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Abstract: The research presented by the authors in this paper focused on understanding the behavior
of mercury during coal combustion and flue gas purification operations. The goal was to determine
the flue gas temperature on the mercury emissions limits for the combustion of lignites in the energy
sector. The authors examined the process of sorption of mercury from flue gases using fine-grained
organic materials. The main objectives of this study were to recommend a low-cost organic adsorbent
such as coke dust (CD), corn straw char (CS-400), brominated corn straw char (CS-400-Br), rubber
char (RC-600) or granulated rubber char (GRC-600) to efficiently substitute expensive dust-sized
activated carbon. The study covered combustion of lignite from a Polish field. The experiment
was conducted at temperatures reflecting conditions inside a flue gas purification installation. One
of the tested sorbents—tire-derived rubber char that was obtained by pyrolysis—exhibited good
potential for Hg0 into Hg2+ oxidation, resulting in enhanced mercury removal from the flue. The
char characterization increased elevated bromine content (mercury oxidizing agent) in comparison to
the other selected adsorbents. This paper presents the results of laboratory tests of mercury sorption
from the flue gases at temperatures of 95, 125, 155 and 185 ◦C. The average mercury content in Polish
lignite was 465 µg·kg−1. The concentration of mercury in flue gases emitted into the atmosphere
was 17.8 µg·m−3. The study analyzed five low-cost sorbents with the average achieved efficiency of
mercury removal from 18.3% to 96.1% for lignite combustion depending on the flue gas temperature.

Keywords: lignite; anthropogenic emission; mercury removal; flue gases purification; low-cost asorbents

1. Introduction

Ecotoxic elements, especially mercury, are particularly hazardous substances among
pollutants with no physiological relevance for living organisms. It is generally known
that mercury exposure can inflict various health issues, especially neurological, immuno-
logical, behavioral and sensory issues [1,2]. The mentioned afflictions were diagnosed in
consumers of contaminated fish (Minamata Disease in Japan) and crops (Iraq, Guatemala
and Russia). Mercury has an adverse impact on health, as well as long atmospheric lifetime
and propensity for deposition in the aquatic environment and in living tissue. Due to the
global distribution of mercury, the US Environmental Protection Agency [3] has classified it
and its compounds as an air quality threat. Coal combustion release, which has constantly
increased following growing worldwide energy demand, is considered as one of the most
significant anthropogenic origins of mercury [3–5]. Therefore, due to the element’s (wide)
exposition, to avoid adverse harmful effects to the respiratory, nervous and immune sys-
tems, it is crucial to decrease atmospheric mercury emissions. Conducted research confirms
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the severe influence on the environment and warrants worldwide actions for the reduction
of emissions [6–8].

In Poland, solid fuel combustion, mainly coal, constitutes the dominating source of
mercury emission, exceeding 80% of the country’s share [9,10]. Under the adoption of
2010/75/UE Directive (IED—Industrial Emissions Directive) that includes the permitted
industrial emissions, the Polish energy sector has introduced the Best Available Technolo-
gies (BAT) methods with a permissible emission limit of 1–10 µg·Nm−3, depending on
the fuel used and plant size [10,11]. At present, the vast majority of units in Polish power
plants do not meet the BAT-defined standards for mercury, which imposes the need for
technological progress. As new emerging technologies such as clean coal technologies
or deep desulfurization and denitrogenation do not meet the European standards for
mercury emission, auxiliary means of mercury removal are needed to prevent power plant
closures due to non-compliance with regulations. Among the techniques of standalone
mercury removal systems, injection of powdered activated carbon (PAC) to flue gasses due
to the high specific surface of the material is commonly utilized in the United States of
America [12,13].

The efficiency of mercury removal using powdered sorbent injection depends on
both physical and chemical properties of the material, flue gas temperature (inversely
proportional, i.e. increases in temperature result in sorption decreases) and flue gas
constituents (presence of halogen compounds and sulfur trioxide (SO3)). Furthermore,
mercury speciation plays a vital role as the Hg2+ form of mercury has good affinity for
sorbents capture, whereas Hg0 is practically not adsorbed. Therefore, oxidation of the
mercury in order to increase the share of Hg2+ is an established practice [14–17].

The main disadvantage of activated carbon sorbent usage is the material price,
which results in global research [18–21] aimed at the search for new low-cost adsorbents
with comparable sorptive properties that can be used as a replacement (low-cost ad-
sorbents). The authors suggest that the use of waste materials with no industrial ap-
plication can be the most beneficial in both economic and environmental terms [22].
For example, Guangqian L. et al. [23] developed waste-derived sorbents from biomass
and brominated flame retarded plastic for mercury removal from coal-fired flue gas.
Charpenteau C. et al. [24] proposed coal fly ash as low-cost material. The authors of [25,26]
analyzed six low-cost sorbents with the average achieved efficiency of mercury removal of
30.6–92.9% for sub-bituminous coal and 22.8–80.3% for lignite combustion. One of the main
objectives of this study was to recommend a low-cost organic sorbent such as coke dust to
efficiently substitute expensive activated carbon for mercury removal from flue gas. Other
researchers have attempted to develop alternative low-cost yet efficient adsorbents utilizing
agricultural and industrial wastes [27–29]. Biochars play a significant role in addressing
the current demands of adsorbents for various applications [30,31]. Initial research on
specially prepared chars from rubber wastes has proven beneficial for the capture of both
mercury [32] and other heavy metals [33]. Considering the amount of mercury released
by the energy sector [34–40], the research was organized to determine the potential of
rubber char as a sorbent for capturing mercury from flue gas at different temperatures and
compare it to other possible adsorbents as an alternative for expensive activated carbons.

The purpose of this study was the application of dust-sized sorbents for reduction of
mercury emissions from flue gas. The main objective of this study was to recommend a
low-cost organic adsorbent such as coke dust (CD), corn straw char (CS-400), brominated
corn straw char (CS-400-Br), rubber char (RC-600) or granulated rubber char (GRC-600) to
efficiently substitute expensive dust-sized activated carbon. The study covered combustion
of lignite from a Polish field. The experiment was conducted at temperatures reflecting
conditions inside a flue gas purification installation.
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2. Materials and Methods
2.1. Sorbents Origins

To compare the efficiency of sorbents, studies consisted of five types of low-cost
organic sorbents in three different forms: coke-derived char dust (CD), biomass chars (CS,
CS-Br) and rubber-derived chars (RC and GRC). Commercially available activated carbon
(AC) was included as industrial flue gas mercury sorbent of choice for comparative reasons.
The sorbents used are described in Table 1.

Table 1. Description of low-cost organic adsorbent.

LCOA Sign Description of Origin

Activated carbon AC
Commercial activated carbon, dedicated, e.g., for gas-phase mercury removal.

It was formed in the process of coal carbonization and subsequent thermal
activation of the obtained structure.

Coke dust CD Byproduct of large-scale coke production. The dust is obtained during coke
dry-cooling process, hauling and sorting.

Corn straw char CS-400 Solid product (char) of corn straw torrefaction process using superheated
steam at 400 ◦C.

Brominated Corn
straw char CS-400-Br Solid product (char) of corn straw torrefaction process with the addition of

bromine; blend char/Br2 was prepared at ratio 5:1.

Rubber Char RC-600
Solid product (char) of car tire pyrolysis at 600 ◦C. The material was derived

from industrial installations in which intact tires are subjected to high
temperatures.

LCOA, Low-Cost Organic Adsorbent.

2.2. Sorbents Analysis

The scope of the sorbent analysis listed in Section 2.1 includes:

(i) Proximate and ultimate analyses were performed in accordance with the ISO stan-
dard [41,42].

(ii) Determination of chlorine content was evaluated as chlorine anion content in water
solution using a direct reading spectrophotometer (DR/2000 HACH). A sample was
combusted in AC-350 bomb calorimeter (LECO) with Eschka mixture—in accordance
with the ISO standard [43].

(iii) Mercury content was analyzed by thermal decomposition, amalgamation and atomic
absorption spectrophotometry (DMA-80 Direct mercury analyser).

(iv) The particle size of LCOA was analyzed by ISO standard [44].
(v) The porous texture of all samples was analyzed using nitrogen adsorption–desorption

at 77 K using Autosorb®-1-C (Quantachrome Instruments, USA) according to the
standards [45–48].

(vi) Bromine content was analyzed with X-ray spectrometry with wavelength dispersion
in PROMUS II sequential spectrometer (Rigaku).

(vii) ED-XRF analyses of samples in a powder form were conducted with use of PANalyti-
cal EmpyreanXLE diffractometer with copper anode (Cu Kα) in the 2θ angle range of
10–110◦. The type and amount of crystalline phase were evaluated with PANalytical
HighScore Plus software.

Values of these parameters were determined for the air-dried basis of the sample.

2.3. Mercury Adsorption System

The stand for measuring mercury sorption from flue gases generated by the combus-
tion of solid fuels is shown in Figure 1. The bench-scale measurement setup consists of
tube furnace (3) along with temperature and gas flow regulation with quartz tube (4) as
the combustion chamber, gas source (1) and sorbent holder (8). The utilized equipment
allows for controllable gas heating at specified points (9). The measurement procedure
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involves air-fueled coal sample (5) combustion and analysis of flue-gas mercury captured
by the sorbent.
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Figure 1. Test stand schematic: (1) gas source, air; (2) metal rod; (3) tube furnace; (4) quartz tube; (5) coal sample; (6) flue
mercury adsorption device; (7) sorbent trap; (8) sorbent holder; (9) flue gases heating furnace; and (10) set of impingers with
mercury survey meter EMP-3 of impingers for mercury speciation measurement.

The experiment was conducted with predetermined temperature conditions for sam-
ple combustion and sorbent temperature with similar combustion times and airflow. One
gram of the sample was positioned in a ceramic boat-shaped crucible and progressively
transported to the center of the combustion zone with a metal rod (2). The standardized
measurement time after the crucible was introduced to the center of the combustion zone
was 20 min. Additionally, LCOA was placed a sorbent trap (7), which measured the
concentration of Hg emitted into the atmosphere.

A more detailed description of the experimental conditions is presented in [25]. For
the combustion process, lignite was used. It underwent ultimate and proximate analysis,
with the additional steps of mercury and chlorine determination in accordance with the
methodology described in Section 2.2.

The lignite sample was prepared in accordance with the ISO standards [49]. The
characteristic of the used lignite is shown in Section 3.2.

Mercury Speciation Testing

To determine mercury speciation in flue gas samples, two sets of impingers (three
impingers in each set) and a mercury survey meter EMP-3 (continuous mercury analyzer)
were used. For the period of mercury speciation ascertainment, the flue mercury adsorption
device (Figure 1, Point 6) was disengaged. Flue gases flowed by a series of impingers
(Figure 1, Point 10). Raw flue gas was channeled into two flow streams. In the first vessel
out of the first gas washing bottle setup, the Hg2+ mercury from the first stream was
reduced to Hg0 with 10% SnCl2 solution, followed by acidic gas scrubbing with 10% KOH
solution and subsequent moisture removal with the third vessel. The purified flue gas
stream was then analyzed with an EMP-3 detector for total mercury content determination.
The second gas washing bottle setup had an analogous configuration to the first setup, with
the difference being the first vessel was used to capture Hg2+ mercury out of the second
stream with 10% KCl solution. Consequently, the EMP-3 detector analyzed the purified
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flue gas from the second stream for elementary mercury. The concentration of Hg2+ was
determined based on the difference between total and elementary mercury.

2.4. Methodology of Mercury Adsorption

To check the reliability of the tests performed, the balance of mercury in the laboratory
installation was calculated for each experiment in accordance with the following model:

mc·C0 − mash·Cash = msorb·
(

C′′Hg − C′Hg

)
+ mtrap·

(
C′′trap − C′trap

)
(1)

where mc is the mass of combusted coal (kg); C0 is the mercury content in coal (µg·kg−1);
mash is the mass of ash from coal combustion (kg); Cash is the Hg content in the ash (kg); msorb
is the weight of tested sorbent (kg); C′Hg and C′′Hg are the mercury concentrations in sorbent

before and after sorption (µg·kg−1); mtrap is the mass of sorbent trap [kg]; and C′trap and
C′′trap are the mercury concentrations in the trap before and after the experiment (µg·kg−1).

Based on the obtained data and measurements of flue gas mercury concentration
before and after adsorption, the Hg adsorption capacities (q, µg·g−1) of the sorbent samples
were calculated using below equation:

q =
Q f g

msorb

t∫
0

(C′′f g − C′f g) dt (2)

where Q f g is the gas flow rate (m3·min−1) and C′′f g and C′f g are the inlet and outlet Hg

concentrations in flue gases (µg·Nm−3) at combustion time t (min).
Additionally, mercury removal efficiency of tested sorbents (MR, %) was calculated as:

MR =
C′′Hg − C′Hg

C0 − Cash
·100% (3)

3. Results and Discussion
3.1. Sorbent Characteristics

AC contained 6.1 µg Hg·kg−1 (Table 2). Relatively small quantities of mercury were
also found in CD (8.9 µg·kg−1) and CS-400 (2.7 µg·kg−1) CD and AC were obtained in
the carbonization process, therefore they contained minimal quantities of volatiles: 3.2
wt% for CD and 15% for AC. RC-600 and GRC-600 had high mercury content, at 158
and 73 µg·kg−1, respectively, as well as ash (19.8% and 19.6%, respectively). Commercial
activated carbon (AC) and rubber waste chars (RC-600 and GRC-600) recorded from 3.5
to 18 times higher sulfur content than other examined sorbents. Sorbents had bromine
content in the range of 50–730 ppm.

Table 2. Properties of the analyzed sorbents.

Sorbent
Proximate Analysis (wt%) Ultimate Analysis (wt%) (wt%) (µg·kg−1)

Mad Vad Aad Cad Had Sad Brad Clad Hgad

AC 9.2 15.09 26.2 59.5 1.45 2.11 0.017 0.021 6.1
CD 0.4 3.19 9.8 85.0 0.16 0.59 0.014 0.023 8.9

CS-400 2.6 23.7 22.1 61.7 3.20 0.15 0.005 0.037 2.7
CS-400-Br - - - - - - 0.033 - 2.9

RC-600 1.3 3.2 19.8 75.4 0.91 2.55 0.068 0.063 158.1
GRC-600 2.3 3.2 19.6 76.3 0.95 2.66 0.073 0.075 73.0

Mad, moisture in the air-dried basis; Vad, volatile matter in the air-dried basis; Aad, ash in an air-dried basis; Clad,
chlorine in the air-dried basis; Cad, carbon in the air-dried basis; Had, hydrogen in the air-dried basis; Sad, sulfur
in the air-dried basis; Brad, bromine in the air-dried basis; Hgad, mercury in the air-dried basis.

Coke and rubber waste chars are microporous materials with a moderately developed
mesoporous and poor microporous structure (Table 3). The specific surfaces (SBET) of CD,
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RC-600 and GRC-600 have several dozen m2·g−1, while in AC this parameter reaches
670.5 m2·g−1. The specific surface area of corn straw char is 4.8 m2·g−1. However, the
mesoporous structure is an essential parameter for mercury adsorption because, due to the
particle size of mercury, mesopores are considered to be dominant areas of its deposition.
RC-600 and GRC-600 sorbents have the highest mesoporous surface among the analyzed
samples: 0.38 and 0.17 cm3·g−1, respectively. Therefore, these samples underwent further
qualitative and quantitative phase analysis.

Table 3. Parameters of porous structure for LCOA.

Sample BET Surface
Area (m2·g−1)

Micropore
Surface Area

(cm3·g−1)

Mesopore
Volume

(cm3·g−1)

Total Pore
(cm3·g−1)

AC 670.5 0.307 0.055 -
CD 24.3 0.006 0.009 0.018

CS-400 4.8 0.001 0.010 0.023
CS-400-Br 4.6 0.001 0.008 0.018

RC-600 70.3 0.025 0.380 0.396
GRC-600 74.7 0.023 0.171 0.239

Qualitative and Quantitative Phase Analysis of Rubber Waste towards as a Sorbent

Based on conducted experimental studies presented in a previous publication [25],
sorbents of rubber waste were the most promising material for flue gas mercury capture
in lignite combustion processes. Therefore, only this material was selected for Scanning
Electron Microscopy (SEM) using Energy Dispersive Spectroscopy (EDS system).

The results of the chemical analysis for selected RC-600 sample points (Figure 2)
are shown in Table 4. The char contains 78.5–80.8% carbon, most of which comes from
carbon black used for tire production. Due to the point-based nature of the measurement,
this amount does not correspond to the average content of carbon for the representative
sample (Table 2). Another probable origin is tire pyrolytic oil that carbonized during rubber
processing. The mineral content in the char is assumed to be a result of industry additives
present in the tire manufacturing such as fillers, plasticizers, vulcanizing activators and
crosslinking additives. The used matter consists of SiO2, ZnO CaO, Al2O3, Na2O and
Fe2O3 (Table 4).
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Table 4. Analysis EDS of selected points of RC-600.

Element
Chemical Components (wt%)

1 2 3

C 78.5 86.8 80.9
O 2.0 5.1 5.9

Mg 0.1 0.2 0.2
Al 0.2 0.2 0.3
Si 3.2 1.3 1.4
S 4.7 2.2 2.0

Ca 1.2 0.2 4.8
Co 0.6 0.2 0.3
Cu 1.0 0.2 0.2
Zn 8.4 3.2 2.4

Figure 3 shows example SEM images of the microstructure of RC-600 and GRC-600
chars. The picture presents small carbon particles aggregated into larger formations as the
main constituent of the samples.
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3.2. Properties of Lignite

The characteristics of the combusted coal are shown in Table 5. Lignite contained an
average of 465 µg·kg−1 of mercury. The average content of halogens such as Cl and Br
(supporting factors in the oxidation of mercury from Hg0 to Hg2+) in lignite was equal to
30 ppm Cl and 3.9 ppm Br. The average sulfur content for the lignite was 1.8 wt%; it also
contained 23.7 wt% ash, 41.20 wt% volatiles and 12.9 wt% moisture.

Table 5. Characteristic of the coal used in the experiment.

Coal
Proximate Analysis (wt%) Ultimate Analysis (wt%) (wt%) (ppm) (µg·kg−1)

Mad Vad Aad Cad Had Sad Caad Brad Clad Hgad

Lignite 12.9 41.20 23.7 43.5 4.90 1.80 2.42 3.9 30 465.0

3.3. Determination Mercury Speciation in Flue Gases during Lignite Combustion

Figure 4 presents a Sankey diagram for mercury released from bench-scale lignite
combustion with determination for various species of Hg at the flue gases temperature
of 95 ◦C. Due to the experimental process, ash was a solid residue after coal combustion,
and nearly all the mercury contained in the coal changed to the flue gas in gaseous forms
(Hg0 and Hg2+). Only 2% remained in the ashes in the Hgp form. The proportion of Hg0

in the analyzed flow was relatively high, reaching 70%. The Hg0:Hg2+ ratio (5:2) was
determined by the chemical composition of the fuel. Lignite is characterized by low content
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of chlorine and bromine (Table 5), which leads to oxidation of Hg0 to Hg2+. This effect,
however, can be partially slowed down by relatively high presence of calcium (2.42 wt%),
which is capable of chemical deactivation of chlorine due to their chemical affinity [50].
The resulting fuel composition determines the share of Hg2+ to be 28% or lower. Due to
behavioral differences between both forms, Hg0 is generally more difficult to remove from
flue gas by the adsorption process. Therefore, the determining factor in the selection of
sorbent and process conditions for mercury removal should be the chemical composition
of the sorbents as well as the sorption temperature.
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3.4. Hg Adsorption Performance during Combustion of Lignite

Table 6 shows the Hg adsorption capacity (q) of the tested sorbents and the efficiency
of Hg removal from flue gas (MR) at process temperature of 95 ◦C. The commercial
activated carbon, currently used in active flue gas mercury removal methods, was the most
efficient. AC removed the mercury almost entirely. The sorption efficiency of CD was also
high at 93.8%. RC-600 and GRC-600 presented mercury removal during combustion of
lignite of 81.5% and 65.7%, respectively. The analyses showed corn straw char to be the
worst sorptive material during lignite combustion. CS-400 decreased the concentration of
mercury in flue gas by only 32.4%. CS-400-Br was more efficient in mercury removal (MR
at 50%).

Table 6. Efficacy assessment of LCOA for Hg sorption.

Sorbent
q MR

µg·g−1 %

AC 102.6 96.1
CD 100.2 93.8

CS-400 34.3 32.4
CS-400-Br 53.4 50.1

RC-600 87.0 81.5
GRC-600 70.2 65.7
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As shown in Figure 5, the Hg concentration in raw flue gas was 17.8 µg·m−3 (in
the process of lignite combustion with a Hg content of 465 µg·kg−1). Most of the mer-
cury from flue gases was removed by AC and CD: their Hg adsorption capacities were
102.6 and 100.2 µg·g−1, while the concentration of Hg in flue gases was decreased by
17.1 and 6.7 µg·m−3, respectively, for AC and CD (Figure 5). Application of corn straw
chars resulted in incomplete mercury removal. Hg adsorption capacity for CS-400 and
CS-400-Br reached 34.3 and 53.4 µg·g−1, respectively, which caused the reduction of mer-
cury emission to 12.1 and 8.9 µg·m−3. The low sorptive capability of CS-400 can be
explained by its specific surface of 4.8 m2·g−1. A higher value of q was obtained for rubber
chars; the adsorption capacity was 87.0 µg·g−1 for RC-600 and 70.2 µg·g−1 for GRC-600.
As a result, Hg concentration in flue gases was reduced to 3.3 and 6.1 µg·m−3, respectively.
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3.5. Effect of Flue Gas Temperature on Mercury Sorption Ability

The next stage of the study considered the influence of the adsorption temperature
on the effectiveness of LCOA in Hg removal. The average mercury removal effectiveness
for AC, CD and CS-400 decreased as the temperature increased, with the highest reading
at 95 ◦C and the lowest at 185 ◦C (Table 7). The change in adsorption temperature had a
different effect on RC-600, GRC-600 and CS-400-Br. The average mercury removal efficiency
increased as the adsorption temperature increased, with the lowest results at 95 ◦C and the
highest at 185 ◦C.
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Table 7. Efficacy assessment of LCOA for Hg sorption at different temperatures.

Sorbent
Temperature q MR

◦C µg·g−1 %

AC 95 100.2 93.8
AC 125 95.4 89.3
AC 155 73.2 68.5
AC 185 72,0 67.4
CD 95 102,6 96.1
CD 125 94,2 88.2
CD 155 91,8 86.0
CD 185 84,0 78.7

CS-400 95 34.3 32.1
CS-400 125 29.4 27.5
CS-400 155 24.2 22.7
CS-400 185 19.5 18.3

CS-400-Br 95 53.4 50.1
CS-400-Br 125 55.2 51.7
CS-400-Br 155 58.8 55.1
CS-400-Br 185 61.2 57.3

RC-600 95 87,0 81.5
RC-600 125 93,6 87.6
RC-600 155 99,0 92.7
RC-600 185 101,7 95.2

GRC-600 95 70,2 65.7
GRC-600 125 84,0 78.7
GRC-600 155 88,8 83.1
GRC-600 185 97,2 91.0

The average mercury concentration in flue gases during lignite combustion was
17.8 µg·m−3 (Figure 6), whereas, after the adsorption process in the temperature range
(95–185 ◦C), the readings showed 1.1–5.8 µg·m−3 for AC, 0.7–3.8 µg·m−3 for CS and
12.1–14.6 µg·m−3 for CS-400. CS-400 presented poor Hg removal performance at all
tested temperatures, while the brominated CS-400-Br showed progression in Hg removal
efficiency as temperature increased, similarly to RC-600 and GRC-600 (Figure 6).

The deciding factor for Hg removal efficiency can be the share of Hg0 in the flue.
For AC, CD and CS-400, the Hg removal efficiency decreased with further increase in the
adsorption temperature, whereas, for CS-400-Br, RC-600, GRC-600, the efficiency increased.

It was speculated that high adsorption temperature causes Hg desorption from the
sorbent surface. However, the experiment showed that sorption temperature increase led
to a higher share of Hg0 in the flue gas. The higher Hg removal of CS-400-Br, RC-600 and
GRC-600 as the temperature raised can be connected to higher Br and Cl intrinsic content.
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Effect of Bromine Content in the Sorbent on Hg0 Oxidation

Flue gases from lignite combustion are characterized by the high share of unoxidized
Hg0 mercury. It is a volatile constituent of the flue with its ratio versus Hg2+ increasing
with sorption temperature. As Hg0 content increases, the average Hg removal efficiency
for AC, CD and CS was the highest for 95 ◦C and the lowest for 185 ◦C.

AC, CD and CS-400 sorbency was determined by low bromine content, which resulted
in lesser Hg2+ and therefore higher Hg0 amounts. The surface of the sorbent allows for
Hg2+ adsorption, which can explain the pattern of higher sorptive properties of AC, CD
and CS-400 at higher sorption temperatures, as the Hg0 content increases.

On the other hand, RC-600, GRC-600 and CS-400-Br were characterized by 2–14 times
higher bromine content. Sorbent-present Br oxidized Hg0 in the flue to Hg2+ form at
higher sorption temperatures, which obtained higher Hg2+ concentrations, along with
higher removal capabilities [50]. The average Hg removal for RC-600, GRC-600 and CS-
400-Br followed the ascending order: 95 ◦C < 125 ◦C < 155 ◦C < 185 ◦C. The proposed Hg0

oxidation and Hg2+ adsorption mechanism on RC-600, GRC-600 and CS-400-Br surfaces are
presented in Figure 7. Hg0 was first oxidized at the activated site on the sorbent, followed
by Hg2+ sorption.
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To further assess the application prospect of such rubber waste-derived sorbents, a
comparison of the accumulative Hg adsorption capacity of RC-600 and GRC-600 with other
sorbents was conducted under similar experimental conditions (Figure 8). It demonstrated
that longer sorption times (10–60 min, every 10 min) led to increases in the accumulative
properties for bromine-present sorbents. No time influence was observed for bromine-free
(AC, CD and CS-400) sorbents.
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4. Conclusions

This manuscript presents the results of mercury adsorption from lignite flue gas by the
active method. For this purpose, we used six low-cost organic adsorbents (AC, CD, CS-400,
CS-400-Br, RC-600 and GRC-600). The presented results allow drawing the following
conclusions: the efficiency of sorbents for removal of mercury from flue gases at 95 ◦C
decreased successively: AC (96.1%) and CD (93.8%), followed by RC-600 (81.5%) and
GRC-600 (65.7%). The CS-400-Br exhibited better Hg removal performance compared to
virgin biochar CS-400. The doping of sorbents with bromine resulted in a higher share of
Hg0 oxidation to Hg2+ species. Low mercury removal efficiency by CS-400 was caused
by its low mesopore volume (0.01 cm3·g−1). The Hg removal efficiency for AC, CD and
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biochars (CS-400) decreased with the increase of temperature, caused by a higher amount
of sorption inactive Hg0 mercury in the flue gas.

CS-400-Br, RC-600 and GRC-600 enhanced their mercury adsorption capacity with
an increase in the temperature. These sorbents had a higher bromine content (2–14 times)
than other sorbents. Therefore, it can be confirmed that bromine had positive effects on
Hg0 removal due to its influence on better Hg0 oxidation as well as adsorption on the free
sites of the surface. In this study, a novel sorbent was created with one-step pyrolysis of
tire waste for Hg0 removal from lignite flue gas. This method could combine municipal
solid waste disposal and mercury sorbent preparation in one process. The Hg adsorption
capacities of RC-600 and GRC-600 were close to those of commercial activated carbons.
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