shown in Table 5.

Table 5. The Pwind-dVPCC data points for test system 2 in Table 3.

N Pwind
∆Vp
(%)

∆Vr Related to the Proposed
Decision Tree-Based Model

(%)

∆Vr Predicted by the
Mathematical Model Proposed [1]

(%)

1. 7 2.0312 2.0302 2.2707
2. 11.67 3.158 3.1583 3.88
3. 17.5 3.5325 3.5381 5.217

Prediction error for the proposed decision tree-based model:

P.E. =
1
3

{
(2.030− 2.031)2 + (3.158− 3.158)2 + (3.538− 3.532)2

}
= 1.07085E− 5 (8)

Prediction error for the mathematical model presented in [1]:

P.E. =
1
3

{
(2.270− 2.031)2 + (3.880− 3.158)2 + (5.217− 3.532)2

}
= 1.138728 (9)

To address the randomness of the prediction by decision tree algorithm, 3 tries were
performed for each test system mentioned in Tables 3 and 4, and the PE value was consid-
ered to be the mean value of the tries.

Figures 10 and 11 show the PE values calculated for the IG and DFIG-based test
systems, respectively.

For the IG-based scenarios, the PE values resulted from the proposed decision tree
algorithm are negligible for any X/RPCC ratios, whereas the maximum prediction error
of the mathematical model is 2.5% when the X/RPCC ratio is around 2. This confirms the
findings discussed in Section 3.1 that the accuracy of the mathematical model is adversely
impacted when the X/RPCC ratio tends to 2.

Figure 10. Comparison of the prediction error of the decision tree algorithm and mathematical model
for IG–based WPPs.
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Figure 11. Comparison of the prediction error of the decision tree algorithm and mathematical model
for DFIG–based WPPs.

For the DFIG-based scenarios, the maximum PE of the proposed decision tree algo-
rithm is less than 0.1% in the scenarios with a small X/RPCC ratio. However, the maximum
P.E value of the mathematical method is 1%, which occurred in the scenario with the
smallest X/RPCC ratio. Therefore, as mentioned in the previous section, the accuracy of
the mathematical model in predicting the Pwind-dVPCC characteristics is low at the inter-
connection sites with a small X/RPCC ratio, while the proposed decision tree algorithm
overcomes this issue.

4. Significance of the Proposed Decision Tree-Based Model

The decision tree-based model proposed in this study encompasses the advantages of
the similar methods proposed for simplifying the WPP sizing and siting, while it signif-
icantly provides higher accuracy. Referring to the results shown in the previous section,
the proposed model enables to accurately predict the Pwind-dVPCC characteristic for any
X/RPCC ratio and SCC and SCR values. Consequently, for a potential WPP interconnection
site, design engineers can calculate the VPCC profile given the Vinitial value using (3) and
plot the Pwind versus VPCC profile characteristic.

For example, Figures 12 and 13 show the Pwind-VPCC characteristic for one of the
IG-based scenarios (Scenario 4 in Table 3) and one of the DFIG-based scenarios (Scenario 2
in Table 4), respectively. The Vinitial value at the PCC of test systems used for the scenarios
considered in Figures 12 and 13 is 1 pu and 0.98 pu, respectively.

As mentioned in Section 1, the VPCC profile must be maintained between 95% and
105% of the network nominal voltage to satisfy the steady-state voltage stability require-
ments defined by the grid codes [3]. Therefore, after plotting the VPCC-Pwind characteristics
for the potential WPP interconnection sites, designers and planners can determine the best
PCC site, where the X/RPCC and SCC values ensure that the grid code requirements are
concerned with the magnitude of steady-state VPCC are met.

In addition, the prediction of the Pwind-dVPCC characteristic using the proposed model
enables to estimate the maximum permissible size of WPP, called Pwind_max, ensuring
that the steady-state VPCC requirements defined by the grid codes would be satisfied.
For example, from Figures 12 and 13, the Pwind_max values at the PCC of the test system
considered are 3.6 MW and 5.2 MW, respectively. The results presented in Figures 12 and 13
confirm that the predicted Pwind_max gained by the proposed decision tree algorithm
literally tracks the reference Pwind_max values obtained by the simulation models.
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Figure 12. Voltage profile for IG-based WPPs for Scenario 4 in Table 3.

Figure 13. Voltage profile for DFIG-based WPPs for Scenario 2 in Table 4.

Referring to Section 1, most works published in the literature regarding DG siting and
sizing rely on the simulation of whole distribution networks with complicated structures
and/or carrying out complex and time-consuming computational tasks. The authors’
previous work proposed an efficient mathematical method for simplifying WPP siting
and sizing by removing the need to simulate the whole test system and conduct com-
plex calculations [1]. However, the accuracy of the proposed mathematical method was
limited. For the IG-based WPPs, the accuracy of the mathematical model in predicting
the Pwind-VPCC curve characteristic is reduced as the SCR is decreased or the value of
the X/RPCC moves toward 2. In addition, for the DFIG-based WPPs, the accuracy of the
mathematical model in predicting Pwind-VPCC characteristics is low if the PCC site has a
small X/R ratio. The proposed decision tree-based model addressed the aforementioned
issues by simplifying the WPP sizing and siting through predicting Pwind-VPCC character-
istics with noticeably high accuracy. Similar to the mathematical model developed in [1],
the model proposed in this paper requires only two PCC parameters, i.e., X/RPCC and SCC,
to predict the Pwind-VPCC characteristics. The predicted Pwind-VPCC characteristic can be
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used for optimal WPP sizing and siting. Given that the X/RPCC and SCC are the baseline
characteristics of a distribution feeder, their values are generally available or can easily
be calculated using fundamental power system analysis methods. More importantly, the
verification results shown in Section 3 demonstrated that the proposed decision tree-based
model eliminates the issues concerned with the limited accuracy of the mathematical model
presented in [1] by providing a negligible prediction error for any SCR and X/RPCC ratios.

5. Conclusions

In this study, a novel decision tree algorithm-based model was developed to predict
the voltage behavior in response to the wind power injection at a potential feeder for
connecting IG and DFIG-based WPPs in a distribution network. For this purpose, the
proposed model enables to plot wind power versus PCC voltage (Pwind-VPCC) characteristic
at a given potential interconnection point using the distribution system baseline parameters
seen at that point, including SCC and X/RPCC. Taking advantage of the plotted Pwind-VPCC
characteristic, design engineers can carry out an initial predictive assessment on the critical
voltage stability criteria, including VPCC value and Pwind_max, to determine the optimal
WPP connection site and its maximum permissible size ensuring the grid code requirements.
The proposed model simplifies the siting and sizing of WPPs by removing the need
to simulate the whole distribution system and performing computational calculations,
which is one of the main advantages of the proposed model over the majority of existing
approaches. In addition, the proposed model was benchmarked against one of the latest
mathematical methods developed for simplifying WPP sizing and siting to affirm its
accuracy in predicting the Pwind-VPCC characteristic and voltage stability criteria.

For the IG-based WPPs, the verification results gained using the mathematical method
demonstrated that the error between the predicted and reference results was large when
SCR is small (SCR≤ 4). However, the largest error between the reference characteristics and
the corresponding curves plotted by the proposed decision tree algorithm was ignorable
even when the PCC site was weak, and its SCR was smaller than 4. In addition, for the
IG-based WPPs, the prediction accuracy of the mathematical model in predicting Pwind-
dVPCC curve characteristics is around 2.5% when the X/RPCC ratio tends to 2, whereas
the curves predicted by the proposed decision tree algorithm precisely track the reference
characteristics when the X/RPCC ratio is around 2.

For the DFIG-based WPPs, the proposed model sorted out the issue of the mathematical
model regarding low prediction accuracy when the X/R ratio is small. In this respect,
the highest prediction error between the reference results and the data predicted by the
mathematical model was around 1% when the X/RPCC ratio is around 0.5, while the proposed
model provided an accuracy of almost 100% over the whole range of the X/RPCC ratio.

Generally, the verification studies demonstrated the proposed decision tree-based
model is superior to the previous similar methods. In this study, the test systems used for
the verification analysis were based on IEEE standard distribution network models, which
other researchers widely use for conducting power system analysis. The proposed model
was developed considering a number of practical factors to increase the accuracy of the
proposed model for actual applications. This includes developing the proposed model
using the real-world range of the X/RPCC and reducing the uncertainty due to the load
deviations by considering the Vinitial parameter. In addition, the validation of the presented
model using actual systems is important and will be addressed in future studies to further
complement this research. The practical verification of the proposed model requires the
values of VPCC, X/RPCC and SCC obtained from an actual distribution network. However,
the authors did not have access to such values. In addition, simulation and modeling the
real-world distribution systems require using professional engineering software, such as
PSS/e, which is not currently available to the authors. Therefore, as one of the extensions
to this research, the authors intend to validate the proposed model using an actual case
where a wind power plant is being proposed for further integration.
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Nomenclature

IG Induction generator
Isc Short-circuit current
DFIG Double-fed induction generator
dVPCC Voltage variation concerning the voltage value before wind power plant connection

at the point of common coupling
PE Prediction error
PCC Point of common coupling
Pwind Power generated by wind power plant
SCC Short-circuit capacity
SCR Short-circuit ratio
Vinitial Voltage at distribution feeder before the connection of wind power plant
WPP Wind power plant
X/RPCC Short-circuit impedance angle ratio seen at the point of common coupling
Zsc Short-circuit impedance
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