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Abstract: Since bearing deterioration patterns are difficult to collect from real, long lifetime scenarios,
data-driven research has been directed towards recovering them by imposing accelerated life tests.
Consequently, insufficiently recovered features due to rapid damage propagation seem more likely
to lead to poorly generalized learning machines. Knowledge-driven learning comes as a solution by
providing prior assumptions from transfer learning. Likewise, the absence of true labels was able to
create inconsistency related problems between samples, and teacher-given label behaviors led to more
ill-posed predictors. Therefore, in an attempt to overcome the incomplete, unlabeled data drawbacks,
a new autoencoder has been designed as an additional source that could correlate inputs and labels
by exploiting label information in a completely unsupervised learning scheme. Additionally, its
stacked denoising version seems to more robustly be able to recover them for new unseen data. Due
to the non-stationary and sequentially driven nature of samples, recovered representations have
been fed into a transfer learning, convolutional, long–short-term memory neural network for further
meaningful learning representations. The assessment procedures were benchmarked against recent
methods under different training datasets. The obtained results led to more efficiency confirming the
strength of the new learning path.

Keywords: bearings; prognosis; remaining useful life; data-driven; knowledge-driven; transfer
learning; labels information; exploiting labels; denoising autoencoder; convolutional LSTM

1. Introduction

A successful conditional preventive maintenance program relies entirely on precise
real-time monitoring, is capable of prior detection of any failure suspicion, and stands
on a well-structured prognosis policy [1]. Remaining useful life (RUL) is very crucial
for prognosis, taking place as the primary measure of health assessment [2]. It is mainly
based either on the estimation of useful time until the complete failure of such a system
or on the provision of a probability or any other important information indicating its
current operational performance. Its evaluation involves the use of different modeling
paradigms, depending on the complexity of the system as well as the availability of
the operating history, including all anomaly events [3]. If it is not difficult to represent
the operating behavior using physical interpretations, then it would be a very authentic
modeling process that could certainly lead to an accurate RUL prediction. Likewise, data-
driven evaluation is a very common promising solution in case of unavailability of the
physical modeling process. In data-driven training procedures, the precise RUL estimation
process depends on two main characteristics, namely: (i) complete run-to-failure historical
sensor measurements, and (ii) truly attributed labels to each event. However, for some
machines such as bearings, collecting these large deterioration patterns seems most likely
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impossible due to their long lifetime. Conversely, it seeks to recover patterns of progressive
damage propagation by imposing accelerated life tests to collect patterns similar to the
real ones as an alternative solution. Moreover, even if these data are stored correctly, the
real labels are still missing, and the short lifespan could not be considered as a ground
truth label.

This unavailability of truly assigned labels leads prognosis-based data-driven research
to estimate the RUL by providing sufficient interpretations from the operating history.
There are two main indicators involved in providing the operating performance and the
level of criticality belonging to this operating mode (e.g., critical, healthy, deteriorating,
etc.) [4]. One of these indicators is the health index (HI), which is based on determining
the probability that the system will be able to function within a certain period of time [4].
The other is the health stage (HS), which consists of determining the thresholds that can
divide the life path into several levels, indicating the part to which the current performance
belongs [4]. In doing so, the question “What are the current performances of this system?
Is this critical?” will be fully answered and a consistent conclusion about the RUL will
be obtained.

In the literature, the determination of HS can be performed by one of the two following
tools; intelligent machine learning (ML) tools, such as clusters, or via signal processing
techniques (SP). Intelligent ML tools help in multiple clustering processes based on well pre-
preprocessed data [5]. Conversely, HS splitting with SP techniques generally involves the
detection of a single threshold, namely, the “failure threshold”, which is most likely similar
to fault classification (diagnosis not prognosis) [6–8]. For instance, in the work of Ben Ali, J.
et al. [9], RUL of the bearing prediction process was performed only through HS identifica-
tion using the intelligent maintenance systems (IMS) bearing data set. The SP technique,
namely, the empirical mode decomposition (EMD), is involved as the main indicator of the
HS. In the meantime, principal component analysis (PCA) and linear discriminate analysis
(LDA) are used for feature reductions before feeding them in a probabilistic artificial neural
network (ANN). In another work [10] related to the bearing degradation prognosis of wind
turbine high-speed shaft (WTHS) [11], they followed the same methodology to predict
RUL. However, this time they involved multiple extracted time-frequency features to train
an unsupervised neural network, namely, adaptive resonance theory 2 (ART2), for feature
clustering. Khamoudj, C.E.et al. [5] used a multiple clustering process that involves the
variable neighborhood search (VNS) algorithm. Their work mainly depends on bearing
RUL prediction by exploiting multiple levels of HS. Han, S. et al. [12] replicated the same
experiments in [9] using an already split version of the IMS dataset into multiple HS levels.
Their main contribution involves a powerful multi-scale convolutional neural network
(CNN) for feature classification. Moshrefzadeh, A. et al. [13] investigated the use of two
methods, support vector machine (SVM) and k-nearest neighbors, for feature clustering
and HS classification for multiple datasets including IMS bearings. Additionally, signal im-
pulsiveness has been employed as the main health indicator in the online prognosis system
under multiple operating conditions. Zareapoor, M. et al. [14] investigated the use of a new
adversarial classification algorithm for both HS and HI predictions to solve imbalanced
data problems. However, their contribution on IMS bearing data that include only the HS
splitting process proves its capability compared to other data-driven approaches.

These mentioned works have shown their success by answering the second part of
the previous question, in which it can give an idea of the level of health. However, the full
answer to the first part is not yet provided. Accordingly, some works have been done on the
HI predictions to provide a reliable conclusion about the health status. In general, the HI
estimation is fully data-driven, and it depends on the approximation of the training model
towards a linearly deteriorated probability function. Under this criteria, Saidi, L. et al. [15]
posted an experiment related to the same RUL prediction issue from the WTHS dataset.
However, this time, they investigated the HI prediction problem using spectral kurtosis
(SK) and support vector regression (SVR). Meddour, I. et al. [16] extracted 30 features from
acceleration signals from time, frequency, and time–frequency domains in an attempt to
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realize an accurate HI prediction for the same WTHS data. They incorporated, therefore,
an adaptive ANN and fuzzy inference system for the approximation process towards a
linear deterioration function of HI. Li, X. et al. [17] studied both HI and HS under the
use of different dataset-related bearing prognosis problems. They mainly involved deep
generative adversarial models to perform more generalization. Wang, J.et al.[18] used a
prognosis learning approach to deal with a limited set of data by incorporating wavelet
transform, statistical Bayesian framework, and recursive filtering for feature extraction and
HI prediction, respectively.

One may notice that the above-mentioned works with their different architectures and
prediction techniques, including both SP and ML techniques, have been very successful
at achieving their maximum accuracy. However, they still suffer from the lack of patterns
related to incomplete data, leading to poor generalization. Therefore, knowledge-driven
research comes as a solution by providing additional assumptions from previously-trained
learning machines. In this context, many recent works have been released in the area of
transfer learning (TL), especially for bearing health assessments. Huang, G. et al. [19]
developed a TL approach that incorporates a serially connected CNN and long–short-term
memory (LSTM) for HI index estimation only. They mainly discussed the use of two
different bearing datasets, including the IMS bearing set. In the work, Kim, M. et al. [20], in
an attempt to overcome drawbacks produced by the insufficiency and discrepancy related
to collected samples, designed a TL approach that followed adaptation with a semantic
clustering mechanism. Clustering results, thereafter, have been fed into a target domain
CNN to achieve better HS classification of bearing life cycles. Zhuang, F. et al. [21] devel-
oped a TL-based CNN for bearing RUL predictions under different operating conditions.
Their main contribution involved an accurate approximation towards a linearly designed
HI by transferring knowledge from different subsets of bearing life cycles.

According to this brief review, TL proved its capability by filling the gaps of lack of
patterns leading to further generalization [22]. However, even after all these efforts, we
still face many types of ill-posed problems leading to false predictions, especially if the
data suffer from higher levels of similarity between the training samples, as in vibration
signals. In addition, we believe that the behavior of the HI, which is defined according to
expert knowledge depending on the deterioration type (linear or exponential), could also
create problems resulting from incompatibility with the behaviors of the learning patterns.

Attempting to overcome these poor generalizations and weaknesses in approximation
related problems, a few works have been recently proposed. For instance, the works of
Sánchez-Morales A. et al. [23,24] and Berghout, T. [25] clearly proved the necessity of
exploiting label information in data-driven modeling. To the best of our knowledge, these
works are the only ones who deal with this kind of representation learning scheme as a
knowledge-based prior assumption. However, they seem to be totally dependent on previ-
ously trained learners (regressors or classifiers), which might also be inaccurate enough to
seed deceptive patterns in the representation learning features. Furthermore, their obtained
labels from these auxiliary learners have been seeded in the inputs themselves, which
could lead to corruption of important patterns.

Accordingly, in the context of bearing diagnosis and to make sure that all the above
prediction issues have been well considered, our main propositions for bearing RUL
predictions are as follows:

• A new autoencoder (AE) capable of seeding label information in hidden layers without
affecting the learning inputs or even the reconstruction process, and also to ensure
knowledge transfer, is designed.

• This AE is stacked and strengthened with a denoising scheme to ensure more robust
extraction as well as more homogeneous mixture of label and feature mapping.

• Due to the sequentially driven and non-stationary nature of vibration signals, a
convolutional LSTM (C-LSTLM) has been designed to fit both time-varying adaptive
learning as well as accurate extraction, similar to the work done in [26].
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• Two main datasets, namely, IMS and WTHS, have been involved in an attempt to
produce more generalization by transferring knowledge between them using the same
learning framework.

• Unlike previously mentioned works that mostly deal with a single prediction problem
(either HI or HS), both HI and HS have been investigated in this work.

• In this work, we also used an exponential HI deteriorating function that shows it is
more compatible with extracted deterioration features rather than the linear one.

• Concerning the HS splitting, we have involved the Gaussian mixture model (GMM)
based silhouettes coefficient.

The reminder of this paper is organized as follows: in Section 2, the studied bearing
datasets and the proposed methodology have been described. Section 3 is devoted to
experimental results and discussions. Section 4 concludes with perspectives.

2. Materials and Methods

This section provides important descriptions related to the used datasets in this work
(IMS bearing and WTHS), as well as the details of the followed methodology during
RUL prediction.

2.1. IMS Bearing Data

First, the IMS bearing dataset was made available by IMS of University of Cincin-
nati [11]. Since then, it was provided by NASA at a prognostic data repository for the public
to be able to evaluate their health assessment models [27]. The experiment incorporated
four bearings aligned with a single feed shaft (Figure 1) with 6000 pounds and a speed of
2000 rpm.
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Figure 1. IMS bearing tests experimental setup.

The IMS data contained three subsets, the first of which was released from two
installed accelerometers. In the meantime, the other two sets were brought together from
a single sensor. Data acquisition was performed with a sampling rate of 20 kHz where
each file was stored separately every second. This means that each file could contain at
least 20,000 samples, which can be considered very difficult to manipulate for training
models as a single observation. For each experiment, the associated files were gathered in
a single folder and named after the date and time of acquisition. The vibration signals in
Figure 2 show how bearing health deteriorates over time in each experiment. The bearing
tests lasted approximately 35 days until the appearance of certain significant symptoms of
bearing failure.
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2.2. WTHS Bearing Data

In an attempt to obtain more realistic conclusions from the analysis of bearing de-
terioration, an experiment was carried out to record the real-time health indicators of a
high-speed shaft with 20 tooth pinion gear driven by 2 MW wind turbine. Figure 3 is a
simple graphical illustration of the studied system that indicates the position of the main
bearings as well as the dimensions of the taper roller bearings.
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The vibration measurements were recorded by an actual designated monitoring
system in the United States [10]. A single accelerometer was installed perpendicular to
the high-speed shaft in the gearbox bearing to be able to detect the progressive spread of
damage. The monitoring system was programmed to store 6 s of vibration samples each
day with a sampling rate equal to 100 kHz. Fifty files were stored separately for 50 days
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where an amount of approximately 585,936 samples per file was treated as a single health
indicator [28]. It was observed that the collected data varied exponentially over time due
to the changes that occurred in the physical health conditions of the bearings, as shown in
Figure 4. Consequently, within 50 days under normal operating condition, the bearings
stopped working due to the occurrence of an internal race fault.
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2.3. Proposed Knowledge-Driven Methodology

In order to provide a more reliable conclusion on the RUL prediction of such a system,
a new methodology, which involves multiple sources of knowledge, has been involved
in a unique learning scheme that is designed according to the flow diagram enshrined by
Figure 5. Both data-driven and knowledge-driven methodology have been utilized, along
within this new learning procedure, by exploiting TL information, deep learning labels, as
well as previous hypotheses generated from pre-trained models.
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2.3.1. Data Preprocessing

To guarantee an optimal feature space for representation learning algorithms, a well-
structured feature extraction was considered. In total, 15 statistical features were extracted
from both time-domain and frequency-domain for both datasets.

Eleven time-domain features were calculated for each time window (mean, standard
deviation (Std), skewness, kurtosis, peak to peak indices (Peak2Peak), root mean squared
(RMS), crest factor, shape factor, impulse factor, margin factor energy} in addition to
four frequency-domain features {spectral kurtosis mean (SKMean), SKStd, SKSkewness,
SKKurtosis}. More information about the mathematical background of these features can
be obtained from [10]. After that, these parameters were scaled in the interval [0, 1] using
min–max normalization and fed directly into the learning models. Regarding smoothness
filtering procedures of the extracted features, as in [27], we do not think they will be
beneficial. In fact, this may be applicable in this case if the training and testing data is
pre-defined. However, in a real application, one cannot guess how far we could scale our
samples, especially when the newly arrived samples are driven one-by-one. Therefore, by
trying to avoid any misleading representations, we both trained and tested the learning
models by samples as they resulted from min–max normalization.

Figure 6 illustrates the behavior of the entities extracted from the two datasets. It can be
seen that the WTHS dataset exhibited a complete data deterioration lifecycle, which seemed
very adequate for the learning process in terms of the compatibility of the degradation
form. Conversely, the IMS dataset was more difficult because it could lead the training
program to expose all kinds of ill-posed problems.
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2.3.2. HI Identification

Unlike traditional works, which present the deterioration path as a linear function; in
our work we used an exponential function, which is illustrated by Equation (1), that seems
more adaptable with the approximation process. The similarity between the shape of the
deterioration and the exceptional function of degradation creates a kind of compatibility
between the labels and the extracted patterns.

HI(t) = d + eat+b. (1)

t stands for the time instant, and (a, b, d) are hyperparameters that control the
divergence characteristics of the exponential degradation. These parameters are tuned
according to the best results of the loss function. Figure 7 is an illustrative example
indicating the HI identification process for the two studied datasets.
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2.3.3. HS Splitting

Among many clustering machines, we have chosen to use the Gaussian mixture
model (GMM) to divide the training patterns according to three distinct operating phases
of bearings (healthy, deteriorated, critical). The reasons for this choice lie in the learning
procedures of GMM, which use more statistical characteristics, such as the mean and
standard deviation, than others, such as K-nearest neighbor (KNN) variants [5], which
use only the mean value for subspaces-divisions. The KNN variants divide the data into
subspaces by identifying the circular boundaries centered in the medal of each class with a
radius equal to the mean value of the samples of that class. On the other hand, GMM is
able to provide more flexibility and smoothness by providing an ellipsoidal shape to the
decision classes [29,30]. In GMM, clustering probability can be defined as expressed by
Equation (2). x refers to the training sample, λ = {x, u, Σ} are the statistical components of
the GMM model, and (u, Σ) are the mean and variance, respectively.

P(x|λ) = ∑n
i=1 wig(x|ui, Σi), (2)
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Each clustering component can be defined as expressed by Equation (3). Where D
stands for the number of features in each observation (e.g., in our case, we have 15 features).

g(x|ui, Σi) =
1

(2π)D/2 e(−
1
2 (x−µi)Σ

−1
i (x−µi)). (3)

Since clustering is an unsupervised learning process, it is, therefore, very difficult to
judge whether the model is really able to classify the data correctly or not due to the lack
of ground truth labels. However, we are still able to guess whether the model is able to
group this kind of data at certain numbers of classes or not. For instance, in our work, we
used Silhouette analysis for this mission. The Silhouette coefficient is a metric that can be
used to measure the amount of groups that such a cluster is able to detect [31]. Equation
(4) illustrates the measurement of this parameter α using only the largest and the smallest
average distances between learning samples (ω, γ), respectively.

α =
ω− γ

max{ω, γ} . (4)

In our work, this simple test proves that GMM is really capable of doing it under these
datasets, as shown in Figure 8.
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2.3.4. Denoising Autoencoder for Label Embedding

In the proposed learning scheme, the integration of labels was carried out via a stack
of autoencoders connected in series. The main objective was to seed patterns similar to the
labels in the learning representations of the hidden layers of the neural network. We believe
the more the shape of the inputs reflects the targets, the more the approximation will do
(as it will be experimentally proven later). As we can see from the illustrations in Figure 9,
the denoising scheme was incorporated to strengthen the representations, attempting to
lead to more meaningful patterns. Additionally, the stack of autoencoders was designed
to homogenize the labels as much as possible with the original mapped patterns without
distorting them.
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Due to the local connections between the hidden layer and the input layer resulting
from additive labels, also due to the deep complex architecture, we moved forward using
a tuning algorithm on one side capable of adjusting only the output weights accurately
and quickly. To the best of our knowledge, the only algorithm capable of doing so is the
extreme learning machine (ELM)[32]. Therefore, the learning steps of the proposed stacked
denoising autoencoder with embedded labels (SD-AEEL) can be presented as follows:

• Retrieve corrupted inputs xη using generated noise from any distribution with a
specific magnitude ζ and rate ψ and use them to corrupt the inputs x, same as in
Equation (5).

xη = η(x, ζ, ψ), (5)

• Activate the hidden layer h using any activation transfer function f that holds both
ordinary full rank mapping of xη and seeded labels y , as explained by Equation (6).
(w, b) are the input weights and biases, respectively.

h
(
xη

)
= f

([
wxη + b, y

])
, (6)

In fact, Equation (6) is our main contribution in this work, and as far as we know, it is
the only one of its kind.
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• Determine the reconstructions weights β using the original inputs and the new feature
mapping, same as described by Equation (7).

β = xh−1, (7)

• Repeat the learning process by considering the hidden layers as inputs of the next
autoencoders, as explained by Equation (8), where m is the index of the autoencoder.

xm+1 = hm, (8)

• After the training process is finished, one can construct a fully trained network for ro-
bust feature mapping using the transpose of the output weights βT , as in Equation (9).

h(x) = xβT . (9)

2.3.5. Data-Driven Network and Transfer Learning

The showcased convolutional LSTM (C-LSTM) network in Figure 10 represents the
main data-driven approach used for both training in source domain and knowledge transfer
to the target domain. As we can see, it consists of three main layers; the convolutional layer,
the pooling layer, and the LSTM layer.
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In the convolutional layer, the training samples were mapped through local dimen-
sional (1D) receiver filters into several hierarchical slices. Following that, each resulting
slice of the entity mapping was sub-simplified using maximum pooling. In addition, the
pooling layer was introduced in the LSTM layer for approximation and generalization.
Regarding the TL process, the learning weights of C-LSTM were used to provide further
generalization for the learning models in the target domain.

The reason we chosethe LSTM network was due to its powerful capability in adaptive
sequential learning without suffering from vanishing gradient problems [33]. It uses a set
of learning gates, namely; input gate gi

t, forgetting gate g f
t , and output gate go

t ,to control the
amount of memorization of any driven patterns, as demonstrated by Equations (10)–(12).

gi
t = f (wi[ht−1 + xt] + bi), (10)

g f
t = f

(
w f [ht−1 + xt] + b f

)
, (11)

go
t = f (wo[ht−1 + xt] + bo), (12)
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In the meantime, the hidden state ht and the cell state Ct are initially determined
using Equations (13)–(15).

ht = f (wh[ht−1 + xt] + bh), (13)

C̃t = f (wc[ht−1 + xt] + bc), (14)

Ct = g f
t Ct−1 + gi

tC̃t−1. (15)

3. Results and Discussion

This section provides results and discussion related to the performances of the de-
signed algorithm, starting with label seeding towards both HI and HS predictions.

3.1. Labels Recovering Process

Unlike traditional unsupervised learning autoencoders that follow the input recon-
struction path, our designed stacked denoising version is able to perform two main tasks
simultaneously, namely, label regeneration and input reconstruction. Therefore, to prove
this ability to keep the inputs as is without affecting them in any way, a simple experiment
was performed using both the datasets and their HI labels. The accuracy of the retrieval
of labels and feature reconstruction in Figure 11 indicates that the acceptable number of
layers for both datasets can be found between [6, 10] hidden layers, which can be adjusted
by a searching mechanism through a grid of hyperparameters.
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Figure 11. Label recovering characteristics.

3.2. HI Prediction Results

Prior to the training process, the two data sets were divided into training and testing
sets by cross-validation on k times of training samples (k = 4). To prove the capability of the
learning scheme designed in the HI regression problem, we first tested each contribution
separately. We compared the full TL algorithm that leverages labels information (TLC-
LSTM) to its transfer learning version (LC-LSTM), C-LSTM, and LSTM, respectively. The
results of the curve fitting of Figure 12 on the test sets prove its higher approximation
ability. In addition, it shows the benefits of each individual contribution separately by
showing the observable improvements at each stage.
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If we used, for instance, any HI accuracy evaluation metric S, such as the one expressed
by Equation (16) [34], we will be able to give more information on the accuracy of the
learning algorithm by studying the sparseness of the predicted HI values.

S =

{
e
− ln (0.5)E

5 i f E≤0

e
+ ln (0.5)E

20 i f E>0
(16)

where E is an estimation error that can be calculated according to Equation (17).

E = 100%(
y− ỹ

y
) (17)

The current accuracy formula was designed to observe the number of errors in the
late and early predictions, because later predictions were harmful and the early ones were
more demanding on maintenance resources. It also showed the concentration of values
towards the value 1: the higher the concentration was, the more accuracy increased.

For instance, Figure 13 explains that all of the designed predictors are most likely
early estimators of HI. However, the designed algorithm (TLC-LSTM) has a better approx-
imation and a better accuracy by showing more concentration towards value 1 than the
other algorithms.
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Table 1 also shows a numerical comparison using the root mean squared error (RMSE)
and the accuracy between these studied algorithms and explains Figures 12 and 13 results
by showing the strength of designed TLC-LSTM.

Table 1. Numerical evaluation of the studied algorithms.

WTHS Data

Algorithm RMSE Accuracy(S)

LSTM 0.0305 0.8094
C-LSTM 0.0217 0.8477
LC-LSTM 0.0132 0.8679
TLC-LSTM 0.0017 0.9921

IMS Data

LSTM 0.2141 0.5883
C-LSTM 0.1010 0.7259
LC-LSTM 0.0185 0.8844
TLC-LSTM 0.0065 0.9636

In terms of HI predictions, and given that available literature works use different
assessment parameters, representations of HI as well as data divisions, it is clearly difficult
to collect information needed for comparison (i.e., in a single table). However, if we
consider HI curve fit regularity as a criterion, we can definitely consider that our proposal
has a higher approximation in comparison to recent works, such as in [15,16,35,36], for
WTHS data. Concerning IMS data, the carried-out works, such as in [9,12–14,20,37],
mainly dealt with the HS classification problem, while in our study, we are proposing HI
approximation for IMS data, which can be considered a new contribution in RUL prediction.
In addition, the proposed model proves knowledge integration robustness, specifically
when no data processing is considered after feature extraction, such as correlation or
monotonicity analysis.

3.3. HS Prediction Results

Due to the nature of vibration signals, which resemble consecutively driven sequences
in time, the best representation of HI for classes will be the ordinal type of encoding.
Therefore, the resulting groups from the GMM were re-sorted and represented with con-
secutive integers. After that, we followed the same procedures of the previous regression
problem to feed the learning samples to the learning models. As a result, the area under
the probability curve (AUC) beneath the receiver operating characteristic (ROC) curves of
Figure 14 explains the classification capacity of each algorithm. Indeed, we are always able
to observe the benefits of each contribution in the classification process. Meanwhile, our
proposed algorithm has a larger AUC area, which explains its strong ability to split HS.

Table 2 of classification rates also explains the ability of the new knowledge-driven
TLC-LSTM method in health threshold detection by showing more classification accuracy
during the testing phase for the unseen data.

Table 2. Classification rates of HS detectors.

Dataset

Algorithm IMS WTHS

LSTM 0.84363% 0.90000%
C-LSTM 0.96196% 0.95000%
LC-LSTM 0.96117% 0.95000%
TLC-LSTM 0.96856% 0.95000%



Energies 2021, 14, 2163 15 of 18
Energies 2021, 14, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 14. HI classifiers ofarea under the probability curve beneath the receiver operating charac-

teristic (AUC-ROC) curves. 

Table 2 of classification rates also explains the ability of the new knowledge-driven 

TLC-LSTM method in health threshold detection by showing more classification accu-

racy during the testing phase for the unseen data. 

Table 2. Classification rates of HS detectors. 

 Dataset 

Algorithm IMS WTHS 

LSTM 0.84363% 0.90000% 

C-LSTM 0.96196% 0.95000% 

LC-LSTM 0.96117% 0.95000% 

TLC-LSTM 0.96856% 0.95000% 

Compared to recent data-driven methods, such as [9,10,14,37], our contributions are 

more general and even clearer as they were able to study both HI and HS at the same 

time. Therefore, we do not consider numerical proof only as a single parameter of accu-

racy, for example. In fact, in this work, we have used many metrics (RMSE, accuracy, 

classification accuracy, and Silhouette coefficient), including graphical interpretations 

(AUC and ROC), which is strong evidence that supports the ability of the learning algo-

rithm. Additionally, our work also used the same extracted features as an additional 

contribution, which was considered as one the main contributions of previous works. 

Moreover, if more additive characteristics are considered for bearing HS splitting, such as 

those obtained with acoustic signals used in [38], one can find further improved feature 

space results that ultimately lead to an increased accuracy. Table 3 shows that our fol-

lowed path is the only one that could provide an optimal conclusion on the RUL among 

the compared methods. 

Table 3. Comparison with advanced state of the art methods. RMSE, root mean squared error; IMS, 

intelligent maintenance systems. 

WTHS Data 

Approach HS HI HI Metrics  HS Metrics  

Saidi, L. et al.[15]   Curve fitting only  

Meddour, I et al.[16]   
Average percentage error 

(%) and curve fitting 
 

Elforjani, M.et al.[35]   
Average percentage error 

(%) and curve fitting 
 

Elasha, F.et al.[36]   Sum square error results  

Figure 14. HI classifiers ofarea under the probability curve beneath the receiver operating character-
istic (AUC-ROC) curves.

Compared to recent data-driven methods, such as [9,10,14,37], our contributions are
more general and even clearer as they were able to study both HI and HS at the same time.
Therefore, we do not consider numerical proof only as a single parameter of accuracy, for
example. In fact, in this work, we have used many metrics (RMSE, accuracy, classification
accuracy, and Silhouette coefficient), including graphical interpretations (AUC and ROC),
which is strong evidence that supports the ability of the learning algorithm. Additionally,
our work also used the same extracted features as an additional contribution, which was
considered as one the main contributions of previous works. Moreover, if more additive
characteristics are considered for bearing HS splitting, such as those obtained with acoustic
signals used in [38], one can find further improved feature space results that ultimately
lead to an increased accuracy. Table 3 shows that our followed path is the only one that
could provide an optimal conclusion on the RUL among the compared methods.

Table 3. Comparison with advanced state of the art methods. RMSE, root mean squared error; IMS, intelligent mainte-
nance systems.

WTHS Data

Approach HS HI HI Metrics HS Metrics

Saidi, L. et al. [15]
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Generally speaking, with respect to the current knowledge-based framework, the
present study proposed a design to solve the problem of incomplete data in the absence
of true labels for one-dimensional bearing characteristics. A set of training samples was
already obtained from a real life test (WTHS) where further training samples were obtained
from an accelerated life test (IMS). The purpose of this hybrid data selection was to collect
important patents from real experiences and use them to transfer knowledge to fill the
gaps produced by the lake of patterns. In addition, the learning process was managed in
reverse to be able to produce an additional generalization in case of insufficient samples
due to the small recording period (6s per day).

Bearing measurements have a particular nature, in which a form of time series has been
integrated that could be delivered piece by piece. Therefore, the proposed methodology
applications in other areas will be clearly possible with any type of time series data with an
incomplete list of patterns, as well as with missing labels.

4. Conclusions

In this work, a new approach based on multi-source knowledge was proposed for
bearing degradation prognosis. This new scheme combined a stack of autoencoders
connected in series specially designed for the integration of labels as a source of knowledge.
These autoencoders were used to power data-driven algorithms that integrate C-LSTM
for RUL prediction. In addition, this hybridization was maintained to transfer knowledge
from a source domain to a specific target domain via TL procedures. This knowledge-
driven approach was tested on two different datasets, namely, IMS and WTHS. Unlike
previous works, which focused on one of the themes; whether it is HI or HS predictions in
a single benchmark, our work studied both in the same experiments. The prediction results
were transmitted through numerous measurements, including numerical and graphical
interpretation. The evaluation process proved the strength and credibility of the designed
algorithm, even when comparing it to a set of recent works. Regarding future works, and
in an attempt to reduce algorithmic complexity, one possible trend in this work will be
the integration of label seeding inside the C-LSTM itself, rather than the current feature
mapping. In addition, one can discuss the use of other approaches that make label mining
even easier and increase retrieval capacity by testing other types of feature reconstructions,
such as compressed sensing. Additionally, neuron pruning techniques, such as sparse
coding, dropout, and contractive autoencoding, could be involved to keep only important
meaningful descriptions from learning samples.
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