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Abstract: In this paper, the heat transfer of pin-fin plate unit (PFPU) under static and oscillating
conditions are numerically studied using the discrete element method (DEM). The flow and heat
transfer characteristics of the PFPU with sinusoidal oscillation are investigated under the conditions
of oscillating frequency of 0–10 Hz, amplitude of 0–5 mm and oscillating direction of Y and Z. The
contact number, contact time, porosity and heat transfer coefficient under the above conditions are
analyzed and compared with the smooth plate. The results show that the particle far away from the
plate can transfer heat with the pin-fin of PFPU, and the oscillating PFPU can significantly increase the
contact number and enhance the temperature diffusion and heat transfer. The heat transfer coefficient
of PFPU increases with the increase of oscillating frequency and amplitude. When the PFPU oscillates
along the Y direction with the amplitude of 1 mm and the frequency of 10 Hz, the heat transfer
coefficient of PFPU is increased by 28% compared with that of the smooth plate. Compared with the
oscillation along the Z direction, the oscillation along the Y direction has a significant enhancement
on the heat transfer of PFPU.

Keywords: gravity-driven granular flow; discrete element method; pin-fin plate; oscillation; heat
transfer enhancement

1. Introduction

High-temperature granular matter is widely present in industrial production and
energy conversion process; for example, high-temperature particles of more than 1000 K
can be produced in the production of cement, lime, coke oven coke, etc. [1]. In addition,
granular matter is gradually applied in concentrating solar power [2] and energy storage
system [3]. As compared with gas or molten salt [4], granular matter has higher specific heat
capacity and higher working temperature [5]. For the heat exchange of high-temperature
granular matter, moving bed heat exchangers (MBHE) with low cost, clean energy and
wide granularity adaptability are gradually applied to industrial waste heat recovery [6]
and concentrating solar power [7]. However, compared with the fluidized bed [8], the heat
transfer performance of the MBHE needs to be further improved [9].

In this study, the moving bed heat exchanger is an indirect heat exchanger. Particles
are densely filled in the heat exchanger and driven by gravity. Particles exchange heat with
horizontal tubes [10] or vertical plates [11] arranged in the heat exchanger. For horizontal
tubes, Dai et al. [12] found that a stagnation zone would form at the upstream region of the
tube and a cavity zone would form at the downstream region of the tube by experiment,
which would seriously affect the flow and heat transfer of particles [13]. Bartsch et al. [14]
described these two zones by numerical simulation and verified the simulation results by
experiment. Many studies have been carried out to reduce the stagnation zone and the
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cavity zone. Liu et al. [15] found that staggered tubes have better heat transfer performance
by experiments, and the staggered tubes will strengthen the movement of particles at the
top and bottom of the tube. Guo et al. [16] found that the oscillating tube can make the flow
of particles in the upstream of the tube more stable, and the particles in the downstream of
the tube are in closer contact with the tube wall. Oscillation can significantly improve the
heat transfer coefficient. Tian et al. [13] studied the heat transfer of particles flow around the
circular tube, the elliptical tube and the flat elliptical tube by discrete element method and
found that the shape of the tube had a significant effect on the particle flow at the upstream
and downstream of different tubes. The elliptical tube had the smallest stagnation zone and
cavity zone, and its heat transfer coefficient was highest. Tian et al. [17] numerically studied
the heat transfer of gravity-driven dense particle flow around a hexagonal tube and found
that, as the top and bottom angle of the hexagonal tube decreases, the stagnation zone and
the cavity zone are reduced, while the heat transfer coefficient is significantly increased.
Compared with the horizontal tube heat exchanger, vertical plate heat exchanger has higher
heat transfer coefficient due to narrow channels and large surface area. However, thermal
gradients will further affect the heat transfer performance [18]. Guo et al. [19] compared
the heat transfer characteristics of particles flow around a circular tube and a vertical plate
through numerical simulation. They found that particles flow around a vertical plate have
better contact with the heat transfer surface and the total heat transfer coefficient of the
plate is higher than that of the tube. Natarajan and Hunt [20] experimentally studied
the heat transfer between shear and plug flows, and the results show that, at a low flow
rate, the average heat transfer coefficients were higher for the shear flows for comparable
values of flow velocity close to the wall. Nie et al. [21] analyzed the effects of particles with
different thermophysical properties on the performance of the directly irradiated solid
particle solar receiver with semi-annular flow channels. Yin et al. [22] found that increasing
particle diameter and solid void ratio can reduce the total heat transfer coefficient, and the
change of channel width has a great influence on the total heat transfer.

According to the above, most studies focus on the influence of tube arrangement, tube
shape, particle properties on heat transfer in MBHE. There are few studies on the enhance-
ment of heat transfer on vertical plate heat exchangers, which have been widely used in
concentrated solar power [23]. With the length of the heat transfer surface increasing, the
temperature boundary layer of particles moving along the vertical plate develops continu-
ously, and the heat transfer between particles and the plate deteriorates gradually [24]. This
paper attempts to enhance the heat transfer of vertical plate heat exchanger by changing
the structure of the plate surface on particle side and applying external forces. In this paper,
the heat transfer of particle flow around the plate with pin-fin is numerically studied in
detail using the discrete element method (DEM). The enhancement effect of pin-fin and
oscillation on the heat transfer of particles flow around a vertical plate is investigated. This
work will contribute to the design and optimization of MBHE in the future.

2. Method and Simulation
2.1. Method

Particle flow simulation methods can be divided into the continuous method and
the discrete method. At present, many scholars simplify the particle flow in the vertical
channel as the plug flow [25], regard the particle flow as the continuous medium to simplify
the design of MBHE [26] and explore the influence of relevant parameters [22]. When
the particles move around a vertical smooth plate, it is feasible to treat the particles as a
continuous medium. When there are parts in the flow channel that hinder the movement of
particles, the plug flow will be destroyed and the discontinuous movement of particles will
be significant; thus, the continuum model is no longer applicable [27]. Compared with the
continuous method, the discrete method can calculate the detailed motion of each particle.
Nowadays, it has been widely used in the study of particle flow and heat transfer, such as
moving bed [13], packed bed [28] and screw reactor [29].
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In this paper, DEM based on software EDEM 2.6 is used to simulate the particle flow
around the plate with pin-fin. Meanwhile, the self-developed C++ code coupled with DEM
is used to solve the heat transfer [18]. The Hertz–Mindlin soft sphere model [30] is used to
simulate the particle flow, and the normal force and tangential force between particles are
treated by spring, damper, slider and coupler, as shown in Figure 1. The coupler is used to
determine the particle pairs in contact. When the tangential force exceeds the yield value,
the sliding of the two particles under the action of normal force and friction force is realized
through the slider. The contact force is calculated according to the normal overlap and
tangential displacement of the particle, and then the motion state of particles is updated.
The main heat transfer paths of particles in a slow-moving MBHE are composed of heat
conduction inside particles, contact heat conduction, gas heat conduction and radiation.
Due to the slow movement of particles and dense filling in the flow channel, the gas
convection heat transfer is very small [31], so the gas convection heat transfer is ignored. In
addition, radiation is also ignored, while the heat conduction inside the particles, contact
heat conduction and gas heat conduction are considered.
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Figure 1. Simplification of the contact force between particles by Hertz–Mindlin soft sphere model:
(a) normal force; and (b) tangential force.

The thermal conduction resistance inside particles (R1), physical contact thermal
conduction resistance (R2) and thermal conduction resistance through gas film (R3) are
formulated as follows:

R1 =
3
√
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(1)
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lij − r sin θ −
√

r2 − (r sin θ)2
dθ
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(3)

where α is an angle related to the intersection of gas film; β is a starting point angle for
the calculation of thermal conduction resistance through gas film; lij is the distance for the
case of particle–particle or particle–wall; λg is the thermal conductivity of gas; λs is the
thermal conductivity of particle; r is the particle radius; Fn is normal direction force; and
Eeq is Young’s modulus.

The overall conduction resistance (R) is presented as follows:

R =

{
R1 +

R2R3
R2+R3

+ R1 Physical contact
R1 + R3 + R1 Virtual contactt

(4)
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The heat transfer model adopted in the numerical simulation is based on the following
assumptions: (1) The particles in the channel are spherical particles with the same diameter.
(2) The heat capacity of the gas is ignored [32], and the temperature of the particle is
uniform. (3) The particles are virtually wrapped by the gas film with the thickness of
0.1 dp [33] to establish the heat transfer path in gas phase. (4) The heat transfer path is
along the radial direction of the particle. (5) The physical properties of the particles and the
gas are kept constant. More details on particle heat transfer model and model verification
can be found in the work of Tian et al. [13].

2.2. Model Validations

In the previous study, Tian et al. [18] verified the DEM with heat transfer model in
detail through the experimental data [16]. In this paper, an additional case for validating
the DEM with heat transfer model is carried out to validate the heat conduction model. The
box with a height of 20 dp is filled with freely packed and stationary spherical particles. The
bottom of the box is kept at a constant temperature of 300 K and the initial temperature of
the particles is 600 K. The evolution of temperature distribution in the vertical direction of
the heat exchange wall at t = 20 s is compared with the temperature distribution calculated
by Zehner–Bauer–Schlünder (ZBS) model [34], as shown in Figure 2. The comparison
result shows that the temperature field calculated by DEM is in good agreement with that
calculated by ZBS model, which indicates that the heat transfer model used in DEM is
reasonable.
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2.3. Physical Model and Simulation Cases

The particle side of the vertical flat heat exchanger is uniformly arranged with pin-fin
for strengthening heat transfer, as shown in Figure 3a. In this paper, the local effects of
pin-fin and oscillations on particle motion and heat transfer are studied. A flat plate with a
single pin-fin called the pin-fin plate unit (PFPU) is considered as the simulated geometric
model, as shown in Figure 3a. The geometric model used in numerical simulation is shown
in Figure 3b. The PFPU is located in the middle of the rectangular channel. The top of
the channel is the particle inlet, while the bottom of the channel is the particle outlet. The
spherical particles flow in the channel driven by gravity and exchange heat with the PFPU.
The dimensions of the rectangular channel are L (length) ×W (width) × H (height), and
the particle diameter (dp) is fixed at 0.8 mm. PFPU is composed of the plate and pin-fin.
The dimensions of the PFPU’s plate are Hg (length) ×Wg (width). The pin-fin of PFPU
is a cylinder located in the middle of the PFPU’s plate, and the side of the cylinder is
perpendicular to the plate. The diameter of the pin-fin is D and the length of the pin-fin
is Lg, as shown in Figure 3b. Detailed geometric and physical parameters are shown in
Table 1.
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Table 1. Geometric and physical parameters in simulation.

Name Parameter Value Name Parameter Value Name Parameter Value

geometry

L (mm) 20

geometry

Lg (mm) 10

particle

ρ (kg/m3) 2848
W (mm) 10 Wg (mm) 14 Cp (J/(kg·K)) 1210
H (mm) 20 Hg (mm) 14 λp (W/(m·K)) 0.55
D (mm) 4 TPFPU (K) 300 dp (mm) 0.8

gas λg (W/(m·K)) 0.0257 time step ∆t (s) 1.2 × 10−6 Tin (K) 700

During the simulation, the temperature of the PFPU is kept constant at 300 K and
the channel wall is adiabatic. The particles with the temperature of 700 K are generated
at the inlet of the channel and continuously flow into the channel to ensure the dense
filling of particles in the channel. The particle velocity is controlled at the outlet of the
channel and keeps constant at −1 mm/s in the Z direction. The parameters related to the
calculated motion of particle to particle and particle to wall are shown in Table 2. The whole
simulation lasts for 41 s, and the heat Q is analyzed in the last 10 s. The calculation equation
for the heat transfer coefficient k of particle flow around PFPU is shown in Equation (5). Q
is the total heat between particles and PFPU; APFPU is the heat transfer area of PFPU; Tin is
the inlet temperature of particles; TPFPU is PFPU wall temperature; and t is time.

k =
Q

APFPU(Tin − TPFPU)∆t
(5)

Table 2. The parameters related to the calculated motion of particle to particle and particle to wall.

Mechanical Parameters Value Mechanical Parameters Value

E (particle, Pa) 5.5 × 108 Static friction coefficient (particle–particle) 0.154

E (wall, Pa) 1.82 × 1011 Rolling friction coefficient (particle–wall) 0.1

Poisson’s ratio (particle) 0.25 Rolling friction coefficient (particle–particle) 0.1

Poisson’s ratio (wall) 0.30 Restitution coefficient (particle–wall) 0.5

Static friction coefficient (particle–wall) 0.154 Restitution coefficient (particle–particle) 0.3

Particle–particle, the contact between particles; particle–wall, the contact between the particle and the geometrical wall.
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In this paper, the heat transfer of PFPU under static and oscillating conditions is
numerically studied using DEM. The effects of different amplitudes, oscillating frequencies
and oscillating directions on the heat transfer of particles flow around PFPU are investi-
gated. For comparison, the heat transfer of vertical smooth plate with Hg (length) ×Wg
(width) is simulated. The oscillation trajectory of PFPU is sinusoidal oscillation, oscillating
frequency is 0–10 Hz, amplitude is 0–5 mm (0–1.25 D) and oscillating direction is Y and
Z directions. Detailed simulation parameters under different conditions are shown in
Table 3. The heat transfer of particles flow around the PFPU is numerically simulated when
the oscillation is in the Y direction, the amplitude is 0.25 D and the oscillating frequency
varies from 0 to 10 Hz to explore the influence of oscillating frequency. The heat transfer of
particles flow around the PFPU is numerically simulated when the oscillating frequency is
3 Hz, the direction of oscillation is Y and Z and the amplitude varies from 0.25 to 1.25 D
to explore the influence of the direction and amplitude of oscillation. The heat transfer
surface of Case 1 is the smooth plate and the heat transfer surface of Cases 2–13 is PFPU, as
shown in Table 3.

Table 3. Simulation parameters for different cases.

Case 1 2 3 4 5 6 Heat Exchange Surface

Oscillating direction - - Y Y Y Y
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Frequency (Hz) - 0 1 3 5 10

Amplitude (mm) - - 0.25 D 0.25 D 0.25 D 0.25 D

Oscillation locus - - Sinusoid

Case 7 8 9 10 11 12 13

Oscillating direction Y Y Y Z Z Z Z

Frequency (Hz) 3 3 3 3 3 3 3

Amplitude (mm) 0.5 D 0.75 D 1.25 D 0.25 D 0.5 D 0.75 D 1.25 D

Oscillation locus Sinusoid Sinusoid Sinusoid

3. Results and Discussion
3.1. Effect of Pin-Fin and Oscillation

Cases 1, 2 and 4 are selected to illustrate the influence of pin-fin and oscillation on
the heat transfer of particles flow around the plate. The heat exchange surface of Case
1 is the static plate, the heat exchange surface of Case 2 is the static PFPU and the heat
exchange surface of Case 4 is the PFPU oscillating in the Y direction. Detailed simulation
parameters of Cases 1, 2 and 4 are shown in Table 3. The velocity magnitude distributions
of particles flow around different surfaces under different cases are shown in Figure 4. The
results show that the particles in Case 1 move at a uniform speed, and there is no relative
movement between the particles. In Case 2, the velocity of particles around the pin-fin is
significantly different, because the flow channel is impeded by the pin-fin. The velocity
of particles at the top of the pin-fin is significantly reduced by the pin-fin. In Case 4, the
oscillation of the PFPU in the Y direction intensifies the motion of the particles around the
pin-fin, and the particles velocity around the pin-fin is higher than the outlet velocity.
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Case 2; and (c) Case 4.

The contact time distributions of particles flow around different surfaces under differ-
ent cases at t = 41 s are shown in Figure 5. The contact time is a cumulative variable, which
counts the total time that particles are in contact with the heat exchange surface during the
flow process. The distribution and number of particles in contact with the heat exchange
surface can be intuitively obtained from the results in Figure 5. In Case 1, only a layer of
particles close to the heat transfer surface is in contact with the heat transfer surface, while
the particles far away from the heat transfer surface do not contact with the heat transfer
surface. In Case 2, due to the addition of the pin-fin, the particles in the middle of the
channel can contact the heat transfer surface. In Case 4, the oscillation expands the contact
range between the pin-fin and particles, and the number of particles in contact with the
heat transfer surface is significantly more than that in Case 2.
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The time-averaged porosity perpendicular to the wall direction outside the pin-fin
is shown in Figure 6a, where r is the distance from a point outside the pin-fin to the
pin-fin center. Because of the wall effect, the porosity fluctuates regularly near the pin-fin
wall region. When particles flow around the static pin-fin in Case 2, the cavity zone is
formed below the pin-fin. When the PFPU oscillates along the Y direction in Case 4, the
movement of the pin-fin makes the contact between the particles and the pin-fin closer,
and the oscillation makes the particle filling rate around the pin-fin increase significantly.
Therefore, the porosity of Case 2 is higher than that of Case 4.
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The particle temperature distributions at Lines 1 and 2 of t = 41 s are shown in Figure 7.
The position of Line 1 is at y = 10 mm and z = 3 mm in the channel. The position of Line 2
is at x = 5 mm and z = 3 mm in the channel, as shown in Figure 6b. Compared with the
smooth plate (Case 1), the plate with pin-fin (Case 2) enables particles far away from the
plate to exchange heat with the pin-fin, and the temperature of particles at Lines 1 and 2 is
significantly lower, as shown in Figure 7a. Compared with the static PFPU (Case 2), the
oscillation along the Y direction (Case 4) increases the temperature diffusion of the particle
flow around the pin-fin, as shown in Figure 7b.
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The heat transfer characteristics of particles flow around different surfaces under
different cases are shown in Table 4. During the simulation time of 21–41 s, the particle
contact number with the heat transfer surface is counted. The time-average unit area
particle contact number directly describes the contact between particles and the heat
transfer surface. The equation of the time-average unit area particle contact number is
shown in Equation (6):

ν =

∑
∆t

N

A∆t
(6)
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where ν is the time-average unit area particle contact number; N is the number of particles;
A is the surface area; and t is the time.

Table 4. Heat transfer characteristics for different cases.

Simulation Cases 1 2 4

Total contact number (N/mm2) 1.31 1.15 1.40

Pin-fin contact number (N/mm2) - 0.87 1.18

Total Heat transfer rate Φ (W) 14.60 20.94 27.63

Percentage increase of Φ (%) - 44 89

Pin-fin Heat transfer rate ΦPin-fin (W) - 8.27 12.38

Heat transfer coefficient k (W/(m2·K)) 186 169 224

Percentage increase of k (%) - −8.4 21

Particle outlet temperature (K) 656 630 616

The time-average unit area particle contact number of the static PFPU (Case 2) is
smaller than that of the smooth plate (Case 1) due to the influence of the cavity zone
generated by the particle flow around the pin-fin. When the PFPU oscillates along the
Y direction in Case 4, the time-average unit area particle contact number of the pin-fin
increases by 35.6% compared with that of the static PFPU in Case 2, and the contact number
of the PFPU is higher than that of the smooth plate (Case 1), as shown in Table 4.

Compared with the smooth plate, the area of the PFPU increases by 58%. When the
PFPU is static (Case 2), the heat transfer rate of the PFPU increases by 44% compared
with the smooth plate (Case 1). Therefore, the heat transfer coefficient of the static PFPU
decreases by 8.4% compared with that of the smooth plate (Case 1), as shown in Table 4.
When the PFPU oscillates along the Y direction in Case 4, the heat transfer rate of the pin-fin
increases by 50% compared with that of the static PFPU in Case 2. Compared with the
smooth plate (Case 1), the total heat transfer rate of the oscillating PFPU (Case 4) increases
by 89% and the total heat transfer coefficient of the oscillating PFPU (Case 4) increases by
21%, as shown in Table 4. The average temperature of particles in Plane 1 is counted. The
position of Plane 1 is in the center of the plane at z = 1 mm in the channel, and its length
and width are equal to Wg and W, respectively. Because the pin-fin makes more particles
contact with the heat transfer surface, the average particle temperature at the outlet of
PFPU is lower than that of the smooth plate. The outlet temperature of the static PFPU
(Case 2) and the oscillating PFPU (Case 4) are 26 and 40 K lower than that of the smooth
plate (Case 1), respectively.

3.2. Effect of Frequency

The heat transfer of particles flow around the PFPU is numerically simulated when
the oscillation is in the Y direction, the amplitude is 0.25 D and the oscillating frequency
varies from 0 to 10 Hz. Detailed simulation parameters are shown in Cases 3–6 in Table 3.
The time-average unit area particle contact number of pin-fin and the time-average contact
time of particles with pin-fin at different frequencies during the simulation time of 21–41 s
are shown in Figure 7a. The equation of the time-average unit area particle contact number
is shown in Equation (2). The equation of the time-average contact time is shown in
Equation (7):

τ =

∑
∆t

∑
N

tp

N∆t
(7)

where τ is the time-average contact time; tp is the contact time of the particle at the outlet
that have been in contact with the heat transfer surface in the flow process; N is the number
of particles; and t is the time.
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The time-average unit area particle contact number of pin-fin gradually increases with
the increase of oscillating frequency, as shown in Figure 8a. When the oscillating frequency
of the PFPU is 10 Hz (Case 6), the unit area particle contact number of pin-fin is increased
by 40% compared with that of the static PFPU (Case 2). The time-average contact time of
particles with pin-fin gradually decreases as the frequency increases. As the oscillating
frequency of the PFPU increases, the particles on the surface of the pin-fin update more
quickly. When the oscillating frequency of the PFPU is 10 Hz (Case 6), the contact time of
particles with pin-fin is reduced by 61% compared with that of the static PFPU (Case 2).
The variations of heat transfer coefficient of particles flow around the PFPU at different
frequencies are shown in Figure 8b. The heat transfer coefficients of particles flow around
the PFPU and pin-fin increase with the oscillating frequency increasing. The heat transfer
coefficient of particles flow around the static PFPU is lower than that of particles flow
around the plate, while the heat transfer coefficient of particles flow around the oscillating
PFPU (f > 1 Hz) is significantly higher than that of particles flow around the plate. When
the oscillating frequency of the PFPU is 10 Hz (Case 6), the heat transfer coefficient of
the particles flow around the PFPU is 28% higher than that of the particle flow around
the plate.
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3.3. Effect of Oscillating Direction and Amplitude

The heat transfer of particles flow around the PFPU is numerically simulated when the
oscillating frequency is 3 Hz, the oscillation is in the Y and Z directions and the amplitude
varies from 0.25 to 1.25 D. Detailed simulation parameters are shown in Table 3. The
variation of the unit area particle contact number of pin-fin with the amplitude in different
oscillating directions is shown in Figure 9a. When the PFPU oscillates along the Z direction,
the unit area particle contact number of pin-fin decreases with the amplitude increasing.
As the amplitude increases, the cavity zone at the bottom of the pin-fin oscillating along
the Z direction gradually increases, and the unit area particle contact number of pin-fin is
significantly lower than that of the pin-fin oscillating along the Y direction, as shown in
Figure 9a. When the amplitude is 1.25 D, the unit area particle contact number of pin-fin
oscillating along the Y direction is increased by 18% compared with that of the pin-fin
oscillating along the Z direction. The variation of the contact time of particles with pin-fin
with amplitude in different oscillation directions is shown in Figure 9b. With the amplitude
increasing, the contact time of particles with pin-fin decreases gradually, and the particle
renewal near the pin-fin accelerates. When the amplitude Am < 0.75 D, the contact time
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of particles with pin-fin along the Z direction is lower than that of the pin-fin oscillating
along the Y direction.

The variation of the heat transfer coefficient of particles flow around the PFPU with
the amplitude in different oscillating directions is shown in Figure 10. The heat transfer
coefficients of particles flow around the PFPU and pin-fin increase with the amplitude
increasing. The heat transfer coefficient of the PFPU oscillating along the Y direction is
larger than that of the PFPU oscillating along the Z direction. When the PFPU oscillates
along the Y direction and the amplitude is 1.25 D (Case 9), the heat transfer coefficient of
the particles flow around the PFPU increases by 50% compared with that of the particle
flow around the plate (Case 1). When the PFPU oscillates along the Z direction and the
amplitude is 1.25 D (Case 13), the heat transfer coefficient of the particles flow around the
PFPU increases by 30% compared with that of the particle flow around the plate (Case 1).
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4. Conclusions

In the present paper, the heat transfer of gravity-driven granular flow around the
vertical plate is numerically investigated with DEM, and the enhancements of heat transfer
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between vertical plate and particles by pin-fin and oscillation are investigated. The effects
of oscillating direction, frequency and amplitude on PFPU are discussed in detail. The
main findings are as follows:

(1) Compared with the smooth plate, the area and the heat transfer rate of the PFPU
increases by 58% and 44%, respectively. The static PFPU enables particles far away
from the plate to exchange heat with the pin-fin, and the average particle temperature
at the outlet is lower. When the PFPU oscillates, the number of particles in contact
with the PFPU increase significantly, and the particle temperature diffusion around
the pin-fin increases. When the PFPU oscillates under the condition of OD = Y, f = 3
Hz and Am = 0.25 D, the total heat transfer rate and the heat transfer coefficient of the
PFPU are increased by 89% and 21%, compared with the smooth plate.

(2) As the oscillating frequency of the PFPU increases, the unit area particle contact
number of pin-fin gradually increases, the contact time of particles with pin-fin
gradually decreases and the particle renewal near the pin-fin accelerates. When the
PFPU oscillates under the condition of OD = Y, f = 10 Hz and Am = 0.25 D, the unit
area particle contact number of pin-fin is increased by 40% and the contact time of
particles with pin-fin is reduced by 61%, compared with the static PFPU. The heat
transfer coefficients of particles flow around the PFPU increase with the frequency
increasing. When the PFPU oscillates under the condition of OD = Y, f = 10 Hz and
Am = 0.25 D, the heat transfer coefficient of the particles flow around the PFPU is 28%
higher than that of the particle flow around the plate.

(3) When the PFPU oscillates along the Z direction, the unit area particle contact number
of pin-fin decreases with the amplitude increasing and the cavity zone at the bottom
of the pin-fin oscillating along the Z direction increases. The unit area particle contact
number of pin-fin is significantly lower than that of the pin-fin oscillating along the Y
direction. The heat transfer coefficients of particles flow around the PFPU increase
with the amplitude increasing. The heat transfer coefficient of the PFPU oscillating
along the Y direction is larger than that of the PFPU oscillating along the Z direction.
When the PFPU oscillates under the condition of OD = Y, f = 3 Hz and Am = 1.25 D,
the heat transfer coefficient of the particles flow around the PFPU increases by 50%
compared with that of the particle flow around the plate.

The present results show that the effect of the pin-fin and vibration on the enhancement
of heat transfer is significant, especially the enhancement of vibration perpendicular to the
particle flow direction is better. The research in this paper provides more options for the
optimization of MBHE, but the economic efficiency of this method and the influence of
vibration on the life of heat exchanger still need to be studied in the future.
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Nomenclature

A Area (mm2)
Am Amplitude (mm)
APFPU Area of PFPU (mm2)
Cp Heat capacity (J/(kg·K))
D The Pin-fin diameter (mm)
dp Particle diameter (mm)
E Young’s modulus (Pa)
Fn normal component of the contact force (N)
f Frequency (Hz)
H The rectangular channel height (mm)
Hg PFPU’s plate height (mm)
k Heat transfer coefficient (W/(m2·K))
l distance of particle–particle or particle–wall (m)
Lg The pin-fin length (mm)
N Number of particles
OD Oscillating direction
Q The total heat between particles and PFPU (J)
r Radius (mm)
R thermal resistance (K/W)
Tin The particle inlet temperature (K)
TPFPU PFPU wall temperature (K)
t Time (s)
tp The contact time of the particle (s)
W The rectangular channel width (mm)
Wg PFPU’s plate width (mm)
x,y,z Cartesian coordinates (mm)

Greek letters
α, β, Θ angles (rad)
λg Thermal conductivity of gas (W/(m·K))
λp Thermal conductivity of particle (W/(m·K))
ν The time-average unit area particle contact number (N/mm2)
ρ Density (kg/m3)
τ The time-average contact time (s)

Abbreviations
DEM Discrete element method
MBHE Moving bed heat exchangers
PFPU Pin-fin plate unit
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