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Abstract: Turbulent jet ignition technology can significantly improve lean combustion stability and
suppress engine knocking. However, the narrow jet channel between the pre-chamber and the
main chamber leads to some difficulties in heat exchange, which significantly affects combustion
performance and mechanical component lifetime. To clarify the effect of temperature conditions on
combustion evolutions of turbulent jet ignition, direct numerical simulations with detailed chemical
kinetics were employed under engine-relevant conditions. The flame propagation in the pre-chamber
and the early-stage turbulent jet ignition in the main chamber were investigated. The results show that
depending on temperature conditions, two types of flame configuration can be identified in the main
chamber, i.e., the normal turbulent jet flame propagation and the spherical flame propagation, and
the latter is closely associated with pressure wave disturbance. Under low-temperature conditions,
the cold jet stoichiometric mixtures and the vortexes induced by the jet flow determine the early-stage
flame development in the main chamber. Under intermediate temperature conditions, pre-flame
heat release and leading pressure waves are induced in the jet channel, which can be regarded as a
transition of different combustion modes. Whereas under high-temperature conditions, irregular
auto-ignition events start to occur, and spherical flame fronts are induced in the main chamber,
behaving faster flame propagation.

Keywords: turbulent jet ignition; ignition characteristics; temperature conditions; combustion modes;
pressure wave

1. Introduction

Lean combustion has an enormous potential in improving thermal efficiency while re-
ducing pollution emissions [1,2]. However, lean combustion often suffers from combustion
instabilities due to poor ignition robustness and slow flame propagation. Therefore, various
ignition enhancement technologies have been proposed, including plasma ignition [3], laser
ignition [4], and turbulent jet ignition [5,6]. Among them, turbulent jet ignition can enhance
turbulence, and it extends combustion limits as well as engine knocking inhibition [7,8].

Turbulent jet ignition has been extensively studied during the past decade. On the
experimental side, the effect of spark-ignition position [9], nozzle geometry [10,11], and the
number of jet nozzles [12] on turbulent jet ignition systems have been studied. With the
development of ignition and combustion technology, the turbulent jet ignition system (i.e.,
pre-chamber) becomes generally small in volume (only 1~5%). Due to the difficulties in ex-
periments, most relevant studies have been conducted using numerical simulations [13–16].
Reddy et al. [17] numerically found that the flame kernel size in the pre-chamber did not
play any role in ignition processes when flame diameter reached a critical threshold. Qin
et al. [18] numerically studied ignition and flame propagation characteristics, and they
found that the primary influence of the pre-chamber on the main chamber was mainly
ascribed to seeding unburned mixture, intermediate radicals, and promoting turbulent
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flame propagation. Recently, Validi et al. [19,20] numerically observed an extensive lo-
calized fame extinction and re-ignition event in the ultra-lean mixtures through direct
numerical simulations.

In the above studies, useful insights into ignition and combustion characteristics have
been provided. However, few studies address the influence of temperature conditions on
turbulent jet ignition, which can significantly affect combustion performance at a wide
range of conditions. In the actual engines, the pre-chamber and the main chamber are
connected through narrow jet orifices, which inevitably results in poor heat exchange and
thereby a high-temperature condition in the pre-chamber. The combustion evolutions
will become more complicated, and irregular combustion events may be encountered
(e.g., irregular ignition events [21]). In severe cases, there will be irreversible damage
to pre-chamber components. Besides, pressure wave refection and superposition will
become more prevalent in the confined pre-chamber. However, the role of pressure wave
disturbance in combustion evolutions and turbulent jet ignition remains unclear.

With the above considerations, the objectives of the current work were to clarify the
effect of temperature conditions on the combustion evolutions of turbulent jet ignition,
allowing for pressure wave disturbance. Two-dimensional direct numerical simulations
were employed to investigate the flame development in the pre-chamber and the early-
stage turbulent jet ignition in the main chamber. Hydrogen fuel with fast flame speed
and clear chemistry pathways was employed in the turbulent jet ignition system with a
constant-volume configuration [22,23]. Stoichiometric and lean hydrogen/air mixtures
were filled in the pre-chamber and the main chamber, respectively. The current work may
provide useful insights into the combustion optimization of turbulent jet ignition systems.

2. Computation Modeling and Methodology
2.1. Governing Equations

In this work, the conservation equations for two-dimensional multi-components
unsteady reactive compressible flows were solved in the followings:

∂U
∂t

+
∂F
∂x

+
∂H
∂y

= Schem (1)

U = (ρu, ρv, ρe, ρY1, . . . , ρYN)
T (2)

Schem =
(
0, 0, 0,

.
ω1, . . . ,

.
ωN
)T (3)

F =



ρu2 + p − τxx
ρuv − τxy

(ρe + p)u −
(
uτxx + vτxy − qx

)
ρY1(u − Vx,1)

...
ρYN(u − Vx,N)


(4)

H =



ρuv − τyx
ρv2 + p − τyy

(ρe + p)v −
(
uτyx + vτyy − qy

)
ρY1
(
v − Vy,1

)
...

ρYN
(
v − Vy,N

)


(5)

where ρ, p, u, v, and e are the density, the pressure, the velocity in the x-axis, the velocity in
the y-axis, and the total energy per unit mass, respectively; Yi,

.
ωi, Vx,i, and Vy,i are the mass

fraction, the mass production rate, the diffusion velocity in the x-axis, and the diffusion
velocity in the y-axis of the ith species, respectively; N is the number of species considered.
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The viscous stress tensors can be expressed by:

τxx = µ

(
4
3

∂u
∂x

− 2
3

∂v
∂y

)
(6)

τxy = τyx = µ

(
∂v
∂x

+
∂u
∂y

)
(7)

τyy = µ

(
4
3

∂v
∂y

− 2
3

∂u
∂x

)
(8)

where µ is the kinetic viscosity.
The heat flux is given by:

qx = −k
∂T
∂x

− ρ
N

∑
i=1

hiDi
∂Yi
∂x

(9)

qy = −k
∂T
∂y

− ρ
N

∑
i=1

hiDi
∂Yi
∂y

(10)

where hi is the specific enthalpy of the ith species, k is the coefficient of thermal conductivity,
Di is the diffusion coefficient of the ith species to the rest of the mixture, and T is the
temperature.

The specific enthalpy of the mixture is given by:

h =
N

∑
i=1

Yihi. (11)

The total energy per unit mass is given by:

e = h − p
ρ
+

u2 + v2

2
. (12)

The ideal gas state equation can be expressed by:

p = ρRuT
N

∑
i=1

Yi
Wi

(13)

where Ru is the universal gas constant, and Wi is the molar mass of the ith species. More
information about governing equations can be found in the previous literature [24,25].

2.2. Numerical Methods

In the simulations, the Godunov splitting method was employed to decouple the
chemically reactive source term and hydrodynamic transport equations. A fourth-order
semi-implicit Runge–Kutta method was used for time integration. The second-order
weighted essentially non-oscillatory (WENO) scheme was used for convection terms, and
the second-order central difference (CD) scheme was used for diffusion terms. The struc-
tured mesh with adaptive mesh refinement was employed to resolve the multi-physical
issues involving flame propagation, pressure wave, and turbulence flow. The dynamic time
step was adjusted during computation, and the Courant–Friedrichs–Lewy (CFL) number
was maintained at 0.6. These numerical methods have been extensively adopted in the stud-
ies of auto-ignition, flame propagation, shock wave, and detonation development. More
details on numerical schemes and code validation can be found in the literature [26–30].
Besides, a detailed chemical mechanism for hydrogen oxidation with 9 species and 25
elementary reactions was employed [31].
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2.3. Computation Conditions

Figure 1 shows the structure and geometry parameters. A two-dimensional compu-
tation domain was employed, with a quadrate pre-chamber by 4 × 4 mm, a rectangular
main chamber by 13 × 10 mm, and a rectangular jet nozzle by 1 × 0.5 mm. In this configu-
ration, the area ratio between the pre-chamber and the main chamber was 0.12. Adiabatic
reflective boundary conditions were employed for simulations. The main purpose of the
current work was to clarify the effect of temperature conditions on turbulent jet ignition,
addressing the role of pressure waves and auto-ignition events in flame development.
Since it does not involve quantitative analysis of turbulence but qualitatively explores the
flame-pressure interaction, a simplified two-dimensional model is used [18]. A similar
simplified two-dimensional model has been proven to be reliable [32,33]. Stoichiometric
H2/air mixtures (ϕP = 1.0) were employed in the pre-chamber, and lean mixtures with
ϕM = 0.6 were employed in the main chamber. The spark-ignition was located at the top
center of the pre-chamber, and flame kernel was initiated by a spherical hot-spot with
a radius of 0.75 mm and a homogeneous temperature of 2000 K. Four different initial
temperatures were performed in the pre-chamber, i.e., TP = 900, 1000, 1100, and 1200 K.
Considering the difference in heat exchange capability, the initial temperature of the main
chamber (TM) was lower than the pre-chamber by 40 K. For all simulation cases, the initial
pressure was maintained at P = 8.5 atm. Table 1 gives the initial thermodynamic conditions
for numerical simulations.
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Figure 1. Physical model of the turbulent jet ignition system (unit: mm).

Table 1. Initial thermodynamic conditions of pre-chamber and main chamber.

Cases TP (K) TM (K) P (atm) ϕP ϕM

A 900 860 8.5 1.0 0.6
B 1000 960 8.5 1.0 0.6
C 1100 1060 8.5 1.0 0.6
D 1200 1160 8.5 1.0 0.6

2.4. Independence of Computation Mesh

To demonstrate the independence of computation mesh, four different levels of adap-
tive mesh refinement were performed based on basic mesh size of 40 µm. Figure 2 shows
the evolutions of flame front location predicted by different computation meshes for Case
A. With the adaptive mesh refinement strategy, the smallest mesh size could reach ∆x =
10, 7, 5, and 3 µm, respectively. It was observed that flame propagation was non-sensitive
to the variations of mesh size for the pre-chamber. However, the discrepancy in the flame
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front location became much larger when the flame front reached the jet orifice and the main
chamber. Specifically, the cases with ∆x = 5 and 3 µm almost shared an identical trajectory,
whereas the cases with ∆x = 10 and 7 µm overpredicted flame propagation. Considering
the balance of computation expense and computation accuracy, the smallest mesh size of
∆x = 5 µm with a basic mesh size of 40 µm was eventually adopted. At this resolution, one
case took about 20,160 CPU core-hours with a Cray XE6 cluster.

Energies 2021, 14, x FOR PEER REVIEW 5 of 18 
 

 

non-sensitive to the variations of mesh size for the pre-chamber. However, the discrep-

ancy in the flame front location became much larger when the flame front reached the jet 

orifice and the main chamber. Specifically, the cases with ∆x = 5 and 3 μm almost shared 

an identical trajectory, whereas the cases with ∆x = 10 and 7 μm overpredicted flame 

propagation. Considering the balance of computation expense and computation accuracy, 

the smallest mesh size of ∆x = 5 μm with a basic mesh size of 40 μm was eventually 

adopted. At this resolution, one case took about 20,160 CPU core-hours with a Cray XE6 

cluster. 

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

L
o
c
a
ti

o
n

 a
t 

Y
-a

x
is

 (
m

m
)

Time (s)

 x=10 m

 x=7 m

 x=5 m

 x=3 m

 

Figure 2. Evolutions of flame front location predicted by various computation meshes. 

3. Results 

3.1. Normal Combustion for Turbulent Jet Ignition at Low Temperatures 

Figure 3 shows the contours of temperature, H2 mass fraction, and density gradient 

in the pre-chamber at 𝑇𝑝  = 900 K. It is observed that a normal combustion globally pro-

ceeds under low-temperature conditions. Initially, a semicircular laminar flame is initi-

ated and propagates towards the jet channel. Soon after that, the flame shape quickly de-

velops into an oval shape at 𝑡 =15 μs, which is ascribed to the reflection and superposi-

tion of pressure waves in the confined pre-chamber (as shown by the density gradient 

field). In this process, some pressure waves with the local sound speed pass through the 

jet orifice and arouse obvious disturbance in the stationary main chamber. Meanwhile, 

caused by the thermal expansion of pre-chamber combustion, the release of some cold 

stoichiometric mixtures into the main chamber becomes pronounced (as shown by the H2 

mass fraction field). Subsequently, the flame front becomes wrinkled when the flame front 

approaches the jet orifice at 𝑡 = 37.5 μs due to the hydrodynamic instability caused by 

density disparity across flame fronts. With the development of the flame in the pre-cham-

ber, the cold stoichiometric mixture has a longer propagation distance in the main cham-

ber, and a lot of vortexes are formed in the main chamber (as shown by the density gradi-

ent field). The cold jet mixture will affect the initiation and combustion evolutions in the 

main chamber. 

Figure 2. Evolutions of flame front location predicted by various computation meshes.

3. Results
3.1. Normal Combustion for Turbulent Jet Ignition at Low Temperatures

Figure 3 shows the contours of temperature, H2 mass fraction, and density gradient in
the pre-chamber at Tp = 900 K. It is observed that a normal combustion globally proceeds
under low-temperature conditions. Initially, a semicircular laminar flame is initiated and
propagates towards the jet channel. Soon after that, the flame shape quickly develops into
an oval shape at t = 15 µs, which is ascribed to the reflection and superposition of pressure
waves in the confined pre-chamber (as shown by the density gradient field). In this process,
some pressure waves with the local sound speed pass through the jet orifice and arouse
obvious disturbance in the stationary main chamber. Meanwhile, caused by the thermal
expansion of pre-chamber combustion, the release of some cold stoichiometric mixtures
into the main chamber becomes pronounced (as shown by the H2 mass fraction field).
Subsequently, the flame front becomes wrinkled when the flame front approaches the jet
orifice at t = 37.5 µs due to the hydrodynamic instability caused by density disparity across
flame fronts. With the development of the flame in the pre-chamber, the cold stoichiometric
mixture has a longer propagation distance in the main chamber, and a lot of vortexes are
formed in the main chamber (as shown by the density gradient field). The cold jet mixture
will affect the initiation and combustion evolutions in the main chamber.

Figure 4 shows the contours of temperature, H2 mass fraction, and velocity in the
main chamber at Tp = 900 K. It can be observed that the early-stage combustion evolu-
tions are significantly affected by the distributions of the cold stoichiometric mixtures
released from the pre-chamber. Specifically, a flame tongue comes across the jet orifice
and propagates along with the released stoichiometric mixtures at t = 41 µs. Due to the
previous cold jet, the vortexes are mainly distributed in front of the flame when the flame
enters the main chamber. After that, affected by the shear flow, lots of vortexes appear
at the lateral of jet flame at t = 46 µs, which promotes the mixing and combustion of the
surrounding mixtures. Flame evolution correlates closely with the jet flow and vortex
motion in subsequent processes. The flame front tends to propagate towards the center of
jet flow and then develops along the rotation direction of vortexes at the lateral at t = 51 µs.



Energies 2021, 14, 2226 6 of 17

This is because jet penetration and its induced vortexes initially go far beyond the flame
front location as the local flow velocity reaches a supersonic level in the jet orifice and
downstream (as manifested by the H2 mass fraction). As combustion proceeds, flame shape
and later development proceed along with the vortexes in the front and side of the jet flame.
Eventually, the stoichiometric mixtures from the pre-chamber into the main chamber are
consumed at t = 60 µs, and the lean mixtures at the outlet of the jet orifice and the main
chamber begin to be consumed, featuring lower combustion temperature.
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Case A: Tp = 900 K.
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Tp = 900 K.

To clarify the detailed combustion characteristics of turbulent jet ignition, Figure 5
shows the distributions of temperature, pressure, flow velocity, and heat release rate (HRR)
at different locations along the y-axis. Herein the flow velocity refers to the magnitude of
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velocity. It is seen that after the spark ignition, a flame front is induced in the pre-chamber
and propagates towards the main chamber. Due to the shrinking effect of the jet orifice, the
pressure difference between the pre-chamber and the main chamber increases (reaching a
maximum amplitude over 6 atm), which results in an acceleration in flame propagation
in the jet orifice and downstream. Meanwhile, the pressure difference also causes the
cold jet to be generated, which makes the stoichiometric mixtures enter the main chamber
earlier than the flame. It is worth noting that the local flow velocity continuously increases
during the propagation of flame front from the pre-chamber to the main chamber. The
amplitude of the local flow velocity can be as high as 1000 m/s, depending on the progress
of turbulent jet ignition. Compared with pre-chamber scenarios, the mean combustion
temperature is 500 K lower in the main chamber due to the lean equivalence ratio. Although
the combustion temperature has decreased, the heat release rate at the front of the flame has
not decreased significantly because the stoichiometric mixtures previously released into the
main chamber have not been exhausted. The flame front is characterized as deflagration as
the peak of the HRR stays at 1 e13 J/m3/s.

Energies 2021, 14, x FOR PEER REVIEW 8 of 18 
 

 

1000

2000

3000

4

8

12

16

0

400

800

1200

0 1 2 3 4 5 6 7 8 9 10

10
10

10
11

10
12

10
13

Main-chamberOrificePre-chamber

T
em

p
er

a
tu

re
 (

K
)

P
re

ss
u

re
 (

a
tm

)
V

el
o
ci

ty
 (

m
/s

)

 5μs       38.5μs

 15μs     41μs

 37.5μs  46μs

H
R

R
 (

J
/m

3
/s

)

Distance (mm)  

Figure 5. Distributions of temperature, pressure, flow velocity, and heat release rate (HRR) at dif-

ferent locations along the y-axis for Case A: 𝑇𝑝  = 900 K. 

3.2. Pre-Flame Heat Release in Jet Nozzle at High Temperatures 

Different from the normal combustion at low temperatures, pre-flame heat release 

may be encountered in jet orifice as the initial temperature is elevated, which then affects 

subsequent combustion processes. Figure 6 shows the distributions of pressure and heat 

release rate in the jet orifice and the main chamber. Herein the heat release of 0~1 e6 J/m3/s 

is plotted to give a better vision for the local ignition kernels. When the flame passes 

through the jet nozzle, two small areas of heat release appear in front of the flame, and 

their pressure increases significantly at 𝑡 =  28 μs. As the flame propagates, the heat re-

lease in the area is increased, and obvious pre-flame heat release is observed in the outlet 

of the jet orifice. The unburned mixture releases a large amount of heat, and then the ex-

pansion of the gas causes a local high-pressure region to be formed in front of the flame 

at 𝑡 =  30 μs. The pressure difference in the high-pressure region and the surrounding 

region will affect the flow velocity and the flame shape. It is worth noting that the above 

combustion behavior only occurs at a sufficiently high temperature (e.g., 𝑇𝑝  = 1100 K), 

where ignition delay is much sensitive to the variations of thermodynamic conditions. 

Similar observations can also be found in the previous work [34] in which a pre-flame 

ignition, affected by pressure wave disturbance, occurs at the location adjacent to the 

flame front as the initial temperature is elevated up to 1100 K, which then induces a su-

personic reaction wave propagation. 

Figure 5. Distributions of temperature, pressure, flow velocity, and heat release rate (HRR) at different
locations along the y-axis for Case A: Tp = 900 K.

3.2. Pre-Flame Heat Release in Jet Nozzle at High Temperatures

Different from the normal combustion at low temperatures, pre-flame heat release
may be encountered in jet orifice as the initial temperature is elevated, which then affects
subsequent combustion processes. Figure 6 shows the distributions of pressure and heat
release rate in the jet orifice and the main chamber. Herein the heat release of 0~1 e6 J/m3/s
is plotted to give a better vision for the local ignition kernels. When the flame passes
through the jet nozzle, two small areas of heat release appear in front of the flame, and
their pressure increases significantly at t = 28 µs. As the flame propagates, the heat
release in the area is increased, and obvious pre-flame heat release is observed in the outlet
of the jet orifice. The unburned mixture releases a large amount of heat, and then the
expansion of the gas causes a local high-pressure region to be formed in front of the flame
at t = 30 µs. The pressure difference in the high-pressure region and the surrounding
region will affect the flow velocity and the flame shape. It is worth noting that the above
combustion behavior only occurs at a sufficiently high temperature (e.g., Tp = 1100 K),
where ignition delay is much sensitive to the variations of thermodynamic conditions.
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Similar observations can also be found in the previous work [34] in which a pre-flame
ignition, affected by pressure wave disturbance, occurs at the location adjacent to the flame
front as the initial temperature is elevated up to 1100 K, which then induces a supersonic
reaction wave propagation.
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Figure 6. Contours of pressure and heat release rate of the jet orifice and the main chamber for Case
C: Tp = 1100 K.

To demonstrate the effect of pre-flame heat release on the subsequent flame evolution,
Figure 7 shows the contours of heat release rate and pressure at different initial tempera-
tures. Pre-flame heat release increases the pressure in the region in front of the flame, and
the high-pressure region is subsequently developed into a leading pressure wave of the
jet flame. It is observed that the pressure wave appears in different positions around the
flame for Case A and Case B, while the pressure wave appears in front of the flame and
propagates stably for Case C. The flame tends to develop longitudinally at the early-stage
combustion for Case A and Case B, whereas the leading pressure wave makes the flame
tends to develop horizontally for Case C. To clarify the underlying reasons, Figure 8 shows
the horizontal flow velocity (the component of the flow velocity on the x-axis) and the
pressure distribution at t = 32 µs for Case C. It can be observed that the horizontal velocity
of Case C is 50 m/s greater than that of Case A, and the peak velocity immediately follows
the leading pressure wave. The leading pressure wave increases the horizontal flow ve-
locity and causes the flame to tend to develop horizontally. As the leading pressure wave
decays, the shape of the flame becomes similar again, as shown in Figure 7. The increase
in temperature causes the lean mixtures in the vortex to ignite faster, and the flame front
develops with smooth curvature.
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3.3. Auto-Ignition in the Pre-Chamber at High Temperatures

With the further increases in the initial temperature, ignition delay time becomes
more sensitive to the variations of thermodynamic conditions, such that auto-ignition
events may occur in the pre-chamber. Figure 9 shows the contours of temperature, H2
mass fraction, heat release rate, and pressure of the pre-chamber at Tp = 1200 K. It is
observed that primary auto-ignition events symmetrically occur in the near-wall region at
t = 8.7 µs, which results from pressure wave reflection and flame front compression and
heating (as shown by temperature and pressure sequences). Soon after that, a fast reaction
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front is induced and then consumes the remaining mixtures within one microsecond in
the pre-chamber. It is worth noting that the reaction front is supersonic deflagration rather
than detonation since the propagation speed is far beyond 2300 m/s (higher than the
Chapman–Jouguet detonation speed at 1936 m/s), and there are no interactions between
shock waves and reaction fronts. Such an observation is different from the previous
work [35], in which detonation becomes prevalent with pressure wave disturbances in a
largely confined chamber. The main reasons may be ascribed to the temperature gradient
inside the auto-ignition kernel, which is lower to initiate the detonation [36,37]. Moreover,
secondary auto-ignition events also occur in the bottom corner of the pre-chamber at
t = 9.2 µs, followed by multiple pressure waves convergence around the inlet of the jet
orifice. It is noted that different from Tp = 900 K case, there are few pressure waves passing
through the jet orifice, and the jet flame is characterized by an inverted mushrooming
pattern (as shown by H2 mass fraction at t = 9.7 µs).
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Figure 9. Contours of temperature, H2 mass fraction, heat release rate, and pressure of the pre-
chamber for Case D: Tp = 1200 K.

Figure 10 shows the contours of temperature, H2 mass fraction, heat release rate, and
pressure of the main chamber at Tp = 1200 K. It is observed that under sufficiently high-
temperature conditions, the jet flame is characterized by a spherical flame with distinct
combustion modes in the main chamber. Due to the occurrence of auto-ignition events,
a strong leading pressure wave is formed in front of the flame in the main chamber at
t = 11 µs. It is observed that the pressure wave has a heating effect on the unburned
mixture (as manifested by the temperature field), which has an advantage in the ignition
and flame propagation of the lean mixture. Besides, the pressure waves and flame front
are not coupled, indicating that the reaction front is propagated in a deflagration mode
in the main chamber. The leading pressure wave will remain in the main chamber and
affect the combustion mode in the main chamber. As mentioned earlier, the pressure
difference caused by the leading pressure wave affects the flow velocity, which, in turn,
affects the flame shape. When auto-ignition events occur (Case D), the amplitude of the
leading pressure wave is much higher than that of pre-flame heat release (Case C), which
weakens the influence of the vortex on the flame shape and makes the flame develop into a
spherical flame completely. Compared with the previous combustion mode, the spherical
flame propagates faster in the main chamber, and the penetration length of the jet flame
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is reduced obviously. As the flame develops, a large amount of lean mixture is ignited
at t = 11.5 µs, which reduces the heat release rate of the flame and the amplitude of the
leading pressure wave. Finally, a spherical flame is propagated within the main chamber
at t = 14 µs, and the outer side of the flame front is the unburned mixture heated by the
leading pressure wave. Because of the difference in equivalence ratio, the combustion
temperature of the flame edge is significantly lower than that of the flame center.
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Figure 10. Contours of temperature, H2 mass fraction, heat release rate, and pressure of the main
chamber for Case D: Tp = 1200 K.

Figure 11 shows the contours of density (by numerical schlieren) and OH mass fraction
to illustrate the evolutions of pressure waves and reaction fronts. It is observed that a
reaction front propagation is induced by the local auto-ignition at the location ahead of
pressure waves in the pre-chamber at t = 9 µs, manifesting the supersonic deflagration. The
reaction front is always in front of the pressure wave in the pre-chamber. As the reaction
front approaches the jet orifice (at t = 10 µs), multiple pressure waves are aggregated and
coupled with reaction fronts, resulting in the formation of a detonation wave. Detonation
wave propagates in the jet orifice (at t = 10.5 µs), which is characterized by the coupling
of reaction front and pressure wave. As the reaction front reaches the main chamber, the
pressure wave decouples from the reaction front due to the decrease in the equivalence
ratio. Consequently, there is a transition in combustion mode from supersonic deflagration
to subsonic deflagration.
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Tp = 1200 K.

Figure 12 shows the distributions of temperature, pressure, flow velocity, and heat
release rate (HRR) at different locations along the y-axis for Case D. It is observed that the
auto-ignition events in the pre-chamber make combustion temperature rise significantly
in the jet orifice, but the combustion temperature in the main chamber becomes lower as
the lean mixtures are consumed. Different from Tp = 1100 K cases, when auto-ignition
events just occur in the pre-chamber, the reaction front is manifested by a supersonic
deflagration (as shown by pressure at t = 9.7 µs). The feature of a supersonic deflagration
is that the pressure is higher than the equilibrium pressure of 19.7 atm but lower than
the Chapman–Jouguet pressure of 35.0 atm. Then, the reaction front develops into the
developing detonation in the jet orifice, but the subsonic deflagration is observed in the
main chamber. This indicates that combustion chamber structure and equivalent ratio
have an important influence on flame evolutions. Caused by the auto-ignition events in
the pre-chamber, the flow velocity reaches 1500 m/s in the jet orifice and further reaches
2000 m/s in the main chamber. Correspondingly, the heat release at first increases and then
decreases, which is closely related to the transition of combustion modes.
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Figure 12. Distributions of temperature, pressure, flow velocity, and heat release rate (HRR) at
different locations along the y-axis for Case D: Tp = 1200 K.

3.4. Flame Propagation and Flame Structure

To quantify the flame evolutions under different temperature conditions, Figure 13
shows the flame displacement velocity as a function of time, with the laminar flame speed
for comparisons. Herein the flame front is defined as the location with the maximum heat
release rate, and the flame displacement velocity is obtained by the derivatives of the flame
front location to time variations. It is observed that caused by pressure wave disturbance in
the confined pre-chamber, there are significant oscillation behaviors in flame displacement
velocity, and the largest amplitude can reach beyond 60 m/s. Moreover, flame propagation
positively correlates with the increase of initial temperatures, but there are no obvious
variations in oscillation amplitude, such that the flame front passes the jet orifice at an
earlier time under higher initial temperatures. However, compared with the laminar flame
speed, the mean flame displacement velocity is approximately 1.5 times higher in all cases,
indicating the promotion of pressure wave in flame propagation. Especially when the local
auto-ignition events occur at Tp = 1200 K, the flame displacement velocity is suddenly
increased to a supersonic level.
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Figure 14 shows the evolutions of the flame front location and flame displacement
velocity at different initial temperatures. It is observed that, globally, flame displacement
velocity is increased at higher initial temperatures in the pre-chamber (i.e., Y ≤ 4.0 mm).
When coming across the jet orifice, flame displacement velocity is significantly increased
up to a level close to the local sound speed for Tp ≤ 1100 K cases. Whereas for Tp = 1200 K
case with auto-ignition occurrence in the pre-chamber, the flame displacement velocity is
directly increased up to a supersonic level. Herein the second peak of flame displacement
velocity of Case D represents the auto-ignition events in the main chamber. Furthermore,
there are significant oscillations in flame displacement velocity in the main chamber, which
are ascribed to the interactions between mixture distributions and turbulent vortexes down-
stream. On the other hand, oscillation behaviors are weakened in combustion dominated
by leading pressure waves when auto-ignition events occur.
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Tp = 1200 K.

Finally, Figure 15 compares the evolutions of the heat release rate of Tp = 900, 1100,
and 1200 K cases. For a better comparison, the heat release rate of Case D shown in the
picture is reduced by 30 times. It is observed that with the increase of initial temperatures,
the flame thickness is significantly enlarged in the pre-chamber and main chamber. Whereas
for the jet nozzle scenarios (i.e., 4.0 mm ≤ Y ≤ 5.0 mm), the flame thickness and flame
structure do not change obviously. After the flame front comes across the jet orifice, the
peak heat release rate almost maintains at 2.0 × 1012 J/m3·s−1 for Tp = 900 cases, whereas
there is an obvious increase up to 6.0 × 1012 J/m3·s−1 at Tp = 1100 K, indicating the
enhancement of turbulent jet combustion. When initial temperatures are increased up to
Tp = 1200 K, the heat release rate is continuously increased after coming across the jet
orifice, approaching 3.0 × 1014 J/m3·s−1, which is approximately 50 times higher than
Tp = 900 K case. This indicates that the heat release rate of the auto-ignition wave is much
higher than that of the normal flame front, and the heat release rate is largely dependent
on combustion modes.
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4. Conclusions

To clarify the influence of temperature conditions on combustion evolutions of turbu-
lent jet ignition systems, direct numerical simulations with detailed chemical kinetics were
employed, allowing for pressure wave disturbance and irregular auto-ignition. It is found
that depending on temperature conditions, two distinct flame evolutions are observed, i.e.,
the normal turbulent jet flame and the fast spherical flame. Flame evolutions are signifi-
cantly affected by pressure wave disturbance in the pre-chamber, with obvious oscillation
behaviors in flame displacement velocity. Flame propagation speed positively correlates
with temperature conditions, but there are no obvious variations in oscillation amplitude.

Under low-temperature conditions (e.g., Tp = 900 and 1000 K), some cold stoichio-
metric mixtures are released into the main chamber before the flame front arrives at the jet
orifice, which induces obvious vortexes and enhanced mixing between lean and stoichio-
metric mixtures. The early-stage jet flame in the main chamber is found to be determined
by the distributions of cold stoichiometric mixtures and the vortexes induced by the jet
flow. Under medium temperature conditions (e.g., Tp = 1100 K), pre-flame heat release
can be encountered in the jet orifice, which causes the emergence of weak, leading pressure
waves, which can be considered as the transition status of different combustion modes.

Under sufficient high-temperature conditions (e.g., Tp = 1200 K), auto-ignition and
supersonic deflagration become prevalent in the pre-chamber, resulting in faster flame
propagation, greater heat release rate, and larger flame thickness. Consequently, develop-
ing detonation and subsonic deflagration can be observed in the jet orifice and the main
chamber, depending on whether the pressure wave and flame front are coupled or not.
Eventually, a spherical flame rather than the normal jet flame develops in the main cham-
ber. The spherical flame propagation has a faster flame propagation speed and stronger
combustion stability, and the strong pressure wave causes adverse effects on turbulent
jet ignition.
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