
energies

Article

Classification of Superimposed Partial Discharge Patterns

Benjamin Adam * and Stefan Tenbohlen *

����������
�������

Citation: Adam, B.; Tenbohlen, S.

Classification of Superimposed

Partial Discharge Patterns. Energies

2021, 14, 2144. https://doi.org/

10.3390/en14082144

Academic Editor: Pawel Rozga

Received: 2 March 2021

Accepted: 6 April 2021

Published: 12 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Power Transmission and High Voltage Technology, University of Stuttgart, 70569 Stuttgart, Germany
* Correspondence: benjamin.f.adam@googlemail.com (B.A.); stefan.tenbohlen@ieh.uni-stuttgart.de (S.T.)

Abstract: Phase resolved partial discharge patterns (PRPD) are routinely used to assess the condition
of power transformers. In the past, classification systems have been developed in order to automate
the fault identification task. Most of those systems work with the assumption that only one source is
active. In reality, however, multiple PD sources can be active at the same time. Hence, PRPD patterns
can overlap and cannot be separated easily, e.g., by visual inspection. Multiple PD sources in a
single PRPD represent a multi-label classification problem. We present a system based on long short-
term memory (LSTM) neural networks to resolve this task. The system is generally able to classify
multiple overlapping PRPD by while only being trained by single class PD sources. The system
achieves a single class accuracy of 99% and a mean multi-label accuracy of 43% for an imbalanced
dataset. This method can be used with overlapping PRPD patterns to identify the main PD source
and, depending on the data, also classify the second source. The method works with conventional
electrical measuring devices. Within a detailed discussion of the presented approach, both its benefits
but also its problems regarding different repetition rates of different PD sources are being evaluated.

Keywords: partial discharge; PD; classification; neural networks; LSTM

1. Introduction

Partial discharge measurement or monitoring is an important tool for the assessment
of electrical insulation in high voltage equipment. In order to examine the PD, data phase
resolved partial discharge patterns (PRPDs) are created from the measurement data [1].
An expert can determine the type of defect that has caused this particular pattern by
visual inspection due to personal experience. In order to facilitate continuous condition
monitoring, this workflow must be automated. Computed aided classification of partial
discharges is a well-studied field [2–5]. However, most of these publications only focus
on single class classification. Thus, only a single active source can be classified correctly.
Classification of multiple simultaneously occurring PD has not been solved until today.
The countless possible combinations of overlapping PD patterns make it difficult to train a
system adequately.

This work presents a novel approach using exclusively single PD sources for the train-
ing of the classification system. This system, however, is able to classify two overlapping
PD sources. Instead of using the PRPD and extracting visual features for use in the classifi-
cation task, we use the sequence of PD events, which is the basis for constructing the PRPD.
This sequence contains additional timing data of each PD event, so the different sources can
be separated by time. Sequence classification is a widely studied topic in machine learning.
In recent years, many improvements have been made for the use in voice recognition
tasks. In this work, similar methods for solving the problem of PD source classification are
applied. We proposed a similar approach before in Adam et al. [6]. The waveform of single
PD signals was used as input for a sequence classification in this previous work.

The differences of the previous and this new method will be explained in Section 2.
Section 2 will also present the used PD data of artificial laboratory sources. Section 3
illustrates the architecture of the LSTM neural network. In Section 4, the results of the
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multi-label classification are presented. The paper concludes with a discussion in Section 5
and a summary of the results in Section 6.

2. PD Dataset

PD data are essential for the training and test of the classifier. In this research, artificial
PD sources were recorded in the laboratory using an IEC 60270 [7] compliant measurement
setup. The usage of defined artificial sources offers the advantage that the class labels (e.g.,
CoronaHV, Figure 1) are known from the beginning. Data provided by actual high voltage
equipment are not suitable to be used for supervised learning because the defect types
are not known in most cases. In particular, it is difficult to obtain the required amount of
labeled training data from non-laboratory sources.

Figure 1. Construction of artificial PD sources: (a) CoronaHV; (b) CoronaGND.

2.1. Measurement Setup

Six artificial PD sources were measured in the laboratory to create the training and
test data. These sources were two discharge sources in air and four sources in mineral oil
(see Table 1).

Table 1. Artificial PD sources and configurations.

PD Source
(Class Label)

Voltage/kV
(RMS) Time/min N Impulses Repetition

Rate/N per s

CoronaHV 5.4 65 61,200 15.7
CoronaGND 5.1 66 265,200 67.0

SP 24.9 65 1,617,300 414.7
GL 2.9 63 2,100,700 555.7
UP 21.9 67 229,000 57.0

SP-Stahl 4.0 61 1,158,748 316.6

The artificial PD sources in air are named CoronaHV and CoronaGND. Both use a
needle-plane configuration. Regarding CoronaHV, the needle is on high voltage potential
and the plane is on ground potential. Referring to CoronaGND, the inverse situation is
given: the plane is set on high voltage potential and the needle on ground potential. This
mirrored setup generates two very distinct PRPD patterns. The dimensions, distances, and
tip radius are provided in Figure 1.

The sources SP, GL, UP, and SP-Stahl are artificial PD sources measured while sub-
merged in mineral oil. SP is a needle-sphere setup. GL describes a surface discharge
where a sharp edge generates PD tangential to a pressboard plate. UP was constructed
as a floating potential with a metal part, neither connected to high voltage nor to ground.
SP-Stahl describes a different needle-sphere configuration in another oil-filled enclosure.
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This configuration uses steel electrodes and a steel encasing for the oil tank in comparison
to the brass electrodes in the acrylic glass tank used in SP, GL, and UP. Dimensions of SP
and SP-Stahl are the same as shown in Figure 2a. All sources including their respective
dimensions, distances, and angles are shown in Figure 2.

Figure 2. Construction of artificial PD sources: (a) SP & SP-Stahl; (b) GL; (c) UP.

All measurements were performed according to IEC 60270 [7]. PD impulses were
integrated between f 1 = 100 kHz and f 2 = 400 kHz to get the apparent charge values. All
sources were measured at their inception voltage for a duration of over 60 min (see Table 1).
Complete data streams including time, apparent charge, and phase angle of each discharge
were recorded. These provide the basis for the construction of a PRPD.

For the sources that used oil as insulating material, Nynas Nytro Lyra X mineral oil
(Stockholm, Sweden) was used. No synthetic esters were used for the measurements.

2.2. Definition of Used Terms

Subsequently, different terms for the measurement data in its various forms are used.
These terms will be defined in this section. Each actual discharge event is recorded by the
measurement device by three attributes:

1. The time t when the discharge occurred,
2. The apparent discharge Q in pC, and
3. The phase angle ϕ.

This triplet of data defines a PD event. Each event originates from a single PD source
and can have exactly one class label (i.e., only one true type of source it originated from).

Multiple events that follow each other build a sequence. This sequence is the basis for
constructing a PRPD. The measurement device saves these sequences for each measurement.
Each sequence is divided into smaller subsequences of 100 PD events each. Such a sequence
of 100 events is called a sample (see Figure 3b). This is a sample in the machine learning
sense because it is the smallest piece of data that is used as input for the classification
algorithm. The 100 event sample size applies for both training and later on in the testing
stages. As a sample consists of multiple PD events and (considering general monitoring
data) each event can originate from a different PD source, a sample can have multiple
class labels. Only for the training data were samples with a single class label used. For
the testing samples with PD, events from multiple sources were used (see Figure 3c).
Sections 2.3 and 2.4 describe in detail the training and the test data and their creation.
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Figure 3. Neural network and input data: (a) Neural network architecture, (b) sample construction, and (c) training and test.

Side note: The definition of a sample used in this context is not to be confused with a
measurement sample from a digital oscilloscope. These two completely different concepts
just share the same name.

The sequence of PD events as input data stands in contrast to the signal waveforms
used in Adam et al. [6]. While a waveform represents one single PD event, this event
sequence uses multiple events with their respective timings. This information is not avail-
able if single waveforms are used. In addition to this, most commercial PD measurement
software save the sequence of events but not the single waveforms. Therefore, this new
method can be used more easily with available datasets.

2.3. Training Data

Most classification approaches use the PRPD or some features derived from the PRPD
as input data for the classification. As shown in Adam et al. [8], the PRPD was originally
intended as an interface for human interpretation and actually reduces the amount of
available information because it accumulates all discharges over a given period of time and
consequently loses all timing information. In this work, we use the data streams previously
tested in [8] as training data. A data stream consists of multiple entries n of a triplet of
information. This triplet contains t, Q, and ϕ (see Section 2.2).

For the training data, data streams of length ld = 100 were extracted from the mea-
surement data of a single source. Generally, all artificial sources differ significantly in
their number of discharges, meaning they provide different repetition rates (see Table 1).
In order to get a balanced training dataset, up to 2000 samples per class were extracted,
which results in 200,000 single events as the maximum. This limit is introduced by source
CoronaHV (see Figure 1), since this is the source with the lowest repetition rate (see Table 1).
Only 50% of the recorded measurement data was used for the construction of training
samples. The remaining data are used separately for the testing stage. This is done to
prevent the neural network overfitting on the training data.

2.4. Artificial Test Data

Superimposed patterns were created for the test data. Half of the measurement
samples were used in this process. First, all samples of a single source PD data were
normalized on the time axis, so each sample started at time 0. Then, two samples from
different sources were combined and sorted by the time axis. Of the resulting sample, only
the first 100 PD events were used as a new sample. This new sample now had PD events
of two different sources and, therefore, the whole sample had two class labels. With this
we created n!

(n−k)! =
6!

(6−2)! = 30 different combinations of samples with two class labels.
Since the order of the labels is not important (e.g., SP-GL and GL-SP are the same), this
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was reduced to 15 different combinations. For each of these combinations, between 1000
and 2000 samples were created.

A problem with this approach is the different repetition rate of different PD sources.
While some sources are very active and produce many discharges in very short amounts of
time, other sources only produce a few discharges in minutes. This leads to an imbalance
in the test dataset, which impacts the results as shown in Section 4.3.1. This problem could
be remedied by creating a balanced dataset for the test data. However, as real PD defects
in high voltage equipment also exhibit different sources with different repetition rates,
using imbalanced data is a better representation of actual real-life problems. We chose the
imbalanced repetition rate data to test the worst-case scenario for this approach.

3. LSTM Classification

In this chapter, the classifier is introduced. The basis of the used LSTM networks is
explained, and the used architecture is presented. Training and test of the classification
process are described in Sections 3.4 and 3.5, respectively.

3.1. Multi-Label Classification

Multiple superimposed PD sources are a type of multi-label classification problem.
This is not to be confused with multi-class classification, where the output class can be one
of many classes. In multi-label classification, the output can consist of many labels at the
same time [9].

In general, classification returns a single output class. If three different classes A, B,
C are possible, then the output might be one of this three: [1,0,0]; [0,1,0]; or [0,0,1]. In
multi-label classification, the output of three classes A, B, C can be one of the following:
[1,0,0]; [0,1,0]; [0,0,1]; [1,1,0]; [0,1,1]; [1,0,1]; or [1,1,1].

There are two main ways to achieve this multi-label output. The first method uses
training data for all possible combinations of superimposed classes. Therefore, the training
data already contain all scenarios, and each multi-label class can be translated into a new
single-label class, which represents both labels. This approach becomes difficult for high
numbers of classes. For M classes, 2M−1 possible cases need to be considered and added to
the training dataset. This also disregards all the possible fluctuations that can be found in
PD measurement data.

The second method uses a modified classifier to output multiple classes if found. This
can be achieved by outputting the class probabilities and choosing multiple labels from
them [10]. We chose this approach in this research by modifying the last layer in the neural
network. This modification is presented in Section 3.3.

3.2. LSTM Basicss

Neural networks are often used in the classification of partial discharges [11,12].
Neural networks have been successfully used to solve a wide range of problems. In the
last few years, big advances have been made in the research of neural networks. Most
of these advances have not been introduced in PD research, yet. Often a three layer
fully connected neural network is utilized in PD analysis [13]. This kind of network uses
feature vectors extracted from the PD data as inputs and returns one of the possible PD
source classes as output. Other classification schemes, which are not based on neural
networks, work similarly in using feature vectors as inputs and calculating an output class.
However, in contrast to other classifiers like random forest or support vector machines,
three-layer neural networks have significant disadvantages. They require a lot of data for
effective training and training is time consuming [14]. When working with feature vectors,
alternative classification algorithms should be considered.

Neural networks, especially modern deep neural networks, consist of very particular
architectures that are used to solve a small set of specific problems. They cannot be used as
a general tool to solve every kind of problem. Many of these problems lay in the domain of
image classification. They can be solved by using convolutional neural networks. In this
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work, we want to solve a sequence classification problem. This kind of problem can be
solved by recurrent neural networks and by extension LSTM networks.

The classifier is constructed on the base of long short-term memory (LSTM) neural
networks. LSTM are a type of recurrent neural networks (RNN). RNN are networks in
which the neurons loop back on themselves. They are used to classify sequence data. RNN
have the problem that for long sequences, the training fails. This is called the vanishing
gradient problem [15]. LSTM solves this problem and can be used to classify long data
sequences. Additional information on LSTM networks, their internal mechanisms, and cell
structure can be found in [15]. In this work, we use LSTM networks as sequence classifiers.

3.3. Neural Network Architecture

A three-layer architecture was chosen (see Figure 3a). The first layer is an LSTM layer
with 100 neurons. The second layer is a dense layer with twelve neurons and a sigmoid
activation function. The output layer consists of another dense layer with six neurons,
which correspond to the six output classes. Normally a softmax activation function is used
for the last layer in order to obtain the final output class label. The softmax function sets
the highest neuron value in the layer to 1 and all other values to 0. This is useful if only the
class with the highest confidence should be returned. This, however, makes it impossible
to classify multiple superimposed PD classes since only the class with the highest output
value is selected as class label.

Instead, we use a sigmoid activation function to return the class probability for each of
the six classes. A threshold is then used to assign class labels. If the class probability exceeds
the threshold, the class is recognized as present in the data. In this manner, multiple classes
can be found in one sample of PD data. A scheme to verify this multi-label is presented in
Section 4.1. Different threshold values were tested in order to find a good value for our
dataset. All tested thresholds and their classification accuracy are presented in Section 4.2.

The neural network was implemented in Python 3.6 with Keras [16] and the Ten-
sorFlow backend [17]. For the loss function binary crossentropy was used, and for the
optimizer adam was used. The network was trained for 100 epochs with a batch size of 50.

3.4. Training

Six classes were used for the training of the classifier. The training dataset from the
measurement (see Section 2) was used. For the training, only the single classes were used.
No data from superimposed PD sources were used in the training process. After the split
of the dataset into 50% training data and 50% test data, only 90% of the training data were
used for the training. This means 78,693 data points were used. The remaining 10% of the
training data (8744 data points) were used for a verification test. This showed the classifier
worked with an accuracy of 99% for single class samples.

3.5. Test

After the single class verification, the test dataset created in Section 2.4 was used. The
test dataset consists of superimposed PD sources of all possible combinations. The data
used for creating the test dataset were not previously used for the training dataset. The
results of the test with different thresholds are presented in Section 4.

4. Results and Validation

This section describes the results of the multi-label classification of superimposed PD
data. First, the classification accuracy for multi-label problems is defined. Then the different
threshold values are compared in regards to their influence on the total classification
accuracy. In Section 4.3, the classification results for all combinations of superimposed
patterns are discussed. The classification does not work equally well for every combination.
The cause for this behavior is discussed.
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4.1. Classification Accuracy for Multi-Label Problems

In order to evaluate and compare different classification schemes, different assessment
criteria are used. One widely used metric is the classification accuracy. In single-label
predictions, the accuracy represents the ratio of correct prediction over the total number of
predictions.

Single-label classification accuracy:

accuracy single-label, Asl =
TP + TN

TP + TN + FP + FN
. (1)

Equation (1) shows the single-label accuracy; TP stands for True Positives, TN for
True Negatives, FP for False Positives, and FN for False Negatives in the confusion matrix.
Regarding multi-label classification, this definition does not suffice anymore. The definition
of True Positive is not easy to apply since a multi-label can be partially correct, partially
wrong, or incomplete. One possibility is using the Exact Match Ratio where partially correct
predictions are considered false and only exact matches are considered true. We chose the
accuracy definition by Godbole & Sarawagi [18] for multi-label problems (see Equation (2)).
Here, accuracy is defined as the proportion of the correctly predicted labels to the total
number of labels for each instance. To get the accuracy for all samples, the mean of all
predicted instances is taken.

Multi-label classification accuracy:

accuracy multi-label, Aml =
1
n ∑

|Yi ∩ Zi|
|Yi ∪ Zi|

, (2)

where Yi are the correctly predicted labels, Zi are the ground truth labels, and n is the
number of predictions. An accuracy value of 1.0, for example, would mean a perfect match
of predicted labels and ground truth labels, whereas an accuracy value of 0.5 represents
that half of the multi-label predictions were correct.

4.2. Threshold

For the last layer of the neural network, different threshold values were chosen.
Traditional wisdom would suggest a class probability of 0.5 or greater to be a good criterion
for assigning a label to a sample. In reality, a much smaller threshold showed much better
classification accuracies (see Table 2).

Table 2. Classification accuracy for different threshold values.

Threshold Mean Classification Accuracy

0.50 0.37
0.10 0.42
0.05 0.43
0.01 0.40

Normally, the last layer in the neural network outputs a class probability for each
possible class. The softmax function choses the neuron with the highest numerical value
as output for the class prediction. This was not used here because softmax returns only
one class and we need the possibility of multiple classes. Instead, the sigmoid function
was used to return a class probability for each of the six classes as explained in Section 3.3.
These class probabilities are backpropagated in the training phase in order to update the
weights in the neurons of the network. For this process, the class probability in the last
layer does not have to surpass a specific value. It just must be higher than all the other
classes. If all other class probabilities are close to zero, even small values in the neurons for
the true classes are sufficient for successful backpropagation.

Figure 4 shows an example of class probabilities for two superimposed PD sources. It
can be seen that one class has a very high probability and the second class shows a much
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lower probability. All other classes are close to zero. In order to detect multiple classes, a
threshold must be chosen, which can detect the second, smaller class probability. After
preliminary inspection of the data in form of figures like Figure 4, it could be seen that most
probability values for the second most probable class were between 0.05 and 0.1. Therefore,
these values were chosen for accuracy testing. Additionally, 0.5 was chosen as the naïve
assumption and 0.01 was chosen as an extreme value in the other direction.

Figure 4. Class probabilities of two superimposed PD sources (log scale).

As seen in Table 2, a threshold of 0.05 showed the best overall classification accuracy
for multi-label data. Because of computational time limitations and the need to retrain the
complete network for every threshold, only these four values were tested.

4.3. Classification of Superimposed PD Data

With the chosen threshold of 0.05, overall classification accuracy of 43% was achieved
for multi-label data (see Table 2). That means that almost half of the samples could be
classified correctly with two labels. Table 3 shows that not all combinations show the same
high accuracy. Combinations CoronaGND-CoronaHV, GL-SP-Stahl, and UP-CoronaHV show
lower classification accuracy than all the other variants, whereas combinations GL-UP,
GL-SP, SP-Stahl-SP, and SP-Stahl-UP show the highest accuracy for multi label classification.
Table 3 shows the classification accuracy and the average PD events per class for all samples
of the selected label combination.

Table 3. Multi-class accuracy and mean number of events.

Label Combination Mean Number of
Events of Class 1

Mean Number of
Events of Class 2

Accuracy Score
Class 1 Class 2

CoronaGND CoronaHV 87.54 14.23 0.00
CoronaGND UP 61.21 39.59 0.24

GL SP-Stahl 97.42 2.58 0.26
UP CoronaHV 23.20 77.97 0.29

CoronaGND SP-Stahl 44.02 58.14 0.34
CoronaHV SP-Stahl 13.73 88.03 0.38

CoronaGND SP 17.24 89.62 0.47
CoronaHV SP 7.13 97.38 0.47

SP UP 90.62 10.16 0.48
CoronaGND GL 4.16 98.92 0.49
CoronaHV GL 7.86 99.71 0.49

GL UP 98.50 2.50 0.52
GL SP 90.21 9.79 0.56

SP-Stahl SP 79.55 20.50 0.67
SP-Stahl UP 64.96 35.13 0.72
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4.3.1. On the Topic of Imbalanced Data

Different factors might be responsible for the different classification accuracies of the
label combinations. Since all classes in the data show different repetition rates of PD events,
this could have been a significant factor. If a sample consists almost entirely of only PD
events of one class, the classification of the other class will not be possible. Table 3 shows
that some of the label combinations with small accuracy values have highly imbalanced
repetition rates (e.g., GL-SP-Stahl), while other label combinations like GL-SP show higher
accuracy scores. This leads us to the conclusion that the imbalance of data and repetition
rates are not the main mechanism causing the accuracy differences.

5. Discussion

The mean accuracy of 43% seems rather low compared to previous works like [6]
where an accuracy of 97% was achieved on the same dataset. As explained in Section 4.1, a
different accuracy score for multi-label classification was used. There are multiple possible
explanations for different values of this score. A score of 0.5 for example could mean
that one class was always classified correctly while the second class was always classified
wrongly. However, it could also mean that both classes were classified correctly half of the
time. Our score of 43% could be seen as an equivalent single label score of 86%, which is
closer to our previously achieved accuracy for the single-label problem. Unfortunately, the
multi-label accuracy metric does not provide a detailed comparison between single- and
multi-label performance.

This is also very dependent on the input data and class combination itself, as seen in
Table 3. If we take a look at the combination of CoronaHV and GL, we see that most of the
data are from the GL class. This is a direct result of the much higher repetition rate of GL as
shown in Table 1. The multi-label accuracy from this specific class combination is 0.49. We
interpret this as almost all instances of GL are classified correctly (0.5 would be a perfect
score for the first class), while none of the instances of CoronaHV are detected. In contrast,
class combination with similar repetition rates (for example CoronaGND and UP) achieve
lower multi-label accuracy scores.

This suggest that for single-label data or instances where one class provides most of
the data for the sample, we get comparable, albeit slightly lower, accuracy scores. In some
cases, however, the second class can be additionally classified correctly.

While the threshold of 0.05 provides good results, further investigation is needed to
find better threshold values. A grid search between 0 and 1 with a step size of 0.01 could
be used to iterate over a bigger value range. Since this requires retraining of the neural
network and computational time was limited for this work, this needs to be done in further
studies.

Different combinations of sources result in different multi-label accuracies. While it
seems that this result is not dependent on the differences in repetition rate, this relationship
needs to be investigated further.

6. Conclusions

We showed that superimposed PRPD pattern, with two PD sources present, can be
classified by use of an LSTM neural network with a mean multi-label accuracy of 43%.
Temporal information is used in the form of a sequence of PD events, measured according
to IEC 60,270, instead of the image form of PRPD patterns. Sequence classification is done
by LSTM networks. The neural network is modified to support multi-label output. With
a threshold level on the network’s last layer, a sequence can be classified as containing
multiple sources at the same time. For the training of the neural network, only single class
PD data are used. For single source PD, this method achieves a classification accuracy
of 99%. For two superimposed PD sources, the method achieves a mean classification
accuracy of 43% for a threshold of 0.05 and the worst-case scenario of an imbalanced
dataset. Depending on the specific PD types, the classification accuracy fluctuates widely.
This problem could be improved by using longer sequences as input data. In the future,
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this method can also be used for PD classification in other equipment. For DC applications,
a variation without the phase angle information could also be possible. In this version,
only charge and time information would be used.
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