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Abstract: Energy Storage Systems (EES) are key to further increase the penetration in energy grids
of intermittent renewable energy sources, such as wind, by smoothing out power fluctuations. In
order this to be economically feasible; however, the ESS need to be sized correctly and managed
efficiently. In the study, the use of discrete wavelet transform (Daubechies Db4) to decompose the
power output of utility-scale wind turbines into high and low-frequency components, with the
objective of smoothing wind turbine power output, is discussed and applied to four-year Supervisory
Control And Data Acquisition (SCADA) real data from multi-MW, on-shore wind turbines provided
by the industrial partner. Two main research requests were tackled: first, the effectiveness of the
discrete wavelet transform for the correct sizing and management of the battery (Li-Ion type) storage
was assessed in comparison to more traditional approaches such as a simple moving average and a
direct use of the battery in response to excessive power fluctuations. The performance of different
storage designs was compared, in terms of abatement of ramp rate violations, depending on the
power smoothing technique applied. Results show that the wavelet transform leads to a more
efficient battery use, characterized by lower variation of the averaged state-of-charge, and in turn
to the need for a lower battery capacity, which can be translated into a cost reduction (up to −28%).
The second research objective was to prove that the wavelet-based power smoothing technique has
superior performance for the real-time control of a wind park. To this end, a simple procedure is
proposed to generate a suitable moving window centered on the actual sample in which the wavelet
transform can be applied. The power-smoothing performance of the method was tested on the same
time series data, showing again that the discrete wavelet transform represents a superior solution in
comparison to conventional approaches.

Keywords: power smoothing; wavelet transform; Li-Ion battery; hybrid energy storage systems;
wind turbine

1. Introduction

Wind energy is one of the most environmental-friendly and promising renewable
energy sources. The intermittent nature of the wind, however, sets limits on a large-scale
penetration into the electricity grid [1,2]. In fact, the variability of the wind resource can
create grid instability issues, in terms of frequency and voltage. In addition, random
fluctuations of wind power, if not properly regulated, may lead to the risk of undesired
curtailment [3]. Therefore, in order to prevent possible damages, the requirements of the
electrical system are very restrictive, constraining the power gradients that the network
can absorb, as discussed in more detail in the following. This has led to the development of
power smoothing approaches, i.e., methods capable of mitigating fluctuations, smoothing
the power profile fed into the network [4]. Approaches without Energy Storage Systems
(ESS) are becoming popular due to their low upfront investment cost, but are not mature
for widespread application [5]. Studies are mainly focused on inertia control approach and
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pitch angle approach: the first needs a Maximum Power Point Tracking (MPPT) controller
so that the rotor of the turbine can store the designated amount of energy, whilst the
second is characterized by a sluggish and oscillatory response of the system [6]. However,
most of smoothing techniques make use of storage systems [7,8]. Energy storages can
supply more flexibility and balancing to the grid, providing grid stability and a back-up to
intermittent renewable energy, but their economic impact is often not negligible. Intense
research is carried out especially in developing efficient control strategies to manage the
power exchange between wind turbines and storage system [9,10]. Various ESS such
as superconducting magnetic energy systems (SMES), flywheel energy storage systems
(FESS) [11,12], energy capacitor systems (ECS), battery storage (BESS) [13,14], and fuel cell
and electrolyzer hybrid systems (FC/ELZ) [15] have been utilized to smooth the output
power fluctuations and to enhance the power quality, as well as hybrid energy storage
systems (HESS), combining the technologies mentioned above [16]. Lithium-ion (Li-Ion)
batteries, in particular, are a mature, efficient, and reliable technology and the specific
power and energy characteristics make them suitable for this type of application. Although
not investigated in this study, these benefits are even more interesting if a possible reuse of
batteries from electric vehicles with acceptable degradation is considered [17,18].

Several power smoothing approaches using BESS have been proposed as discussed
in the review by Kasem et al. [15]. In particular, the idea of analyzing the wind power
output like a signal and smoothing out the highest frequency components is becoming one
of the most investigated trends. In this perspective, the application of the discrete wavelet
transform (DWT) is particularly appreciated (e.g., [19]). This approach acts similar to the
ubiquitous Fast Fourier Transform for time signals, even though the transformation is
made in the wavelet domain, i.e., according to a prescribed shape for the signal. Beyond the
specific mathematics beyond the method, that will be presented in the following Section 3.1,
the key point of this method is that it can process non-stationary signals using a multi-
resolution analysis [20]. More specifically, for the purpose of power smoothing, it allows
to distinguish effectively within the signal those lower-frequency fluctuations that can be
delivered to the grid from the higher-frequency ones that need to be compensated with a
storage, as shown recently by [21–23].

1.1. Objectives and Novel Contributions

This study is aimed at tackling two main research requests. First, to demonstrate that
the discrete wavelet transform guarantees a more effective sizing and use of the battery
storage in comparison to more traditional approaches such as a simple moving average
or a direct use of the battery in response to excessive power fluctuations. Benefits are
quantified in economic terms, i.e., minimizing the cost of the Li-Ion battery pack for a
given smoothing target. Second, the study aims at extensively testing the capabilities of the
discrete wavelet transform when embedded into a real-time control algorithm that can be
used for controlling the system. A simple mathematical method to generate a symmetric
window centered on the current time-step is proposed, so that the wavelet transform can
be performed instantaneously. A sensitivity analysis on the needed settings in terms of
needed datapoints is also provided. The benefits provided by the use of the online wavelet
are once again compared with conventional techniques.

The two objectives were achieved also thanks to the possibility of training and testing
the developed methods on the real power output of two modern wind turbines in operation
for more than four years. In comparison to other work, where the available data sets
are often limited to shorter periods or even to synthetized time series, this allowed to
specifically tune the discrete wavelet transform for hybrid systems including wind turbines
and batteries, e.g., defining the most suitable decomposition level as a function of the
required Abatement Ratio. If on the one hand real data do ensure a high level of significance
of the results, on the other hand one should note that the proposed method is of more
general validity and it can be easily replicated in the preliminary design phase of an
industrial storage system by replacing real power time series with virtual data coming
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from a combination of synthetic wind time series with the turbine power curve, as many
state-of-the-art siting pieces of software do.

1.2. Organization of the Study

General requirements regarding the smoothness of the power output required for
wind farms are first given in Section 2. The study case is also presented in this section,
coupled with a discussion on the wind data monitoring systems and a thorough analysis
of the data used for the present study with respect to common grid-code constraints. In
Section 3, the wavelet approach is discussed, and a battery model that considers cyclic
degradation is implemented. The wavelet-based power smoothing algorithm is then
described, and used for both sizing the storage system and controlling the EES in real time.
The results of both approaches are finally reported and discussed in Section 4.

2. Case Study

This section presents the framework this study has been conducted into, in terms of
both power smoothing requirements (Section 2.1) and selected test case (Section 2.2).

2.1. Grid Code Requirements

Even though no general requirements can be highlighted worldwide, since the electri-
cal grids still differ significantly from country to country, a paradigm for prescribing such
constraints is emerging. In particular, reference is commonly made to the “ramp rate” (RR),
defined in Equation (1), to impose a limitation to the maximum speed by which the active
power can vary in the case of fluctuating resources, like wind. Going into the details of the
RR formulation, one can notice that a ramp event occurs when the power fluctuation ∆P(t)
occurring during a given time ∆t, exceeds a threshold [24]:

RR =
∆P(t)

∆t
(1)

The ramp rate is usually defined over periods of one minute or 10 min. Often the
difference ∆P is normalized with respect to the wind plant’s nominal power Pnom. of the
power plant [25]:

∆P(t) =
[P(t)− P(t− ∆t)]

Pnom
× 100 (%) (2)

The typical ramp requirement is 10% of rated power per minute, but each national grid
typically has its own regulation. Table 1 reports the maximum ramp rate specifications of
some countries [4,15,19,26–28]. Upon examination of the table, ramp-rate limits vary greatly
from country to country and are typically more stringent for weaker grids. Constraints on
single wind turbine power fluctuations are often not this restrictive for modern electrical
systems. This is due to the fact that there is spatial smoothing of aggregate wind energy
generation because multiple plants in a certain region likely experience different wind
speed time-series, which in practice reduces the aggregated variability [29].

Based on the comparative nature of the present study, a ramp-rate of 10% per minute
is used in this study, regardless of wind farm capacity, as this is a recurrent constraint on
many grids, even in case of those with high installed wind capacity, as the USA.
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Table 1. Ramp rate limits for some relevant countries in the world.

Grid Ramp Rate Limit (dP/dt) Ref.
Germany 10% Pnom per min [15]
Norway 10% Pnom per min [26]

UK
No limit for wind farms up to 300 MW capacity,

50 MW/min for 300 < Pnom < 1000
40 MW/min for Pnom > 1000 MW

[15]

Denmark 100 kW/s [27]
Ireland 8% Pnom per min & 4% Pnom per 10 min [28]

USA 10% Pnom per min [19]
Puerto Rico 10% Pnom per min [4]

Canada 10% Pnom per min [19]

China
3 MW/min for wind farms up to 30 MW capacity,

10% Pnom per min for 30 < Pnom < 150 MW
15 MW/min for Pnom >150 MW in size.

[19]

2.2. Case Study

One of the main points of strength of the present study is the possibility of basing
the analysis on real wind turbine data collected in the field. In fact, thanks to the courtesy
of EUNICE ENERGY GROUP (EEG), the authors had access to 48-months real data from
two multi-MW onshore wind turbines (WTs) installed in a wind park of EEG located at
a complex terrain region on the Greek mainland (Figure 1), which is in operation since
2011. The use of data from turbines operating in a complex terrain is thought of particular
relevance for the study, since storage systems could be largely effective in this type of
application, where gustiness and non-uniform wind field are more likely.
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Figure 1. View of two turbines of the park analyzed in the study. Figure 1. View of two turbines of the park analyzed in the study.

As a first step, the Supervisory Control And Data Acquisition (SCADA) data was
analyzed in detail and properly purged of those values that do not correspond to normal
operation of the turbine (e.g., maintenance periods, acquisition system errors, lightening,
icing, etc.). This led to the definition of a reliable and coherent data set in the form of turbine
power as a function of time and wind speed for both the turbines under investigation
(see Figure 2). Please note that power data in Figure 2 and in the rest of the study are
presented in a non-dimensional form (i.e., divided by the nominal power) to preserve the
non-disclosure agreement with the industrial partner.
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Figure 2. Reference power curve (data from [30]) and data for turbine #1.

As a second step, a refinement of temporal series was needed. In fact, one should
remember that in the common industrial practice SCADA data are commonly acquired
with a timestep of 10 min; the typical ramp rate required by network protocols, however, is
defined as 10% of rated power capacity per minute. Since standard deviations of power
data inside each 10-min bin were not available, 1-min resolution data were generated
a posteriori by means of a properly tuned random function. The function extracts, for
each 10-min bin, 9 values in the range between the maximum and the minimum power as
reported by the SCADA (so that no wind speed could be introduced that was not present
in reality), while the 10th value is the mean power on that period. The high-resolution
power time series maintains the same Annual Energy Production that would be calculated
using the original SCADA data; in other words, the random values were selected so that
the energy produced in the 10 min bin is equal to the sum of the energy produced each
1-min bin in the same period. An example of the outcomes of the procedure is shown
in Figure 3a,b. Ideally, it would have been preferable to use real 1-min data over this
energy-conservative extrapolated data. However, this approach is arguably conservative
with respect to battery sizing requirements as it is highly unlikely that the wind speed,
and thus the output power, will follow a completely random pattern in the sub 10-min
window [4].
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Analyzing the data in further detail, Probability Density Functions (PDF, in Figure 4)
and Cumulative Density Functions (CDF, in Figure 5) were used to highlight the distri-
bution of ramp rates occurrence. Upon examination of the CDF, it is apparent that, as
expected, most of the ramp rates are under the regulation threshold; in particular, over
20% of the cases are over the 10% limit in the 1-min data series, which is a considerable
amount. Smoothing all the ramp rates might require a very large battery capacity, which
could make a project economically not convenient. As it is often the case in the field of
engineering, the solution to the problem might be a tradeoff between multiple objectives,
i.e., smoothing effectiveness and battery size in the present application. This is the reason
why the effectiveness and the costs of the power smoothing system will be evaluated in
terms of abatement ratio (AR), defined as [4]:

AR = 1− ramp violations in smoothed profile
ramp violations without storage

(3)

AR is equal to 1 if all the ramp-rate violations are smoothed, while it gets lower
and lower as the ESS falls behind and is unable to absorb the power surplus from the
power plant. Rather than simply describing the percentage of fluctuations that violate the
ramp-rate limits, this parameter quantifies the percentage of fluctuations, which violated
the constraints in the un-smoothed signal, which have been removed in the smoothed
one. By defining this parameter, a storage system that maximizes AR while keeping costs
reasonable can be selected.
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3. Methodology

The following section will describe the methods and related algorithms used in the
study. A theoretical overview of the Wavelet transform is discussed, followed by a detailed
overview of the implemented smoothing method, with special focus on the proposed
method for using DWT online. The conventional methods against which the proposed
smoothing algorithm is benchmarked are also discussed. In addition, the methods for
battery sizing, operation, and aging are presented.

3.1. Discrete-Wavelet Based Signal Approximation

The Discrete Wavelet transform (DWT) was selected as the most promising power
smoothing technique to be investigated for the scopes of the present study. Generally speak-
ing, the Wavelet transform can be seen as an analysis tool for extracting local-frequency
information from a non-stationary signal [31]. A complete overview on the mathematical
formulation of the method is beyond the scope of the present study and does not represent
an original contribution. However, to convey the basic elements needed to understand the
developed algorithm, a brief dissertation on the wavelet theory is here reported. For more
information, the reader could refer to refs. [32–38] which were used for this discussion.

In signal processing, the most popular technique is the ubiquitous Fourier Transform
(FT), i.e., the definition of the amplitude of all the frequency components that, summed
together as correspondent sinusoidal waves, are able to reproduce the original signal. The
problem of the FT is, however, represented by the fact that no indication about the exact
time in which each frequency gave its contribution is provided. In case of a stationary
problems, this is not a particular issue, as the properties of the signal are maintained
over time in a recurring way. On the other hand, when the signal is not stationary, like
a wind power time series, the most straightforward option is to modify the approach
by representing the signal in two dimensions, i.e., with time and frequency coordinates.
To do so, one small signal section (defined by a window function) is analyzed time by
time; assuming the stationarity of the signal inside this window, the Fourier transform is
applied section by section, sliding the window along the signal. This method is usually
called Short-Time Fourier Transform (STFT) and it can provide more specific information
about the location of the different frequency components. On the other hand, its accuracy
is intrinsically affected by the selection of the signal-cutting window, which can be well
explained by Heisenberg’s uncertainty principle applied to signal processing, stating that
one cannot identify correctly at the same time the frequency and the time of occurrence of
this frequency. Mathematically, this can be expressed in terms of standard deviations of the
time σt and frequency σν as follows:

σtσν ≥
1

4π
(4)

Based on Equation (4), one can readily notice that, defining a certain level of accuracy
in time or frequency with the choice of window size, the other follows accordingly.

Moving from this background, particular attention is currently given to the use of
Wavelet analysis, since it implies a windowing technique with modulated windows able
to mitigate or suppress the signal-cutting problem. In further detail, wavelet functions
are defined conventionally as wave-like oscillations of finite amplitude that have null
average [35]. Wavelet have the advantage that they can be manipulated either by sliding
them along the signal or by varying their extension. In other words, the wavelet approach
can be seen as a windowing technique with variable-size regions. it allows using long
time intervals where more precise low-frequency information is required, while short time
intervals are used where more precise high-frequency information is required. By doing so,
the wavelet transform allows the variation of σt and σν at different frequencies, without
violating the uncertainty principle and thus allowing for both a correct definition of the
frequency content in the signal and their location in the time domain: this kind of approach
is defined multiresolution analysis (MRA).
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Many different shapes of the wavelet function are available, usually referred to as
mother wavelet [38]. The extension of the wavelet is governed by the scale factor a, while
the movement along the time axis is described by the translation factor b (Equation (5)). By
translating and scaling the mother wavelet shape, it is possible to obtain an infinite number
of wavelets ψa,b(t), identified by parameters a and b and defined as follows:

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
(5)

where the term 1/
√

a is used to normalize the wavelet.
The theoretical aspects, described in the previous introductive part, bring to define

the continuous wavelet transform (CWT) for a signal f(t) by adopting a mother wavelet
function ψ(t) which is properly written as:

CWTf(a, b) =
1√
a

∫ +∞

−∞
f(t)ψ∗

(
t− b

a

)
dt =

∫ +∞

−∞
f(t)ψ∗a,b(t)dt (6)

where the superscript ∗ denotes the complex conjugate.
The inverse wavelet transform can be defined in the following form:

f(t) =
1

C2
ψ

∫ +∞

−∞

∫ +∞

−∞
CWTf(a, b)f

1
a2ψa,b(t )dadb (7)

where the term Cψ is the admissibility constant and its value depends on the chosen
wavelet. For more information, please refer to [34]. It is worth pointing out here, however,
that in terms of applicability CWT has three main issues:

1. Redundancy, since CWT is defined as a continuous integral, affecting considerably
the calculation time;

2. CWT is defined on an infinite number of wavelets identified by the scale and transla-
tion factors, which can assume infinite values;

3. For most of the functions the wavelet transforms have no analytical solutions, and
they can be calculated only numerically.

In order to make CWT more practical and easily applicable to engineering problems,
the Discrete Wavelet Transform (DWT) is introduced. To remove the redundancy, DWT
considers only discrete values of the scale and translation factors. The wavelet is discretized
by a logarithmic discretization of the scale parameter a. The size of the steps taken between
b locations is correlated to the scale parameter by proportionality. The discretized wavelet
therefore takes the following form (Equation (8)):

ψm,n(t) =
1√
am

0
ψ

(
t− nb0am

0
am

0

)
(8)

being m and n integers that control the wavelet dilation and translation, respectively. More
precisely, different m values correspond to wavelet of different widths. The value of the
translation parameter depends on the width of the wavelet: narrower wavelets will be
translated with a smaller step to cover the entire signal extension; wider wavelets, on the
other hand, will have a larger step. Commonly, for practical reasons a0 and b0 are chosen
equal to 2 and 1 respectively, so that the samplings of both the frequency axis and the time
axis correspond to dyadic samplings. A dyadic grid is the most efficient discretization for
practical purpose and allows the construction of an orthonormal wavelet basis.

With the removal of redundancy, the second goal is to reduce the number of wavelets
needed in the wavelet transform, which is still infinite. In the Fourier analysis, the spectrum
of the signal is dilated and moved to higher frequencies, as consequence of a time com-
pression. Similarly, a wavelet compression of a factor 2 will bring to a spectrum expansion
by the same factor and a frequency shifting upwards. Otherwise, the wavelet spectrum
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is halved as a result of a doubling of its width in the time domain [37]. Since a wavelet
can be seen in first approximation as a band-pass filter, this last aspect leads to a halving
of the bandwidth. By exploiting this property, it is, therefore, possible to cover the signal
spectrum with the wavelet spectra of different extensions. A good coverage can be obtained
if the spectra associated with the wavelets of different scales are connected, without leaving
any gap. This process, however, would require an infinite number of wavelets of different
scales to cover the entire signal spectrum down to zero frequencies. It is therefore necessary
to introduce a new element of the wavelet analysis, which is the scaling function. The
scaling function is associated with the smoothing of the signal and its spectrum has the
nature of a low-pass filter. Mathematically, the scaling function has the same form of the
wavelet: that is,

φm,n(t) = 2−m/2 φ(2−mt− n
)

(9)

and it satisfies the following property:∫ +∞

−∞
φ0,0(t)dt = 1 (10)

where φ0,0 is called father scaling function or father wavelet. By introducing the scaling
function, the problem of the infinite number of wavelets has been resolved setting a lower
bound for the wavelets. In this way, one wavelet is analogous to a band-pass filter and a
scaling function is a low-pass filter and, consequently, a series of dilated wavelets together
with a scaling function is a filter bank.

Finally, for resolving the third issue of CWT, fast algorithms to calculate the wavelet
transform must be developed. The most efficient way in terms of calculation time is to
divide the signal spectrum in two (equal) parts, i.e., a low-pass and a high-pass frequency
band. The high-pass band includes the smallest details, while the low-pass part still con-
tains some information and therefore it is possible to split it again, creating an iterated filter
bank. The number of bands is limited by for example the amount of data or computation
power available. The advantage of this scheme is that we must design only two filters,
while the disadvantage is that the signal spectrum coverage is fixed. A more detailed
dissertation on the frequency range characterization related to the wavelet transform is
present in [39].

Ultimately, as in many practical applications signals are discrete, described wavelet
transforms must also be discretized. In fact, discrete wavelets are not time-discrete but
only the translation and the scale step are discrete. To achieve the time-discretization,
the wavelet filter bank can be implemented as a digital filter bank. This brings to define
wavelet families through two filter banks: the scaling filter and the wavelet filter. This last
procedure can be seen in analogy with the Fast Fourier Transform as reported in [40].

In order to clarify this process, Figure 6 shows the application of DWT on a small
sample of the original wind power signal of the present case of study. As discussed, the
scope is to decompose the wind power into high-frequency and low-frequency components.
Discrete wavelet transform returns two sets of coefficients: approximation coefficients (in
red in Figure 6) and detail coefficients (in green in Figure 6), which represent the output
of the low pass filter (averaging filter) and high pass filter (difference filter), respectively.
Then, DWT is applied iteratively on the low pass set, so that the original signal is also
sampled down by a factor of 2. The process is shown in Figure 6a. In this way, it is
possible to analyze in the signal at different frequency levels reaching the required degree
of decomposition. Once the wavelet coefficients are calculated, the inverse discrete wavelet
transform is applied to each level separately to reconstruct a power signal filtered from the
high-frequency components (Equation (11), where n is the level of decomposition selected).
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The wavelet decomposition diagram of wind power is shown in Figure 7, where A and D
represent the low frequency and the high frequency components of the signal, respectively.

P(t) = An(t) +
n

∑
i=1

Di(t) (11)

As a final remark, it is worth noting that, to ensure an accurate signal reconstruction,
an appropriate choice of the most suitable mother wavelet must be made. In fact, the best
wavelet to perform the analysis depends on the type of signal and the phenomenon of
interest [21]. In this study, the Daubechies Db4 has been selected as mother wavelet because
of its specific properties, i.e., orthogonality, energy preservation and support of higher
polynomials grade for the same number of vanishing moments in comparison with other
families, in accordance with literature results [41]. In particular, the Daubechies wavelet
Db4 offers an appropriate trade-off between wavelength and smoothness, resulting in an
optimal behavior for wind power smoothing and short-term wind power forecasting.
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3.2. Wavelet-Based Smoothing Algorithm and ESS Model

The DWT is at the core of the proposed smoothing method. The signal is first de-
composed into a low frequency component that will be outputted to the grid and a high
frequency one that will be absorbed by the ESS. This concept remains the same in both the
battery sizing algorithm, presented in Section 3.2.1 and the battery management algorithm,
shown in Section 3.2.2. The constraints on the ESS’s operation are at times a significant
bottleneck and cause the power output to the grid to change significantly. For this reason,
the ESS and the smoothing algorithm have to be treated as a single system as will be
explained in the following subsections.

3.2.1. DWT-Based Battery Operation Design Algorithm

The wavelet-based analysis is applied to the smoothing of a wind turbine’s power
output by firstly decomposing the signal into low and high frequency components. This
section in focused on the description of the algorithm used for batter sizing. Therefore, the
DWT is performed on the entire dataset at once. The flowchart in Figure 8 describes the
logic of the algorithm. The inputs of the model are shown in Table 2. All the algorithms
developed in the study were realized in the Python programming language. As shown in
Figure 8, once the input data is acquired, the DWT is performed, and the recursive part of
the algorithm begins and the procedure cycles through all the timesteps of the input data.
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After the DWT of the power signal is calculated, the target smoothed power output is
reconstructed considering the frequency threshold given by the selected level of decomposi-
tion. A higher level of wavelet decomposition will smooth out a larger portion of the signal,
while a lower level will filter out fewer high frequency components. Possible negative
values of the low-frequency component have also to be checked as they are physically
wrong: these values are set equal to zero. Subsequently, a first use of the battery is made: a
positive smoothing involves a discharge of the battery while a negative smoothing entails
a charge of the battery as illustrated in Figure 9.
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Table 2. Smoothing algorithm inputs.

DWT features: � Db4 wavelet family
� Smoothing level decomposition (ex. order = 1, 2, . . . )

Ramp rate constraint: � 10% Pnom

Technical storage parameters:

� C-ratecharge, max = 1 & C-ratedischarge, max = 2
� SOCmax = 0.95 & SOCmin = 0.15
� SOCinitial = 0.5
� SOHinitial = 1 (New battery)
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The smoothed power resulted by the DWT is then checked for ramp rate violations. If
no violation occurs, the power output is equal to the power smoothed by the DWT, and
battery parameters are updated before the next timestep. If a ramp rate violation takes
place, an additional smoothing step is required. It is readily noticeable that the algorithm
needs to work in tight connection with the battery model as the battery is required to
absorb the excess power, which can be easily computed as:

Ebatt =
(
Pwind − Psmoothideal

)
∆t (12)

To model real-world operation some constraints regarding the battery have to be
introduced and will be detailed in the following section.

3.2.2. DWT-Based Real-Time Battery Control

The Discrete Wavelet Transform is typically used in many engineering applications for
the analysis of acquired signals; this kind of approach perfectly fits the application where it
is used to properly size a storage system based on either historic data, like those available
in this study, or synthesized ones.

On the other hand, the present study aims at showing this method can be exploited
for performing power smoothing in real time. To this end, however, the conventional
method needs to be re-arranged. More specifically, it is commonly acknowledged that
DWT exhibits problems of border distortion [42], i.e., inaccurate signal reconstruction is
expected at the tails of the data fed to the DWT. This is of course an issue in a real-time
application, where the value that needs to be handled at each timestep is exactly the last
one in the series, without any future knowledge of the signal, placing the point of interest
on the edge of the signal to be smoothed.

A simple and efficient approach to reduce signal discontinuities is the use of a sym-
metric extension method has been recently proposed in [43] and further expanded in the
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present study. In detail, if the goal is to calculate the real-time DWT of the signal in at
certain time i, good results can be achieved by applying the DWT to a mowing window
W_i symmetrically extended as follows:

Wi = Wi + Wsym
i = {x(i− lw + 1), . . . , x(i)}+ {x(i), . . . , x(i− ls + 1)} (13)

In other words, the signal upon which the DWT will be performed is made of lw
values before time i and ls mirrored values with respect to time i. Since the DWT is applied
on a moving window of length lw+ls at each timestep, the choice of the lengths ls and lw
becomes fundamental to reach high accuracy and acceptable computation time, especially
important for an online tool. Considering the DWT implementation and operation as
explained in [44,45], the required length of the symmetric window increases with the rise
of the decomposition level, and also depends on the mother wavelet function itself. In
addition, as it will be shown clearly in Section 4.5, increasing lw over a certain point does
not add any information for the definition of the real-time value at the present timestep
because of the multi-resolution properties (in time and frequency) of the wavelet transform.
Indeed, unlike the Fourier transform, the wavelet analysis acts only close to the chosen
timestep, with a range defined by the wavelet family features and decomposition level [31].
From another perspective, when increasing the level of decomposition, lower frequencies
need to be approximated using the DWT, and therefore a longer window is needed. This
proposed real-time method will often be referred to in the following parts of this study as
“online” DWT, while when the DWT is performed on the entire dataset at once we will
refer to it as “offline”.

3.2.3. ESS Model

Lithium-Ion batteries were selected as the technology to be used in the HESS because
of the high efficiency and resiliency to cyclic operations in comparison to other battery
technologies [46]. The dynamic behavior of the batteries is neglected as Li-ion batteries
have a very fast response time (within milliseconds), much shorter than the timestep
assumed in the analysis (one minute). In order to obtain more realistic results, both
operating constraints and battery degradation were accounted for, since it is well known
that batteries tend to reduce their available capacity due to cyclic operation. Calendar or
shelf aging was not considered in this study as the battery is continuously in operation
and this aging mechanism only affects battery lifetime when the component is stored at a
constant state of charge for prolonged periods of time.

State of Charge (SOC) is an expression of the residual battery capacity as a percentage
of maximum capacity. To prevent quick battery degradation, SOC is always somehow
limited by the control system, as very deep charge-discharge cycles are particularly damag-
ing. In this study, the allowed variation range for SOC was between 0.15 and 0.95. Other
characteristics to need to be monitored are the charge and discharge currents, which have
to be limited to prevent battery damage. Within the framework of the present modeling
approach, where the SOC range is restricted, voltage can be considered constant, and
currents can be evaluated in terms of charge and discharge power (kW). As the current
magnitude depends on the battery size, the “C-rate parameter” is defined as C-rate =
Power (kW)/Capacity (kWh). High C-rates generate an increase of the battery working
temperature, reducing efficiency and lifetime. Therefore, precautionary constant C-rates of
1 for the charge phase and 2 for the discharge phase are used to prevent any issues related
to temperature operation and losses of performance [47]. Moreover, charging and discharg-
ing operations entail significant losses, which are quantified in terms of their respective
efficiencies [48]. They are relative to different parameters, such as SOC and temperature.
Assuming that the latter is constant given the constraints on C-rates, a non-linear behavior
of the charge/discharge efficiencies in function of the SOC is taken into consideration to
model in a more accurate way the battery operation. As shown in Figure 10, because of
limitations due to the electrochemical processes, discharging (spontaneous reaction) is
more efficient than charging (non-spontaneous reaction) [49].
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State of Health (SOH) provides an indication of the aging of a battery compared to
ideal conditions. SOH values are expressed as a percentage, where 100% corresponds to a
new battery and 70% corresponds to a battery that needs to be replaced in this study. This
latter value is in agreement with the common prescriptions that can be found in literature
(e.g., [50]). It is important to note that SOC and SOH jointly influence battery operation.
The residual charge in the battery at any given time and the C-rate can be expressed as:

C = SOC∗(SOH ∗Cmax) (14)

C− rate(t) =
PESS

Cmax∗SOH(t− ∆t)
(15)

Therefore, as the battery ages, it might not be able to fulfill the operational require-
ments as both capacity and sustainable C-rates decline. The SOH of the battery is updated
every 24 h accounting for battery ageing. In order to model the reduction of the maxi-
mum battery capacity caused by cyclic degradation, concepts from the field of fatigue
are adapted to the present case. Battery lifetime is often estimated as the number of full
charge–discharge cycles that the battery can sustain. In real-world applications however
the charge–discharge profile is irregular and full cycles are rare. According to many engi-
neering applications, the Rainflow cycle counting method is adopted to accurately identify
cycles in an irregular battery SOC profile [51] and to obtain an equivalent set of constant-
amplitude cycles that the battery has performed in the analyzed interval. The process is
clearly explained in [52]. For each set of constant amplitude cycles the damage D caused
on the battery can be calculated:

D(day(i)) =
100%

∑
m=0

Nm

EOLCyclem

(16)

where EOL_(Cycle_m) are the maximum cycles that the battery can tolerate at the given
SOC, and N_m are the cycles the battery went through at the SOC. For each SOC, the cycles
the battery can tolerate can be approximated with a battery specific Wöhler curve:

EOLCycle = A (∆SOC)B (17)

The parameters A and B were estimated based on available data and literature. In
particular, B = −1.5 which is a typical empirical value for this type of batteries also used by
other authors in similar studies [4]. The constant A = 5200 is instead referred to the Samsung
battery model with the main technical specifications reported in Table 3, being equal to the
End of Life (EOL) cycle lifetime of 70%. In other words, after 5200 full cycles, the battery
must be replaced because the relative capacity reaches 70% of the nominal capacity.
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Table 3. Technical specifications of the reference battery for the study.

PHEV-1/Samsung SDI 94 Ah

Weight 670 kg
Size 800 × 850 × 2034 mm (W × L × H)

Energy 62.3 kWh
Nominal voltage 662 V

Min. voltage 486 V
Max. voltage 747 V

Nominal capacity @25 ◦C 94 Ah
Max continuous discharge current @25 ◦C 230 A

Max continuous charge current @25 ◦C 100 A
Cell temperature operating 0 to 55 ◦C

Cycle lifetime EOL80%/EOL70% 3200/5200 Cycles

Considering the hypothesis of linear accumulation of damage (also known as the
Palmgreen–Miner rule):

D = ∑
i

D(day(i)) (18)

The cumulative damage gives an indication of the amount of equivalent full cycles
so that it is possible to evaluate the SOH of the battery, and consequently the reduction of
available capacity due to the degradation, using the function given by the interpolation of
battery datasheet:

SOH(day(i)) = 2.404 ∗ 10−7 ∗
(

5200 D2
)
− 7.019 ∗ 10−3 ∗ (5200 D) + 100 (19)

In particular, this equation derived by a second order interpolation among three points
(n◦ cycles; SOH): (0; 100%), (3200, 80%), (5200, 70%).

It is important to notice that with the imposed limitations on C-rates and assuming con-
trolled operating temperature, other charge or discharge power degradation mechanisms
were here reasonably neglected.

3.2.4. Effects of Battery Constraints on the Wavelet Smoothing Algorithm

The effects of the introduced constraints on battery operation can now be explained.
Indeed, to account for these battery-related limits, a SOC feedback strategy is a basic and
important strategy to keep the SOC of BESS within its proper range while the BESS is
smoothing out the fluctuations of the power signal [53]. Unlike other approaches that act
directly on the SOC profiles [54], the control method developed in this study is applied
directly to the wind power signal using the DWT. By doing so, the results of Section 4.2
will show that an alleviation of the battery operation stress around the SOC limits can
be achieved and, by consequence, a more effective battery management. In particular,
the algorithm behavior is different in charging mode (E_batt > 0) and discharging mode
(E_batt < 0). Battery SOC is updated at every timestep as summarized in Table 4. The
effects on power output are shown in Figure 11. Analyzing Figure 11, when the battery
performance is limited by the C-rate or the SOC, the power output profile is forced to
follow the red line. Therefore, depending on the battery capacity, it is possible that not
all the ramp violations can be smoothed. For this reason, it is important to quantify the
smoothing performance in connection with the battery capacity.
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Table 4. Algorithm correction to account for battery constraints.

Charging Mode (Ebatt > 0)

(1) If SOC > SOCmax & C-Rate > C-Ratemax:

Psmooth = max
(

Pwind + (SOC(t− ∆t)− SOCmax)
Capacity ∗ SOH

ηc∆t
; Pwind −Cratec,max∗Capacity ∗ SOH

)
(2) If SOC > SOCmax & C-Rate < C-Ratemax:

Psmooth = Pwind + (SOC(t− ∆t)− SOCmax)
Capacity ∗ SOH

ηc∆t

(3) If SOC < SOCmax & C-Rate > C-Ratemax:

Psmooth = Pwind −Cratec,max∗Capacity ∗ SOH

(4) If SOC < SOCmax & C-Rate < C-Ratemax:
Psmooth = Psmoothideal

(5) Ebatt = (Pwind − Psmooth)∆t
(6) SOC(t) = SOC(t− ∆t) + Ebatt∗ηc

Capacity∗SOH(t−∆t)

Discharging mode (Ebatt < 0)

(1) If SOC < SOCmin & C-Rate > C-Ratemax:

Psmooth = min
(

Pwind + (SOC(t− ∆t)− SOCmin)
Capacity ∗ SOH

ηd∆t
; Pwind + Crated,max∗Capacity ∗ SOH

)
(2) If SOC < SOCmin & C-Rate < C-Ratemax:

Psmooth = Pwind + (SOC(t− ∆t)− SOCmin)
Capacity ∗ SOH

ηd∆t

(3) If SOC > SOCmin & C-Rate > C-Ratemax:

Psmooth = Pwind + Crated,max∗Capacity ∗ SOH

(4) If SOC > SOCmin & C-Rate < C-Ratemax:
Psmooth = Psmoothideal

(5) Ebatt = (Pwind − Psmooth)∆t
(6) SOC(t) = SOC(t− ∆t) + Ebatt∗ηd

Capacity∗SOH(t−∆t)
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3.3. Conventional Power-Smoothing Methods for Benchmarking

In order to assess the potentiality of the proposed wavelet approach, it is here com-
pared to two other conventional power smoothing methods. The methods are implemented
similarly to the wavelet algorithm and can be conceptually illustrated as in Figure 8.

The first method is the “ramp rate shaving” approach, which directly smooths out
the power when there is a ramp rate violation, i.e., the ramp rate is higher than the grid
code limit. This approach does not operate a continuous smoothing, but the BESS is
activated only during violation occurrences [4]. This is a simple way of providing the
required smoothing, but it comes with non-negligible downsides, which will be shown in
the following sections.

The other approach is the “simple moving average” (SMA) approach [55], which cal-
culates the smooth power output at the current timestep as the average of the previous n
timesteps [56]. If Pwind(i) is the wind power at the timestep i, the approach can be expressed as:

PSMA(n + 1) =
∑n

i=1 Pwind(i)
n

(20)

With this method, short-term averages (low n) respond quickly to changes in the
power output, while long-term averages (high n) are slow to react. The battery operates
continuously, storing or releasing the energy in accordance with the difference between
the real wind power value and the smoothed one, predicted by the SMA. In case of ramp
rate violation of the smoothed power profile, a second smoothing to respect the grid
code requirement is necessary. This second smoothing is performed with the ramp rate
shave method.

3.4. Cost Analysis

To the best of authors’ knowledge, no clear regulations about economic benefits and
penalties associated to wind-farm violation of the ramp rate limits are in place at the time
of writing, at least in European countries. As a result, no indication on fees regarding
grid code violations are indicated by the literature. Therefore, the requirements reported
in Table 1 are currently only recommended. According to industry insiders, however,
such mechanism will arise in the near future. In order to provide a quantification of the
possible benefits introduced using the wavelet method for power smoothing, the authors
decided to compare the overall cost of the storage system (i.e., capital cost for batteries and
maintenance cost, in the form of battery replacement [57]) with that resulting from a storage
management based on the conventional methods presented in Section 4.3. While not ideal,
since this study is comparative, such an analysis can still provide meaningful information.

The cost analysis is done on a 20-year time window, which is a common wind-
park lifespan. According to published data, a typical battery and inverter system costs
300–350 €/kWh for large systems (>10 MWh) and 400–500 €/kWh for smaller systems [58].
In this case, considering the turbines’ rated power, a unit price of 500 €/kWh is assumed.
Additionally, the cost over the period must also consider the maintenance cost and, above
all, the replacement times, i.e., the substitution due to the degradation during operation.
For instance, a small battery, which has to satisfy higher charge–discharge cycles, tends to
age faster than a bigger one. Subsequently, the management of the battery is fundamental in
order to preserve it and reduce the degradation rate. Moreover, a maximum life expectancy
of 10 years is considered for precautionary reasons as most suppliers suggest [59]. The cost
of the battery directly depends on the capacity. Therefore, since the battery needs to be
replaced during the wind turbine’s lifetime, future capital costs need to be actualized using
a discount and inflation rates. All the economic parameters are resumed in Table 5.
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Table 5. Economic parameters.

Battery unit cost 500 €/kWh
Wind Turbine lifetime 20 years
Li-ion battery lifetime 10 years

Discount rate (d) 5%
Inflation rate (i) 2%

The cost analysis is made in a differential way. This involves assuming that revenues
and maintenance costs are equal for all of the power smoothing approaches. Therefore,
only differential costs have to be accounted for, these are the capital costs related to initial
battery purchase and replacement. Because SCADA data is available for a 4-year period
only, this data is repeated until the 20-year limit is reached. The annual cost at year n is
calculated as:

Annual Cost n = (unit cos t ∗ Battery Capacity)n ∗
(1 + i)
(1 + d)

n
(21)

The total cost over the WT lifetime is:

Total Cost =
20

∑
n=0

(Annual Cost)n (22)

4. Results
4.1. Sensitivity Analysis on the Wavelet Level Decomposition and Abatement Ratio

The wavelet smoothing power profile depends on the choice of the level of decompo-
sition. To this end, a preliminary analysis was made to assess the best level to use for the
present application. The main results are reported in Figure 12, where #1 represents Level 1
(i.e., one application of the DWT on the signal). Turbine WT1 was used as a reference in the
rest of study.
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As expected, based on the nature of the wavelet transform, conceived to filter the
high frequency components from the lower ones, it is apparent that the higher the order of
the wavelet, the smoother the signal. For the limit investigated cases (levels from 1 to 7),
a smoothing level equal to one does not smooth the signal (the processed signal nearly
follows the raw wind power trend), whilst a level equal to seven creates a flat signal that
cuts out all the fluctuations. The objective of the ESS however is not to completely level-out
the turbine’s power output but rather to smooth-out the high-frequency fluctuations. To
select the appropriate level of decomposition, however, battery behavior and size have to be
accounted for. In fact, selecting a higher level of smoothing means that more energy must
be stored or released from the battery and, therefore, a bigger battery capacity is needed to
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satisfy the requirements. Consequently, the selection of the wavelet level decomposition
is a trade-off between the abatement ratio, i.e., the effectiveness of ramp rate reduction,
and the battery capacity, i.e., the ability to follow a specific power output profile at a
reasonable cost.

Figure 13 illustrates the abatement ratio as a function of the battery capacity for the
seven wavelet decomposition levels discussed above. As expected, the curves present
an asymptotic trend in dependency on the battery capacity, with higher-order Wavelet
methods reaching smaller AR in case of small batteries, which are not able to store/release
the amounts of energy needed to smooth out the original power production of the wind
turbine. For the selected case study, if one sets a threshold for AR lower than 98%, the best
performance (i.e., the lowest battery capacity able to guarantee such level of abatement)
is given by level #2. On the other hand, if AR = 100% is requested, the Wavelet level #3
has to be preferred. Beyond the analysis of the pure frequency components that each
decomposition level is able to deal with, it is also worth remembering that very high levels
of decomposition not only implicate the requirement of a bigger capacity to reach a high
abatement ratio, but also cause the absorbed or released theoretical power to be significant.
In such cases the C-rate limits are a significant constraint and play a key role in limiting the
smoothing effectiveness.
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The multivariate analysis of Figure 13 showed that the choice of the decomposition
level and the resulting system cost are strongly related to the selected Abatement Ratio that
one wants to achieve for the system. The meaning of the AR threshold is apparent upon
examination of Figure 14, which reports the PDF and CDF of the ramp rates managed by
the system in case of abatement ratios of 0% and 90%, respectively.
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The PDF with 90% AR is narrower than the original one because most of the ramp
rates are concentrated in the range of ±10%. In particular, the CDF indicates that an
abatement ratio of 90% reduces the overall ramp violations from 22% to 2%. This means
that with a battery with reasonable capacity and cost, it is possible to eliminate over 90% of
the ramp rate violations. In addition, no ramp-rate violations exceeding 63% rated power
are recorded and even the ramp rate violations that exceed 20% are greatly reduced to a
mere 1.6%.

Upon examination of the results in Figure 13, a Wavelet decomposition level of two
was selected as the best compromise for the present application. As shown in figure, the
optimal level of decomposition depends on the level of smoothing required, but also
on the power output of the specific wind turbine or wind farm under consideration. In
general, the optimal decomposition level can be determined using the proposed technique
on historical data, if available. As discussed, if these latter are not available as in the
case of new wind farms, synthetic power data can be derived combining anemometric
measurements acquired during the wind farm planning with turbine performance curve.
In addition to that, it could be possible also to find optimal level for different seasons using
for example genetic algorithms as proposed in [19], but this additional study is out of
scope of this paper. Furthermore, accounting for seasonal variation is not a trivial task as
significant year-to-year variations can occur, and then very long time histories are needed
to make the results significant.

4.2. Wavelet-Based Power Smoothing Performance against Conventional Methods

The smoothing capability of the Wavelet method (decomposition level #2) is compared
to the conventional methods presented in Section 3.2. The ramp rate shave method is also
targeted in the following as “Direct” approach since the smoothing is applied directly on
the ramp rate violation. In addition, the optimal n for the Simple Moving Average has
been selected as 20 by a sensitivity analysis. Figure 15 compares the Wavelet, the direct
method, and the moving average in terms of AR vs. battery capacity. Upon examination of
the figure, it is apparent that the wavelet shows by far the best performance, reaching for
each battery capacity the highest abatement ratio. From another perspective, this means
that, for a selected AR (e.g., 90%) the use of the Wavelet approach allows one to select the
smallest battery capacity.
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This result is due to the benefits associated with the analysis of the power output as a
signal. Indeed, high ramp rates are directly related to high frequency components, which
can be effectively located and filtered by the wavelet transform. The direct smoothing
method, instead, only activates the ESS when a ramp violation occurs: this lower use of the
battery potentially reduces cyclic wear but, at the same time, the intermittent operation
might force the battery to provide large power and energy transients, impacting the
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smoothing effectiveness. The moving average approach predicts every point based on
the average of a given number of previously recorded data points. This approach, even if
providing a smoother power profile, is not able to properly follow the power fluctuations.
In fact, the high wind variability implicates unexpected power variations, and a moving
average approach cannot manage these occurrences, strongly cutting these peaks. This
results in a more intense use of the battery and, in turn, higher degradation and less
effective smoothing. In fact, a bigger battery is needed to have the same abatement ratio
of the wavelet approach. These aspects can be further clarified analyzing the comparison
of theoretical power smoothing profiles and delivered power to the grid presented in
Figure 16a,b, respectively.
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The theoretical smoothing profiles (i.e., the ones coming from the purely mathematical
application of the algorithms) for the three methods reported in Figure 16a show different
fluctuations independently from the BESS constraints. The plots in Figure 16b instead
show the smoothing effect on the real power profile delivered to the grid also accounting
for the battery operating constraints. The wavelet timeseries remains quite regular and
coherent with the trend of Figure 16a. On the other hand, the moving average requires
a massive use of the battery and it is not able to follow the theoretical smoothing profile.
This is due to the time-lag between the predicted smooth signal and the raw power output.
This causes the available battery capacity to quickly dry up. Similar phenomena can be
observed for the direct method, although battery operation in this case is sporadic, the
battery can be called to provide only ramp-up (as observed around timestep 561,300) or
ramp-down power compensation, therefore exhausting the available battery capacity. Once
the battery is completely full or completely empty, no more smoothing can be provided
and the power outputted to the grid closely resembles the raw power timeseries.

Consequently, the energy that flows in and out from the battery is very different for
the three methods, as shown in Figure 17.

Moreover, it is apparent that the battery management provided by the wavelet ap-
proach is able to cope with fast and deep fluctuations as around timestep 561,300: in this
case, it is the only one which allows for the high energy release requested by the power
smoothing requirements. To further highlight the differences in battery operation imposed
by the different methods, Figure 18 shows the SOC series for the three methods consid-
ering a battery with the same capacity (330 kWh) and the entire data history available
from experiments. The discussed tendencies are even more apparent here, with the direct
method implying variations of the SOC with high amplitudes, but lower frequency than
the moving average approach, which seems to be the worst between the two methods,
involving very high amplitudes and frequencies. In particular, one can notice that the SOC
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profile for the moving average approach provides a battery operation around minimum
SOC, which is an extremely non-recommended condition. The wavelet method also has a
quite high frequency of battery usage, but with much smaller variations of the SOC. To
evaluate the difference more quantitatively, one can consider the mean percentage SOC
variation between two consecutive timesteps as in Equation (23).

SOCvariation = mean
(
|SOC(t + 1)− SOC(t)|

SOC(t)

)
(23)

For wavelet SOC profile, the mean SOC variation results 64% lower than that of the
Direct approach. This implies a better operation of the battery, particularly in terms of
ramp rate management. High SOC variability means a worse regulation of power, and a
lower capability of the system to manage unpredictable power variation.
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Moreover, the degradation per cycle is higher according to the Wöhler curve. The
wavelet approach, conversely, uses the battery continuously with charge/discharge micro-
cycles, providing better operation. In particular, the use of the battery controlled by wavelet
is almost continuous for almost the whole time, differently from the direct approach, which
provides sporadic battery activation and consequently a worse control of battery operation
with respect of ramp rate requirements. Table 6 shows the calculated mean value of the
SOC and its standard deviation in the entire time frame covered by experiments: the
main result is that wavelet approach is able to manage the battery at higher SOC so that
efficiencies in charging and discharging mode are both optimized.
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Table 6. SOC parameters: capacity = 330 kWh.

Method Average Standard Deviation

Wavelet 0.43 0.18
Direct 0.29 0.11

Moving average 0.37 0.19

Similar conclusions can be drawn (Table 7) when comparing the SOC trends consider-
ing a battery capacity that allows one to reach the same abatement ratio (AR = 90%). In
this case, the three methods need different battery capacities (larger for the conventional
approaches, 330 kWh vs. 465 kWh from Figure 14); notwithstanding this, their battery
operation is still featured by higher SOC variations (Figure 19, for the same time frames
discussed before) in comparison to the wavelet approach, corroborating the higher effi-
ciency of the latter in the management of the storage. It is also worth pointing out that the
behavior of the BESS, in terms of SOC, is almost independent on the capacity and on the
abatement ratio, while it is strictly conditioned by the power control approach.

Table 7. SOC parameters: AR = 90%.

Method Average Standard Deviation

Wavelet 0.43 0.18
Direct 0.38 0.16

Moving average 0.40 0.20

Energies 2021, 14, x FOR PEER REVIEW 24 of 33 
 

 

 
Figure 19. Comparative analysis of SOC profiles for the three methods (Same abatement ratio (AR) 
= 90%), wavelet capacity 330 kWh, direct capacity 460 kWh, moving average capacity 465 kWh. 

Table 6. SOC parameters: capacity = 330 kWh. 

Method Average Standard Deviation 
Wavelet 0.43 0.18 
Direct 0.29 0.11 

Moving average 0.37 0.19 

Table 7. SOC parameters: AR = 90%. 

Method Average Standard Deviation 
Wavelet 0.43 0.18 
Direct 0.38 0.16 

Moving average 0.40 0.20 

As a conclusive analysis for this section, the methods compared in case of a single 
demonstrative turbine were also tested in case both available turbines are considered as 
served by a single battery, i.e., similarly to a small wind park. In this case, in fact, since 
the turbines barely work with the same exact wind, the ramp rates violations could be 
either make more intense or, more often, partially shaved out. It is then worth assessing 
the type of benefit achievable with the proposed DWT approach also in this case. 

As shown in Figure 20a, the wavelet-based power smoothing leads again to notable 
benefits in comparison with conventional approaches, favorably also managing the afore-
mentioned mistuning of the wind fluctuations on the two turbines. Figure 20b and Table 
8 instead report a comparison of the system performance in case a single accumulation 
system is used for both turbines or each turbine is served by a dedicated battery pack; the 
results refer to a 90% AR and wavelet-based battery management. In case of a combined 
management, the BESS system can be 35% smaller in comparison to that needed for a 
single turbine. Further analyses will be devoted at extending the analysis to a real wind 
turbine park, so to prove the industrial impact of these techniques. 

Figure 19. Comparative analysis of SOC profiles for the three methods (Same abatement ratio
(AR) = 90%), wavelet capacity 330 kWh, direct capacity 460 kWh, moving average capacity 465 kWh.

As a conclusive analysis for this section, the methods compared in case of a single
demonstrative turbine were also tested in case both available turbines are considered as
served by a single battery, i.e., similarly to a small wind park. In this case, in fact, since the
turbines barely work with the same exact wind, the ramp rates violations could be either
make more intense or, more often, partially shaved out. It is then worth assessing the type
of benefit achievable with the proposed DWT approach also in this case.

As shown in Figure 20a, the wavelet-based power smoothing leads again to notable
benefits in comparison with conventional approaches, favorably also managing the afore-
mentioned mistuning of the wind fluctuations on the two turbines. Figure 20b and Table 8
instead report a comparison of the system performance in case a single accumulation
system is used for both turbines or each turbine is served by a dedicated battery pack; the
results refer to a 90% AR and wavelet-based battery management. In case of a combined
management, the BESS system can be 35% smaller in comparison to that needed for a single
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turbine. Further analyses will be devoted at extending the analysis to a real wind turbine
park, so to prove the industrial impact of these techniques.
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achieved with the wavelet power smoothing method using separate vs. combined ESSs.

Table 8. Comparison between separate vs. combined configuration (AR = 90%). Wavelet-based
battery management.

Layout BESS Capacity [kWh]

Separate systems 690
Combined system 445

Increment −35%

4.3. Wavelet-Based Power Smoothing Economics against Conventional Methods

From an economic perspective, the main parameters that affect system cost are the
battery capacity and the replacement times of the components. The main results are shown
in Figure 21 and in Table 9.
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Table 9. Discounted lifetime cost comparison between the three methods (AR = 90%).

Method BESS Capacity [kWh] Discounted Cost [k€]

Wavelet 330 (-) 288 (-)
Direct 460 (+39%) 402 (+39%)

Moving average 465 (+41%) 406 (+41%)
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For high abatement ratios (typical for this kind of application), the wavelet represents
the best trade-off between performance and cost. This result is entirely related to the
smaller capacity that the wavelet method requires for a given AR. The effect of the battery
replacement time on total discounted system cost can be seen by analyzing the SOH of the
system, which is shown in Figure 21 for the various smoothing methods. From Figure 22a,
where the methods are compared with the same battery capacity, it is apparent how the
SOH slope for the direct approach is lower than the other methods, due to the intermittent
use of the battery. In terms of replacements, the moving average method is clearly the
worst as only one battery replacement is needed for the first two methods, whilst two are
required for the moving average approach. Very similar considerations can be made in
case of Figure 22b where the methods are compared at the same AR. Again, the direct
method guarantees lower battery degradation. As previously noted however, this effect is
totally offset from an economic perspective by the smaller capacity that can be used with
the wavelet approach.
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To complete the analysis, the upper chart in Figure 23 compares the trends of AR
already discussed in Figure 20a with the specific cost needed to get one percentage point of
this AR. As attended, the ability of the DWT of providing the higher AR for each battery
capacity generally results in a lower specific cost. It is interesting to note, that an exception
occurs for the lowest tested battery capacity, where the direct method provides a lower
specific cost. The reason for this can be related to the number of battery replacements,
shown in the lower chart of Figure 23: for the lowest capacity considered, also the wavelet
approach would lead to two battery replacements. At this capacity the wavelet-based
power smoothing still ensures an AR more than three times higher than the other two
methods. As shown in the upper graph in Figure 23, this compensates partly for the extra
replacement with respect to the direct method, as specific cost is only marginally higher
than the direct method and much lower respect to the simple moving average. For low
capacities, only the battery managed with a moving average approach needs to be replaced
for more than two times. After 330 kWh, all methods lead to only one replacement. The
results of Figure 23 agree with the discussed trends in terms of SOC and SOH profiles.
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4.4. Effectiveness in Case of A Reduction of the Ramp Rate Requirements

In a future scenario, a higher penetration of wind energy in the grid is favorably
seen and presently assumed as feasible [60]. To this end, especially in weak networks, a
reduction of the maximum allowable ramp rate will be required. To explore the potential
benefits of the use of the wavelet approach also in this scenario, simulations were repeated
imposing a limit of on ramp rates violation per minute of 5%. The results are reported in
Figure 24a.
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Upon examination of the trends, the same considerations seen for the 10% case are still
valid, with the wavelet still being able to ensure the best performance thanks to the lower
needed battery capacity and to the more efficient management of the power in the same.

Comparing now the 5% and 10% cases (Figure 24b), one can notice how the stricter
limit on the ramp rates brings to an increase in battery size to reach the same abatement
ratio. This is due to the higher energy flows that need to be managed by the system. On
the other hand, the percentage increment of the capacity is fortunately not directly scalable
with the limit. For instance, for an abatement ratio 90%, a reduction of the limit of 50%
implies a battery capacity increase of only 10% (360 kWh vs. 330 kWh). This is in fact a key
result, suggesting that even if a stricter threshold will be likely implemented in the future,
the corresponding increments in battery size and cost will be moderate.
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4.5. Wavelet-Based Power Smoothing Performance in Real-Time Operation

As discussed, the application of DWT directly for real-time control of a hybrid system
is not straightforward. The effectiveness of the algorithm proposed in Section 3.2.2 is
here discussed. To this end, a correct selection of the symmetric extension length ls and
the moving window length lw for the real-time algorithm is key. Therefore, a sensitivity
analysis has been carried out first. Considering results of the “offline” analysis, the same
wavelet family “Db4”, a level decomposition 2 and a 330-kWh battery capacity have been
set. An obvious constraint is that lw cannot be lower than ls. The results are shown in
Table 10. They show how no noticeable improvement is achieved by increasing lw and ls
over 24. As attended, the AR tends to saturate for very small values of lw and ls, indicating
that for this level of decomposition and wavelet family (“Db4” family at decomposition
level 2), a very small amount of data beyond the eight-sample bin used for the transform is
sufficient to efficiently operate the ESS.

Table 10. AR results for different lw and ls combinations. AR is calculated on entire dataset used
throughout Section 5.

Moving Window Length (lw)

4 8 16 24 32

Symmetric
Extension
Length (ls)

4 85.49217 87.9971 88.2814 88.2782 88.2782
8 / 88.0969 88.3445 88.3482 88.3303
16 / / 88.3448 88.3446 88.3447
24 / / / 88.3439 88.3439
32 / / / / 88.3439

Based on the results of Table 10, a window length and a symmetric extension length
of 24 samples were considered in the real-time algorithm. Real-time wavelet-based power
smoothing performance has been then compared with the offline wavelet presented in
previous sections and with conventional approaches (ramp rate shaving and moving
average), which have an intrinsic online operation. In addition, a further version of the
moving average, called “centered moving average” was also investigated. This makes use
of the same proposal made for using the DTW, i.e., a mirroring of the last 24 samples.

The results are reported in Figure 25a in the usual form of abatement ratio vs. storage
capacity. Upon examination of the figure, it is apparent that the wavelet-based method
provides much better results than conventional approaches also when applied online for
real-time control. The reasons behind this are again apparent from a perusal of Figure 25b,
which confirms the discussed benefits in terms of battery management. With the proposed
method, the SOC profile remains stabler than that with other methods, thus improving the
smoothing efficiency and the decreasing battery aging. In particular, it is worth remarking
that, even though quite simplified, the proposed methodology using the symmetric data
extension proved to be efficient, obtaining comparable results than those of the offline
wavelet; this is even more interesting since it is able to guarantee these results even without
forecasting data. The results of this comparison are reported in Figure 26 in case of a battery
capacity of 330 kWh. As shown in Figure 26a, the abatement ratio in comparison with
the offline wavelet method is only 1.8% lower; the power fed into the grid has almost the
same profile for a significant time interval for both the online and offline algorithms. In
Figure 26b, the SOC of the BESS is also shown. The battery operation in real-time control
mode is similar to offline mode; both profiles have the same trend and only the slightly
higher mean SOC variation of the online wavelet as a consequence of a lower Abatement
Ratio performance.
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As a final remark, the wavelet-based online method was evaluated in terms of compu-
tational efficiency. Analyses were made with a CPU with an Intel i7-1065G7 processor and
8 GB of RAM. A mean computational time of 2.3 × 10−4 s for each iteration was measured.
The order of magnitude is then very low in comparison with the control timescale of
a minute. This result suggests the capability of the control algorithm to be applied for
timescale of seconds and lower and thus proves that it is of industrial relevance.

5. Conclusions

In the study, the discrete wavelet transform (DWT) method was implemented in a
Python script and applied to the power smoothing of multi-MW wind turbines installed
onshore in a wind park on the Greek mainland, for which detailed experimental data on
field were available. In addition, a model of the hybrid system was developed, including a
Li-Ion battery model able to account for the main constraint posed by real-world operation
of such systems, like limits on maximum and minimum SOC, variation in SOH due to
cyclic aging, maximum charging/discharging rates, etc.

The developed model was then used to assess the capabilities of the DWT in com-
parison to more conventional methods like the direct ramp rate shaving and the simple
moving average. More specifically, the scope of the comparison was twofold.

First, the historic power time series were used as a benchmark to study the perfor-
mance of different battery sizes in dependence on the different power smoothing technique



Energies 2021, 14, 2184 29 of 32

and the target smoothing capabilities. By doing so, it was shown that, when using the
wavelet approach, the same smoothing performance, in terms of abatement ratio, can be
achieved with a smaller battery capacity with respect to the other algorithms. This is due
to unique capability of the wavelet transform to act as a filter bank that decomposes the
signal and cuts a certain range of high frequency components. Since high ramp gradients
are directly linked to high frequencies, this approach is able to smooth the power signal
effectively. Moreover, the better management achievable with the wavelet approach leads
to fewer battery replacements. As a result, at AR 90%, the benefit of the wavelet method is
a reduction of the overall cost of the power smoothing system of about 28% in comparison
with other approaches. Finally, it was shown that a reduction of the maximum ramp rate
requirements (foreseeable in the future to enable a higher penetration of wind power in the
grid energy mix) seems not bring to an excessive increase in costs (only +10% reducing the
ramp rate limit from 10% to 5%). This is a very interesting prospect for weak grids, which
will probably need such stricter limits. As a general remark, one should notice that the
proposed approach can be of use in the design phase of any new hybrid system, once real
data are replaced with synthetic ones coming from historic wind data combined with the
performance characteristics of the turbines.

As a second step, a methodology to adapt the discrete wavelet transform for use
as a real-time control algorithm of the hybrid system has been implemented. This has
been achieved by a symmetric signal extension of a limited number of samples in order
to avoid border issues; even if simple, this method proved to be effective and compu-
tationally efficient. The method was then compared to other techniques, now using the
experimental database in a time-marching way. Again, the wavelet approach showed
superior performance than other methods, ensuring higher abatement ratios for each bat-
tery size considered. The limited number of samples used allows for the algorithm to be
very inexpensive computationally and thus suitable for real-world implementation. The
potential impact of the application of DWT-based methods such as the one studied herein
are significant. As shown in this work, wind turbine power output can be smoothed to
the same effectiveness of other methods using smaller batteries, thus lowering upfront
investment costs. Moreover, although not specifically assessed in this preliminary study, if
and when grid code requirements such as the ones shown in Section 2.1 become mandatory
for renewable energy power plants, efficient ESS management will be crucial to lowering
overall LCOE. Future studies could further improve the method, e.g., by applying ma-
chine learning algorithms for the optimization of DWT decomposition level according to a
predictive SOC allocation strategy.
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Nomenclature

SCADA Supervisory Control And Data Acquisition
POC Point of Connection
MPPT Maximum Power Point Tracking
RR Ramp Rate
SMA Simple Moving Average
ESS Energy Storage System
BESS Battery Energy Storage System
FESS Flywheel Energy Storage System
HESS Hybrid Energy Storage System
SMES Superconducting Magnetic Energy System
ECS Energy Capacitor System
FC/ELZ Fuel Cell and Electrolyzer Hybrid System
FT Fourier Transform
STFT Short-Time Fourier Transform
DFT Discrete Fourier Transform
MRA Multiresolution Analysis
CWT Continuous Wavelet Transform
DWT Discrete Wavelet Transform
SOC State of Charge
SOH State of Health
WT Wind Turbine
AR Abatement Ratio
KPI Key Performance Indicator
P Power
Pnom Nominal Power
ls Symmetric extension length
lw Moving window length
i Inflation rate
d Discount rate
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